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Stomach adenocarcinoma (STAD) is one of the most common malignancies. But the molecular mechanism is unknown. In this
study, we downloaded the transcriptional profiles and clinical data of 344 STAD and 30 normal samples from The Cancer
Genome Atlas (TCGA) database. Stromal and immune scores of STAD were calculated by the Estimation of Stromal and
Immune cells in Malignant Tumor tissues using Expression data (ESTIMATE) algorithm, and association of stromal/immune
scores with tumor differentiation/T/N/M stage and survival was investigated. The differentially expressed genes (DEGs) between
high and low score groups (based on media) were identified, and prognostic genes over-/underexpressed in both STAD and
stromal/immune signature were retrieved. Furthermore, proportions of 22 infiltrating immune cells for the cohort from TCGA
were estimated by the Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) algorithm, and
association of 22 immune cells with tumor differentiation/T/N/M stage and survival was investigated. Next, coexpression
analysis of 22 immune cells and intersection genes over-/underexpressed in both STAD and stromal signature was conducted.
We found high stromal and immune scores and macrophage infiltration predicting poor tumor differentiation and severe local
invasion, obtained a list of prognostic genes based on stromal-immune signature, and explored the interaction of collagen,
chemokines such as CXCL9, CXCL10, and CXCL11, and macrophage through coexpression analysis and may provide novel
prognostic biomarkers and immunotherapeutic targets for STAD.

1. Introduction

Stomach cancer is reported to be responsible for more than 1
000 000 new cases and approximately 783 000 deaths in 2018,
making it the fifth most common cancer and the third lead-
ing cause of cancer death worldwide [1]. This malignancy
includes several pathological types, and stomach adenocarci-
noma (STAD) accounts for the majority. Although surgical
treatment and chemotherapy have improved the clinical out-
comes, unfortunately, the overall survival of STAD remains
poor [1–3]. The inadequate understanding of the tumor

mechanism was one of the crucial reasons; therefore, it is
imperative to explore the mechanism of STAD.

Tumor microenvironment (TME) is the local biological
environment of tumor cells, mainly consisting of stromal
cells, extracellular matrix, and cytokines. In TME, stromal
cells predominantly include cancer-associated fibroblasts,
endothelial cells, and immune cells such as T lymphocytes,
B lymphocytes, macrophages, dendritic cells, and neutro-
phils, and the extracellular matrix is usually composed of col-
lagen fiber, elastic fiber, fibronectin, laminin, and some
glycans [4]. Accumulating evidence has elucidated that stro-
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mal and immune cells in the TME also play a very essential
role in tumorigenesis, progression, and clinical outcomes
besides cancer cells themselves in gastric cancer [5–7]. How-
ever, the distinct mechanism remains unclear.

The variety of stromal and immune cells and the complex-
ity of their interactions in TME bring us a great challenge for
experimental research [8]. However, now, the decreasing costs
of next-generation sequencing technology have been provid-
ing us numerous amounts of RNA sequencing data, and we
can retrieve them from some public databases such as The
Cancer Genome Atlas (TCGA) [9]. Furthermore, several algo-
rithms have been presented to predict the composition of stro-
mal and immune cells in TME from the transcriptome data of
bulk tumors, facilitating the exploration of stromal and
immune signatures in TME. In 2013, Yoshihara et al. [10]
put forward a program, known as Estimation of Stromal and
Immune cells in Malignant Tumor tissues using Expression
data (ESTIMATE), which can infer the levels of stromal and
immune cells in TME based on the gene expression data.
Another computational algorithm, namely, Cell-type Identifi-
cation By Estimating Relative Subsets Of RNA Transcripts
(CIBERSORT, https://cibersort.stanford.edu/), was presented
to estimate relative fractions of 22 immune cell subsets from
gene expression profiles of tumor tissues, and its accuracy
has been confirmed by flow cytometry in breast cancer and
liver cancer [11]. Several prognostic models based on stromal
and immune signatures by ESTIMATE or CIBERSORT algo-
rithm have been constructed [5, 12–17], some of which were
even better than TNM stage in predicting cancer prognosis
[17], suggesting the efficacy of the algorithms [18], as well as
the importance of TME in influencing tumor biological behav-
ior [19, 20]. However, previous models mainly focused on the
prognostic value of stromal-immune related genes in TME,
without considering their coexpression relationship in gastric
cancer and the differential expression between gastric cancer
and normal tissues; that is to say, the mechanism of stroma
and immune-related genes in TME has not been explored.

