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Background. Deciphering the immune characteristics within tumors and identifying the immune signals related to the prognostic
factor are helpful for the treatment and management of tumor patients. However, systematic analysis of immune signatures in head
and neck squamous cell carcinoma (HNSCC) remains largely unstudied. Methods. A total of 718 immune-related genes were
extracted from RNA sequencing data from 519 HNSCC patients in the TCGA database, and survival analysis with integrated
bioinformatics analyses was performed to build the final predictive prognosis model. Results. The 178 survival-associated genes
(P < 0:05) participated in important immune functions, including immune cell activation and migration. Multivariate regression
analysis using 93 genes (P < 0:01), together with survival-associated clinicopathological parameters, identified 35 independent
prognostic factors. The most significant 8 independent factors were CD3E, CD40LG, TNFRSF4, CD3G, CD5, ITGA2B, ABCB1,
and TNFRSF13b. The final prognostic model achieved outstanding predictive efficiency with the highest AUC of 0.963.
Conclusion. Our prognostic model based on the immune signature could effectively predict the prognosis of HNSCC patients,
providing novel predictive biomarkers and potential therapeutic targets for HNSCC patients.

1. Introduction

Head and neck squamous cell carcinoma (HNSCC), includ-
ing tumors generated in the oral cavity, oropharynx, larynx,
or hypopharynx, is the sixth most frequently diagnosed can-
cer worldwide, with only a 40–50% 5-year survival rate [1].
Despite considerable advancements in recent years in imag-
ing techniques, surgery, radiotherapy, and chemotherapy,
the survival rate in patients with HNSCC has not improved
greatly and remains unsatisfactory [2–4]. Even worse, it was
reported that the HNSCC mortality rate has increased from
2012 to 2016 for tumors associated with the human papillo-
mavirus (HPV).

HNSCC is a heterogeneous disease with unsolved com-
plexity in terms of etiology, pathogenesis, morphological
characteristics, clinical features, and natural history. So far,
the most critical risk factors are tobacco use and heavy alco-
hol consumption [5–7]. The prognosis of patients with

HNSCC is mainly indicated by the stage at diagnosis [1].
Early stage cancers are treated with radiotherapy or surgery
and have a relatively better prognosis than advanced HNSCC
patients. Studies have shown that the response rate of single-
modality therapy (either surgery or radiation alone) in early
stage tumors was significantly higher than that of advanced
tumors. Disappointingly, the majority of patients were diag-
nosed at advanced stages with distant metastases. Therefore,
a novel prediction model for the survival of HNSCC was
greatly needed.

With limited understanding of the genetic and biological
heterogeneity of the HNSCC, few effective therapeutic strat-
egies were available compared with those for other tumor
types. The exploration of the TP53/RB pathway,
PI3K/AKT/MTOR pathway, EGFR pathway, and other sig-
naling pathways brought novel insights into the initiation
and development of cancer and resulted in several successful
targeted therapeutics. From the representative targeted
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therapy (EGFR-tyrosine kinase inhibitor, EGFR-TKI) to rev-
olutionary immunotherapy, these therapeutics demonstrated
that a better understanding of signaling pathways in cancer
might benefit the development of novel therapeutics. Fur-
thermore, illumination of the molecular factors involved in
the prognosis of HNSCC not only guides the treatment of
HNSCC patients in a clinical way but also helps the explora-
tion of novel targeted therapies or combined modality treat-
ment strategies [8].

Currently, the application and mechanisms of immuno-
therapy are being extensively explored in HNSCC and other
malignancies; immune signatures were reported to be reliable
prognosis predictors for other types of cancer. However, the
potential role of immune-related genes in HNSCC remained
largely unstudied, and there is no effective prediction model
for HNSCC patients. The purpose of this study was to inves-
tigate the potential utility of the immune-related genes in the
prognosis of HNSCC patients. This study systematically ana-
lyzed the prognostic value of 718 immune-related genes in
519 HNSCC patients and constructed a powerful prognostic
prediction model for HNSCC patients.

2. Materials and Methods

2.1. Patient Cohort and Data Curation. The RNA sequencing
data of tumor tissues from 519 HNSCC patients were down-
loaded from The Cancer Genome Atlas (TCGA) data portal
(https://cancergenome.nil.gov/) with matching clinical infor-
mation. In total, 718 immune-related genes curated from the
nCounter® PanCancer Immune Profiling Panel (Nano-
String) were extracted from the RNA sequencing data.