In the present study, we comprehensively applied the algo-
rithms mentioned above to analyze the transcriptional and
clinical data of STAD available in the TCGA database. We
found that high stromal and immune scores as well as macro-
phage were associated with poor tumor differentiation and
severe local invasion and also obtained a set of stromal and
immune-related prognostic genes which are specifically
expressed in STAD. Furthermore, we preliminarily explored
the interaction of stromal and immune molecules in TME by
coexpression analysis and may provide novel prognostic bio-
markers and immunotherapeutic targets for STAD (Figure 1).

2. Materials and Methods

2.1. Data Collection. Level 3 transcriptional profiles of STAD
patients and normal controls including Fragments Per
Kilobase of exon per Million mapped fragments (FPKM)
and counts of high-throughput sequencing mRNA, as well
as the clinical data such as age, gender, overall survival,
tumor differentiation grade, and TNM stage for correspond-
ing patients, were downloaded from the TCGA database
(https://tcga-data.nci.nih.gov/tcga/) on January 15, 2020.

2.2. Identification of Differentially Expressed Genes (DEGs)
between STAD and Normal Tissue. The R package “edgeR”
with a threshold of absolute value of log2 ðfold change, FCÞ
> 1 and false discovery rate ðFDRÞ < 0:05 was used to iden-
tify the DEGs between STAD and normal tissues.

2.3. ESTIMATE Algorithm Analysis. Stromal and immune
scores for STAD patients from TCGA were calculated by
the ESTIMATE algorithm; then, the relationship of stromal
and immune scores with clinicopathological characteristics
was analyzed by the Wilcoxon test (two groups) or Kruskal
test (more than two groups), respectively. P < 0:05 was
regarded as statistically significant. Based on the median
score, all of the STAD samples were assigned into high or
low stromal/immune score groups, and the relationship of
stromal/immune scores with overall survival was analyzed
by the “survival” R package. In addition, the stromal DEGs
between high and low stromal score groups were identified
by the “limma” R package with absolute value of log2 FC >
1 and FDR < 0:05. The immune DEGs were obtained
through the same methods. DEGs overexpressed in the high
stromal/immune score group compared with the low score
group were regarded as “overexpressed” in stromal/immune
signature, while those underexpressed in the high score
group were regarded as “underexpressed.” Furthermore, a
Venn diagram was used to identify the common DEGs
shared by stromal and immune signatures. To explore the
function of the stromal and immune DEGs, as well as the
common DEGs, Gene Ontology (GO) [21] and Kyoto
Encyclopedia of Genes and Genomes (KEGG) [22] enrich-
ment was performed with adjusted P < 0:05 as statistically
significant, and a protein-protein interaction (PPI) network
was constructed in STRING (https://string-db.org) with
confidence > 0:95.

2.4. Identification of Prognostic Genes Associated with
Stromal and Immune Signatures in STAD. According to the
median expression level of each stromal DEGs, all STAD
patients were divided into high or low expression group,
and the correlation of high/low expression with survival
was analyzed by the Kaplan-Meier curve and log-rank test.
P < 0:05 was considered to be statistically significant. The
stromal DEGs of prognostic value were acquired. Subse-
quently, these prognostic genes over- or underexpressed
in stromal signature were intersected with over- or under-
expressed DEGs in STAD, respectively, so we got the
prognostic genes over-/underexpressed in both STAD
and stromal signature. In the same way, the prognostic
DEGs over-/underexpressed in both STAD and immune
signature were obtained.

2.5. Validation of Prognostic Genes of Stromal/Immune DEGs
for STAD in GEO Database. The GES84433 STAD transcrip-
tional profiles and survival data were downloaded from the
GEO database (https://portal.gdc.cancer.gov), and the
ESTIMATE algorithm was used to calculate the stromal
scores and immune scores of all STAD samples. According
to the method of the TCGA database, we obtained the
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stromal/immune DEGs, from which genes with prognostic
value were screened out.

2.6. CIBERSORT Algorithm Analysis. Proportions of 22 infil-
trating immune cell subsets for 344 STAD patients and 30
normal controls from the TCGA database were estimated
by the CIBERSORT algorithm with LM22 signature and 1
000 permutations, and cases with CIBERSORT P < 0:05 were
selected for further analysis.

Comparison of 22 immune cell subsets between STAD
and normal controls was conducted by the Wilcoxon test.
The correlation of 22 immune cells with the clinicopatholog-
ical characteristics was analyzed by the Wilcoxon test (two
groups) or Kruskal test (more than two groups). Moreover,
according to the median infiltrating level of each immune
cell, all tumor samples were assigned into high or low infil-
trating groups; Kaplan-Meier curves and log-rank test were
used to evaluate the association of immune cell infiltrating
levels and overall survival. P < 0:05 was considered statisti-
cally significant.

2.7. Coexpression Analysis. The shared genes overexpressed
in both STAD and stromal signature were taken by intersec-
tion, and so did the genes underexpressed in both. Subse-
quently, the coexpression analysis of 22 infiltrating immune
cells and over-/underexpressed intersection genes was per-
formed via Pearson correlation analysis.

R version 3.6.3 was used for all analyses and plots.

3. Results

3.1. Data Preparation. Transcriptional expression profiles
and clinical data of 344 STAD patients and 30 normal controls
were downloaded from the TCGA database. Among the 344
STAD patients, 127 (36.9%) cases were female and 217
(63.1%) were male, with the age ranging from 35 to 90 years.
The data included 8 cases (2.3%) of G1, 128 cases (37.2%) of
G2, 200 cases (58.1%) of G3, and 8 cases (2.3%) of unknown
differentiation grade. There were 50 (14.5%), 103 (29.9%),
135 (39.2%), and 34 (9.9%) cases classified from stage I to stage
IV and 22 cases (6.4%) of unknown stage, including 19 (5.5%),
74 (21.5%), 158 (45.9%), and 85 (24.7%) cases from stages T1
to T4 and 8 (2.3%) cases of unknown T stage; 103 (29.9%), 89
(25.9%), 71 (20.6%), and 65 (18.9%) cases from stages N0 to
N3 and 16 (4.7%) cases of unknown N stage; and 305
(88.7%) cases for M0, 23 (6.7%) for M1 stage, and 16 (4.7%)
cases of unknown M stage.

3.2. Identification of Differentially Expressed Genes (DEGs)
between STAD and Normal Tissues. A total of 7275 overex-
pressed and 3647 underexpressed DEGs were identified in
STAD compared with normal tissues with the threshold
of absolute value of log2 ðfold change, FCÞ > 1 and false
discovery rate ðFDRÞ < 0:05.

3.3. Association of Stromal and Immune Scores with
Clinicopathological Characteristics and Prognosis in STAD.

Gene expression profiles and clinical data of 344 stomach adenocarcinoma (STAD) and 30 normal 
controls available from the TCGA database

Stromal and immune scores of STAD calculated 
by ESTIMATE algorithm

Association of stromal/immune scores with 
tumor differentiation/T/N/M stage

Divide STAD into high or low stromal/immune 
score groups based on the median

Immune 
DEGs

Stromal 
DEGs

Prognostic genes over/under expressed in both 
STAD and stromal/immune signature

Proportions of 22 immune cells in STAD and 
normal tissues estimated by CIBERSORT