2.2. Survival Analysis of the Immune Signatures in HNSCC.
Overall, 509 HNSCC samples, which were fully characterized
with at least 30 days of overall survival (OS), were included in
the survival analysis performed using the survival package
(version 3.1-7) in R (version 3.3.1). Patients were divided into
high and low groups by median cut based on the expression
of each gene, followed by univariate COX regression analysis
and log-rank test to identify immune-related genes with
prognostic ability. Then, Kaplan-Meier curves were drawn
to compare the survival rates between the two groups.
Together with clinical parameters, multivariate COX regres-
sion analysis was used to remove unnecessary factors and to
build the prediction model for the overall survival of HNSCC
patients. To compare the efficiency of the prognostic predic-
tors, the survivalROC package (version 1.0.3), which allows
for time-dependent ROC curve estimation with censored
data, was used to estimate the area under the curve (AUC)
of the receiver-operator characteristic (ROC) curve for each
factor.

2.3. GO and KEGG Analysis.Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
were analyzed by GeneMANIA (Version 3.4.1), and 178
survival-associated genes (P < 0:05) from the univariate
COX regression were used to perform GO and KEGG
analysis.

2.4. Statistical Analysis. The log-rank test was used to analyze
the difference in OS, and the hazard ratio (HR) was deter-
mined from a Cox proportional hazard model using the sur-
vival package (version 3.1-7). Survival models were
compared with the survivalROC package (version 1.0.3),
and Kaplan-Meier plots were used to visualize survival differ-
ences. All tests were two-sided, and a P value less than 0.05
was considered statistically significant unless stated other-
wise. All statistical analyses were performed in R package
(version3.3.1).

3. Results

3.1. Study Design and Analysis Pipeline. The overview of the
study design and analysis pipeline is shown in Figure 1. Uni-
variate Cox regression analysis of 718 immune-related genes
from 519 HNSCC patients in TCGA database was per-
formed. There were 178 genes (P < 0:05, Supplementary
Figure 1) and 93 genes (P < 0:01, Figure 2) that significantly
correlated with OS in the univariate analysis, respectively.
Then, GO and KEGG analysis was used to demonstrate the
potential role of these genes in essential pathways in
immune responses. Kaplan-Meier plots of the top 8
survival-associated genes are shown in Figure 3.
Relationships between clinical parameters and outcomes of
HNSCC patients were also tested to verify the effectiveness
of the survival data from TCGA cohort. Next, a
multivariate Cox regression analysis was performed to
establish the prognostic model with the candidate immune-
related genes and clinicopathological parameters. Finally,
ROC curves were applied to compare the efficiency of these
predictive models and genes.

3.2. Characteristics of the Patient Cohort. Among the 519
HNSCC patients, a total of 509 HNSCC patients with OS >
30 days were enrolled in this study with detailed clinicopath-
ological information provided by the TCGA database. The
age at diagnosis ranged from 19 to 89 years old (median: 61
years), and 383 patients were male (73.8%). The median
follow-up time was 855 days, ranging from 11 to 5,480 days,
and 220 patients died by the end of follow-up.

3.3. Immune Signatures Associated with OS in HNSCC. To
explore the potential role of immune signatures in HNSCC
patients, specifically whether there are significant associa-
tions between gene expression and prognosis of HNSCC
patients, expressions of 718 immune-related genes were
extracted from RNA-sequencing data from HNSCC patents.
Survival analysis by univariate Cox regression analysis using
the survival package (Version 2.41.3) in R was performed
with the HNSCC cohort of 509 patients for each gene. The
results showed 178 genes (P < 0:05) and 93 genes (P < 0:01)
that were significantly associated with the overall survival of
HNSCC patients. The detailed hazard ratios (HRs) and P
values are listed in Supplementary Figure 1 and Figure 2(a).
High expressions of 139 genes (P < 0:05) and 75 genes
(P < 0:01) were significantly associated with better overall
survival, whereas 38 genes (P < 0:05) and 18 genes (P < 0:01)
were associated with adverse prognosis in HNSCC
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(Supplementary Figure 1 and Figure 2(a)). GO annotation and
KEGG pathway enrichment analysis were conducted among
the 178 survival-associated immune genes to understand the
underlying functions of these immune signatures in HNSCC.
As a result, these 178 survival-associated genes participated
in critical immune functions, such as the participation of
MS4A1, BLK, CD19, and CD27 in B cell activation; ICAM3
in the regulation of leukocyte activation and leukocyte
migration; and IRF4, CD5, and CD3E in T cell activation.
Other functions include leukocyte differentiation, antigen
receptor-mediated signaling pathway, and immune system
development (Figure 2(b)).