Comparison of 22 immune cells between 
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Co-expression analysis of 22 immune cells 
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Figure 1: The flow diagram of the analytical process. TCGA: The Cancer Genome Atlas; ESTIMATE: Estimation of Stromal and Immune
cells in Malignant Tumor tissues using Expression data; CIBERSORT: Cell-type Identification By Estimating Relative Subsets Of RNA
Transcripts; DEGs: differentially expressed genes.
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The stromal and immune scores of 344 STAD samples were
calculated by the ESTIMATE algorithm, ranging from
-1859.572772 to 2072.412073 for stromal scores and
-1056.13449 to 3124.523063 for immune scores, respectively.
The correlation analyses of stromal/immune scores with
clinicopathological characteristics revealed that increased
stromal and immune scores were significantly associated
with poor tumor differentiation (Figure 2(a), P = 0:001;
Figure 2(b), P = 0:001) and advanced local invasion and
stages (Figure 2(c), P < 0:001; Figure 2(d), P < 0:001;
Figure 2(e), P = 0:001; and Figure 2(f), P = 0:027) and that
neither stromal nor immune scores were correlated with
lymph nodes or distant metastasis.

To investigate the potential association of stromal/im-
mune scores with prognosis, all STAD patients were classified
into high or low stromal/immune score groups according to
themedian score. Survival curves demonstrated that high stro-
mal scores predicted poor overall survival (Figure 2(g), P =
0:032), while there was no significant correlation between
immune scores and prognosis (Figure 2(h), P = 0:639).

3.4. Identification and Function Analysis of Stromal and
Immune DEGs in STAD. In total, 344 STAD patients were
assigned into high or low stromal score groups based on
the median score. Stromal DEGs were identified with abso-
lute value of log2 FC > 1 and FDR < 0:05 as a threshold,
and 1508 overexpressed and 216 underexpressed DEGs were
retrieved. In the same way, a total of 861 overexpressed and
309 underexpressed immune DEGs were obtained. In order
to elucidate the potential functions of the DEGs, Gene Ontol-
ogy (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment was performed. For stromal DEGs,
GO annotations predominantly involved the extracellular
structure and matrix organization, leucocyte activation and
migration for biological processes (BP), and collagen-
containing extracellular matrix for cellular component (CC)
(Figure 3(a)), and KEGG enrichment mainly included
cytokine-cytokine receptor interaction and PI3K-Akt signal-
ing pathway (Figure 3(b)). For immune DEGs, GO annota-
tions predominantly included activation, differentiation,
and proliferation of lymphocytes (Figure 3(c)), while KEGG
enrichment mainly involved cytokine-cytokine receptors, che-
mokine signaling pathways, and cell adhesion molecules
(Figure 3(d)). In addition, protein-protein interaction (PPI) net-
works of stromal and immune DEGs were constructed in
STRING, and the top 30 hub genes with high connectivity in
the module were obtained (Supplementary Figures 1A and 1B).

Moreover, the Venn diagram was used to identify the
common DEGs shared by stromal and immune signatures,
and 644 overexpressed and 121 underexpressed genes were
obtained (Supplementary Figure 1C). Predominant GO
enrichment terms of the 765 common DEGs included
activation, proliferation and differentiation of immune cells
and their regulations, lymphocyte cell-cell adhesion, and
heparin, cytokine, and chemokine binding (Supplementary
Figure 1D), while the principal KEGG enrichment pathway
involved cytokine-cytokine receptor interaction, chemokine
signaling pathway, and cell adhesion molecules (CAMs)
(Figure 3(e)). Furthermore, the PPI network was

constructed (Supplementary Figure 1E), from which the
top 30 remarkable nodes were acquired (Figure 3(f)),
predominately containing chemokine and chemokine
receptor families such as CXCL 9, CXCL 10, CXCL 11,
CXCL 13, CCL 4, CCL 5, CCL 13, CCL 19, CCL 21, CCR1,
CCR 2, CCR 5, CCR 7, CXCR 3, and CXCR 4, followed by T
cell surface glycoprotein. Integrin subunits such as ITGAM
and ITGB2, as well as complement 3 (C3), were also
involved in the top 30 genes.

3.5. Identification of Prognostic Genes Associated with
Stromal and Immune Signatures in STAD. The Kaplan-
Meier curve and log-rank analysis (P < 0:05) revealed 263
prognostic genes from stromal DEGs, including 251 overex-
pressed and 12 underexpressed genes. Subsequently, these
prognostic genes were intersected with 7275 overexpressed
and 3647 underexpressed DEGs in STAD, respectively; then,
we got 29 prognostic genes overexpressed in both STAD and
stromal signature (Supplementary Figure 2A1-A29) and two
prognostic genes underexpressed in both (Supplementary
Figure 2B1-B2). In the same way, 63 immune DEGs of
prognostic value were identified, containing 41 overex-
pressed and 22 underexpressed genes. Next, five prognostic
DEGs overexpressed in both STAD and immune signature
(Supplementary Figure 2B1-B2, D1-D2) and four under-
expressed in both (Supplementary Figure 2A27-A29, C1-
C2) were obtained.

3.6. Validation of Prognostic Genes of Stromal/Immune DEGs
for STAD in GEO Database. Based on GES84433 data con-
sisting of 357 STAD patients from the GEO database, the
relationship between stromal/immune scores obtained by
the ESTIMATE algorithm and overall survival showed that
high stromal scores were significantly correlated with poor
prognosis in STAD patients (Supplementary Figure 3A, P =
0:049), while no significant correlation was found between
immune scores and prognosis (Supplementary Figure 3B,
P = 0:089). There were 159 genes with prognostic value in
stromal-related DEGs in GEO data, and 41 shared
prognostic genes with 263 stromal-related DEGs in TCGA
data (Supplementary Figure 3C). There were 65 prognostic
genes in immune-related DEGs in GEO data including 26
shared prognostic genes with 63 immune-related DEGs in
TCGA data (Supplementary Figure 3D).

3.7. Landscape of 22 Infiltrating Immune Cells by
CIBERSORT Algorithm. Proportions of 22 infiltrating
immune cells for 344 STAD and 30 normal samples were
estimated by the CIBERSORT algorithm, and 221 STAD
and 15 normal cases with CIBERSORT P < 0:05 were
selected for further analysis. The landscape of 22 immune
cells in STAD and controls was displayed by a bar plot and
heat map (Supplementary Figure 4). Comparison of 22
immune cell subsets between tumor and control sample
was exhibited by a violin plot (Figure 4(a)), demonstrating
that the proportions of macrophages M0, M1, and M2
significantly increased (all P < 0:001), while plasma cells
decreased (P < 0:001) in STAD.
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Figure 2: Association of stromal and immune scores with clinicopathological characteristics and prognosis in STAD. The stromal and
immune scores of 344 STAD samples were calculated by the ESTIMATE algorithm. The correlation analyses revealed that increased
stromal and immune scores were significantly associated with poor tumor differentiation (a, b), advanced tumor invasion depth (c, d), and
stages (e, f). According to the median, all STAD patients were divided into high or low stromal/immune score groups. Survival curves
demonstrated that high stromal scores predicted poor overall survival (g), while there was no significant correlation between immune
scores and prognosis (h).
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3.8. Correlation of 22 Immune Cells with Clinicopathological
Characteristics and Prognosis in STAD. The correlation
analyses of 22 immune cells with the tumor differentiation
grade, local invasion degree, lymph node metastasis, and
distant metastasis showed that high proportions of macro-
phage M1, dendritic cells, and CD8 T cells predicted poor
tumor differentiation (Figure 4(b), P = 0:021; Figure 4(c),

P = 0:001; and Figure 4(d), P = 0:004), high macrophage
M1 infiltration indicated advanced tumor invasion
(Figure 4(e), P = 0:005), and macrophage M2 tended to
be positively correlated with severe tumor invasion, but
P = 0:089 (Figure 4(f)). Moreover, high macrophage M1
infiltration was negatively related to the risk of distant
metastasis (Figure 4(g), P = 0:018), while no significant
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Figure 3: Function analysis of stromal DEGs, immune DEGs, and common DEGs in STAD. GO and KEGG enrichment of stromal
DEGs (a, b). GO and KEGG enrichment of immune DEGs (c, d). KEGG enrichment (e) and the top 30 remarkable nodes retrieved
from the PPI network (f) for common DEGs.
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Figure 4: Continued.
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association was observed between macrophage M2 and
distant metastasis (P = 0:759). There was no significant
correlation between the proportions of 22 immune cells
and lymph node metastasis.