Among 178 survival-associated genes, the top eight most
significant genes were MS4A1, BLK, ICAM3, CD19, CD27,
IRF4, KLRB1, and FLT3 (Figure 3). Kaplan-Meier curves
are presented in Figures 3(a)–3(h), and P values by log-
rank tests are provided. The hazard ratios (HRs) were
MS4A1 (HR = 0:548, 99% CI: 0.415–0.721) (Figure 3(a)),
BLK (HR = 0:550, 99% CI: 0.416–0.726) (Figure 3(b)),
ICAM3 (HR = 0:554, 99% CI: 0.420–0.731) (Figure 3(c)),
CD19 (HR = 0:557, 99% CI: 0.422–0.735) (Figure 3(d)),
CD27 (HR = 0:564, 99% CI: 0.428–0.742) (Figure 3(e)),
IRF4 (HR = 0:570, 99% CI: 0.432–0.750) (Figure 3(f)),
KLRB1 (HR = 0:573, 99% CI: 0.435–0.753) (Figure 3(g)),
and FLT3 (HR = 0:575, 99% CI: 0.436–0.756) (Figure 3(h)),
respectively.

3.4. Internal Validation of Survival-Associated Clinical
Parameters. Before multivariate Cox regression analysis, sur-
vival analyses were also performed among important clinico-
pathological parameters with patients divided into two
groups. Compared with patients in the low-risk group,
high-risk group patients had a worse OS. In TCGA HNSCC
cohort, patients in groups for T stages 3–4 (Figure 4(a)), N
stage (+) (Figure 4(b)), M stage (+) (Figure 4(c)), TNM stages
III–IV (Figure 4(d)), and age > 61 (Figure 4(e)) had signifi-
cantly shorter OS (P < 0:05). The corresponding Kaplan-
Meier plots are shown in Figures 4(a)–4(e), highlighting the

prognostic value of clinicopathological factors, indicating
that the data were verified to be reasonable and effective.

3.5. Multivariate Analysis and Model Construction for
HNSCC Patients. To determine the independent factors for
prediction of overall survival, clinicopathological parameters,
including T stage, N stage, M stage, TNM stage, and age,
which were significantly associated with OS as mentioned
above (Figures 4(a)–4(e)), were selected to be included in
the multivariate COX regression analysis.

Then, multivariate COX regression analysis was per-
formed in these potential survival associated genes
(P < 0:01) along with the clinicopathological parameters to
construct a prognostic model. Results showed that only T
stage (HR = 81:497, 95% CI: 7.790–852.496, P = 0:00024)
and N stage (HR = 7:677, 95% CI: 2.020–29.177, P = 0:0028)
could act as independent predictors for patients’ OS. A total
of 35 factors, including T stage and N stage, were significantly
associated with overall survival (P < 0:05) which were latent
independent factors in HNSCC. Among these potential inde-
pendent factors, 20 factors were favorable genes (HR < 1),
whereas 15 factors (HR > 1) were adverse prognosis predictors
(Figure 5(a)). The top 8 independent survival genes were
CD3E, CD40LG, TNFRSF4, CD3G, CD5, ITGA2B, ABCB1,
and TNFRSF13b. The Kaplan-Meier plots in Figures 5(b)–
5(i) display that all these 8 genes correlated with patient prog-
nosis significantly. Among these 8 genes, high expression of
CD5, ITGA2B, and TNFRSF13B indicated a favorable prog-
nosis, while high expression of CD3E, CD40LG, TNFRSF4,
CD3G, and ABCB1 were poor prognostic factors for HNSCC.
Therefore, we built the prediction model for the overall sur-
vival of HNSCC patients with 35 factors, including clinico-
pathological parameters. Surprisingly, the prediction model
demonstrated powerful efficiency in predicting good or poor
overall survival of HNSCC patients as displayed in
Figures 5(j) and 5(k). ROC curves by the survivalROC package
in R showed that the prediction model was much better than
each individual parameter. The AUC of the prediction model