The Kaplan-Meier curve and log-rank analysis were used
to analyze the relationship between 22 immune cells and
overall survival rates, revealing that elevated proportions of
CD8 T cells and regulatory T cells (Tregs) predicted good
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Figure 4: Correlation of 22 immune cells with clinicopathological characteristics and prognosis in STAD. Comparison of 22 immune cells
between STAD and normal controls (a). Infiltrating immune cells related to the tumor differentiation grade (b–d), the local tumor
invasion (e, f), the distant metastasis (g), and the prognosis of STAD (h–j).
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prognosis (Figure 4(h), P = 0:015; Figure 4(i), P = 0:015),
while increased neutrophils were related to poor prognosis
(Figure 4(j), P = 0:044). Moreover, high proportions of
plasma cells tended to have a good prognosis, but P =
0:083. According to the CIBERSORT algorithm, there
was no significant association between macrophages M0,
M1, and M2 and the overall survival rate (P = 0:815, P =
0:989, and P = 0:317).

3.9. The Coexpression Analysis. A total of 132 intersection
genes overexpressed in both STAD and stromal signature
and 87 intersection genes underexpressed in both were
identified. Subsequently, the coexpression analysis of 22
infiltrating immune cells and over-/underexpressed inter-
section genes was exhibited by heat maps (Figures 5
and 6).

4. Discussion

In recent years, TME has been reported to play an essential
role in tumorigenesis, progression, metastasis, therapeutic
response, and prognosis and has become a new research hot-
spot with the development of immunotherapy and precision
treatment in malignancies [19, 23]. Meanwhile, STAD has
been regarded as a public health problem worldwide due to
the high morbidity and mortality [1, 2]. Thus, our study
focused on the TME in STAD.

Our results obtained by the ESTIMATE algorithm
showed that a high stromal score indicated poor prognosis,
which was consistent with a previous study of Wang et al.
[14]. Moreover, in the study of Jiang et al. [17], formalin-
fixed paraffin-embedded specimens of 879 patients with gas-
tric cancer after operation were included to construct the
immune score model based on five immune characteristics,
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Figure 5: The coexpression analysis of 22 infiltrating immune cells and overexpressed intersection genes in both STAD and stromal
signature.
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supporting the conclusions that the immune score was an
independent prognostic factor and that the predictive value
of the immune score combined with TNM on the survival
rate and postoperative recurrence of gastric cancer was better
than that of TNM stage alone. Therefore, the stromal-
immune signature is a good supplement to traditional path-
ological staging.

In the present study, all of the 29 prognostic genes that
are overexpressed in both STAD and stromal signature,
unfortunately, indicated poor prognosis, among which there
were several collagen-encoding mRNA such as COL1A2,
COL5A1, COL5A2, COL8A1, COL10A1, and COL12A1.
Through coexpression analysis, these collagens were found
to be positively correlated with each other and with numer-
ous important molecules such as LOX, MMP11, FAP, and
WNT as well as macrophage M2, suggesting that collagen
may play a crucial role of eliciting poor outcomes by coop-
erating with the above molecules in TME [24]. Studies have

shown that the new model including the collagen signature
had a better predictive value for lymph node metastasis in
early gastric cancer than the traditional TNM model [25]. It
can be seen that collagen, an important component of
TME, should be taken seriously in STAD, whether acting as
a prognostic prediction or a therapeutic target [26].

The results of the CIBERSORT algorithm in our study
showed that CD8+ T and Treg infiltration were positively
correlated with the overall survival rate, while neutrophil
infiltration reached an inverse outcome. CD8+ T, also known
as cytotoxic T cell (CTL), carries a function of antitumor
immunity and promotes tumor cell apoptosis, responsible
for good clinical outcomes of various malignant tumors
including gastric cancer [4, 27, 28]. Treg, defined as CD4+
CD25+ Foxp3+ T cell, is capable of immunosuppression
which helps tumor cells escape from the immune system,
accounting for poor prognosis in a variety of solid malignan-
cies [29]. However, heterogeneity in differentiation and
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Figure 6: The coexpression analysis of 22 infiltrating immune cells and underexpressed intersection genes in both STAD and stromal
signature.
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phenotype among Tregs has been demonstrated [30], leading
to conflicting reports of its role in tumor prognosis. According
to Kim et al. [28], Treg was associated with poor prognosis in
patients with microsatellite-unstable gastric cancers, whereas
in the research of Liu et al. [31], Treg was an independent pre-
dictor of short overall survival in gastric cancer. A retrospec-
tive study involving 598 gastric cancer patients suggested
that high infiltration of FOXP3+ Treg was of better prognosis
in patients on stages I-II, whereas the converse outcome was
demonstrated in that of stages III-IV [32]. Further prospective
studies based on different subtypes may be required to eluci-
date the association of Treg with gastric cancer.

The correlation analyses of stromal and immune scores
with clinicopathological characteristics of STAD revealed
that both high stromal and immune scores were related to
poor tumor differentiation and severe local invasion and that
neither was significantly related to lymph nodes and distant
metastasis, indicative of the greater influence of TME on pri-
mary tumor cells than metastasis.

TME is a complex system involving multiple cells and
cytokines. Among the immune cells, macrophage, namely,
tumor-associated macrophage (TAM), is particularly abun-
dant and plays a crucial role in tumor progression. TAM
exposed to cytokines such as TNF-α, INF-γ, or lipopolysac-
charide (LPS) acquires M1 polarization. Conversely, some
cytokines including IL4, IL10, and IL13 can promote TAM
polarization toward the M2 state. Traditionally, M1 is con-
sidered to be proinflammatory and antitumor, while M2 is
confirmed to be anti-inflammatory and protumor [33]. How-
ever, these perspectives seem to be absolutism. Compared
with uncomplicated gastritis, enhanced M1 macrophage
polarization was observed in H. pylori-associated atrophic
gastritis which was regarded as a premalignant lesion of gas-
tric cancer [34]. Another study has confirmed that at the
early stages of gastric cancer, NF-κB polarized macrophages
toward M1 by increasing the transcription of proinflamma-
tory factors. In contrast, at the advanced stage, macrophages
were polarized towardM2 due to the functional deficit of NF-
κB [35]. A long-term follow-up study enrolling 1138 patients
with gastric adenoma confirmed that the number of TAM
was an independent risk factor for the progression of carci-
noma development [36]. Our study also showed that the pro-
portions of macrophages M1 and M2 were significantly
increased in STAD compared with normal controls, the
increased proportion of M1 indicated poor tumor differenti-
ation and severe local invasion, and high proportion of M2
seemed to represent severe local invasion. Therefore, both
M1 andM2 phenotypes of macrophages may promote tumor
growth. Moreover, it has been confirmed that M1 and M2
phenotypes can be converted to each other [37]. The 5-year
survival rate of gastric cancer at an advanced stage is less than
30% even after surgical treatment [3], while it can exceed 90%
at an early stage after treatment [38]. Given that knowledge,
prevention, and early diagnosis of gastric cancer are of great
importance. Therefore, TAM, especially M1 phenotype, as an
important initiating factor in the early stage of STAD, should
be paid more attention.

There is a complex network of cytokines released by both
malignancy and diverse stromal cells in TME to contribute to

carcinogenesis [35]. In our study, the PPI plot of common
DEGs shared by stromal and immune signatures also showed
that various cytokines, especially chemokine and chemokine
receptor family including CXCL9, CXCL10, CXCL11,
CXCL13, CCL4, CCL5, CCL13, CCL19, CCL21, CCR1,
CCR2, CCR5, CCR7, CXCR3, and CXCR4, were the most
active and quite important cytokines in TME. Some of these
chemokines and receptors, such as CXCL13, CCL4, CCL5,
CCR2, CXCR3, and CXCR4, have been experimentally con-
firmed to be associated with the pathogenesis or prognosis
of gastric cancer or other malignancies [39, 40–43]. In our
study, CXCL9, CXCL10, and CXCL11 were found to be over-
expressed in STAD compared with the normal control and in
the stromal signature. Moreover, there was a positive coex-
pression relationship among them and with the proportion
of macrophage M1.

Naturally, CXCL9, CXCL10, and CXCL11 were expressed
at low levels, and they could be upregulated by cytokine stim-
ulation. CXCL9, CXCL10, and CXCL11 in TME were primar-
ily secreted by tumor cells, monocytes, fibroblasts, and
endothelial cells in response to IFN-γ [43]. The common
receptor of these ligands was CXCR3, which had three spliced
variants in human (CXCR3A, CXCR3B, and CXCR3-alt).
CXCR3 is usually expressed on the surface of tumor cells,
monocytes, dendritic cells, T cells, and NK cells [42]. CXCL9,
CXCL 10, and CXCL11 were reported to recruit immune cells
to TME, stimulate and induce immune cells such as macro-
phages, CD8+ T cells, and NK cells to produce TNF-α,
IFN-γ, and IL-2 through Th1 polarization and activation,
and thus enhance antitumor immunity. In turn, the IFN-γ-
dependent immune activation can also promote the release
of the above chemokines [41]. The CXCL9, CXCL10, and
CXCL11/CXCR3 axis was generally considered to have anti-
angiogenic effects on endothelial cells and has been reported
as effective tumor angiogenesis inhibitors in some in vivo
tumor models, including pancreatic cancer, breast cancer,
lung cancer, and melanoma [40]. However, there have also
been reports of CXCL9, CXCL10, and CXCL11 that promote
tumor proliferation in colon cancer, esophageal adenocarci-
noma, and head and neck cancer by promoting inflammation
or other mechanisms [44–47]. The effects of CXCL9,
CXCL10, and CXCL11 on prognosis have also been reported
variously: in colon cancer, esophageal cancer, non-small-
cell lung cancer, and ovarian cancer, they were reported
to favor good outcomes, while in pancreatic cancer and
clear cell kidney cancer, they represented poor prognosis
[48]. Different variants of CXCR3 may be one of the rea-
sons, and other mechanisms leading to contradictory
results remain unclear. There have been several attempts
to target this axis for immunotherapy in colon cancer,
breast cancer, kidney cancer, mesothelioma, and myeloma,
but it should be treated differently in different types of
tumors and subtypes [43]. However, there were few stud-
ies on the mechanism of CXCL9, CXCL10, and CXCL11
and their relationship with macrophage in STAD, which
need further exploration and may provide a new target
of immunotherapy for STAD [49].

Inevitably, there are several limitations to this article. The
absence of experimental validation could be the major
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limitation. Furthermore, the data were obtained from the
TCGA database, lacking information of Asian ethnicity, and
the results may not be suitable for all ethnicities. To make up
for the limitations, we are preparing an international multi-
center clinical study of STAD in which we will explore the
mechanisms of collagen, CXCL 9, CXCL10, CXCL11, and
TAM in TME by PCR, Western blotting, immunohistochem-
istry, and flow cytometry to validate our results.

5. Conclusions

Taken together, in this study, we analyzed the data of STAD
from the TCGA database by ESTIMATE and CIBERSORT
algorithms and exhibited the landscape of stromal and
immune signatures in TME. We found that high stromal
and immune scores and macrophage infiltration were asso-
ciated with poor tumor differentiation and severe local inva-
sion and also obtained a list of prognostic genes based on
the stromal-immune signature and differentially expressed
in STAD compared with normal tissues. Moreover, we pre-
liminary explored the interaction of collagen, chemokines
such as CXCL9, CXCL10, and CXCL11, and TAM in TME
through coexpression analysis of transcriptome data asso-
ciated with stromal and immune signatures and may,
therefore, provide novel prognostic biomarkers and immu-
notherapeutic targets for STAD.
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