TCGA HNSC cohort
N=519

TCGA HNSC cohort
N=509 (OS>30days)

Univariate COX
regression

178 survival-related gene
P<0.05

93 survival-related gene
P<0.01

Multivariate COX
regression

GOand KEGG analysis

Kaplan-Meier plotsSurvival-related
clinicopathological

parameters

Prognostic model

35 independent
prognostic factor

Model comparisons

718 immune-related
gene

Figure 1:Workflow demonstrating the establishment and validation of a prognostic predictive model in HNSCC. The signature consists of 35
immune-related genes in HNSCC, which was established and validated using expression data from the TCGA database (training dataset).
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Figure 2: Prognostic immune signatures in HNSCC and enriched GO and KEGG analysis. (a) Ninety-three genes with prognostic ability
were screen out by the univariate Cox analysis and log-rank test for TCGA HNSCC datasets (P < 0:05). Seventy-five genes (HR < 1) were
favorite prognosis factors, while 18 genes (HR > 1) were adverse prognosis factors in HNSCC. (b) Significantly enriched GO and KEGG
were analyzed. Function and networks of these dysregulated genes are presented.
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Figure 3: Kaplan-Meier plots of the top eight survival-related genes in the HNSCC datasets.
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Figure 4: Clinical parameters were significantly associated with OS in HNSCC patients. Kaplan-Meier survival curves indicating survival
probability are shown according to diverse clinical factors: (a) T stage, (b) N stage, (c) M stage, (d) TNM stage, and (e) age.
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Figure 5: Immune signatures with multivariate Cox regression with prognostic capabilities in HNSCC and enriched GO and KEGG. (a)
Thirty-five genes with prognostic ability were screen out by univariate Cox analysis and log-rank test for TCGA HNSCC datasets
(P < 0:05). Twenty genes with hazard ratios ðHRÞ < 1 were favorable prognosis factors, while 15 genes with HR > 1 were adverse prognosis
factors in HNSCC. (b–i) Kaplan-Meier plots of the top eight independent survival-related genes. (j–k) Kaplan-Meier curves and time-
dependent ROC curves of the prediction model.
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was 0.963, which wasmuch greater than other genes or clinical
parameters, suggesting that our model can effectively predict
the prognosis of HNSCC.

4. Discussion

Over the many years of in-depth studies in the field of com-
plicated and interrelated immune responses of cellular and
molecular mechanisms, immunotherapy has become an
effective way to treat cancer. The treatment of cancer is
undergoing a fundamental transformation, and its traditional
treatment methods are being overturned by immunotherapy.
More and more immunotherapies have been used in cancer
therapy alone or in combination, and many clinical trials
are testing the efficacy of immunotherapy. However, there
are still many difficulties due to the lack of understanding
of immunosuppressive sites and the pattern of immune cell
functions. Understanding the immune characteristics of
tumors and finding the immune signature related to tumor
prognosis are conducive to early diagnosis and evaluation
of treatment response and prognosis through immune bio-
markers and noninvasive monitoring. Personalized immu-
notherapy based on individual genetic, molecular, and
immune analysis is a possible goal in the future [9].

Increasingly, research has involved immunological stud-
ies of head and neck tumors. Although the immune research
of head and neck tumors is still in its infancy, it is one of the
most promising fields. However, due to the complex interac-
tions between the host immune system and cancer, further
research and development of key immune signatures affect-
ing the prognosis of cancer are necessary to optimize future
immunotherapies. In fact, accurate prognosis, therapeutic
strategy, and identification of oncogenes were encumbered
by unexpected heterogeneity in HNSCC. This complex het-
erogeneity may signify the difficulty to accurately predict
patient outcomes in tumors that have not yet metastasized,
due to the resistance of certain normal-looking cells to tar-
geted therapies or their ability to generate and promote
metastasis [10]. The main purpose of immunotherapy is to
eradicate cancer cells by increasing the activity of the
immune system [11].

Recently, tremendous advances in cancer therapy have
been achieved using immune checkpoint inhibitors [12–18].
These studies highlighted the importance of the exploration
of immune signatures. Furthermore, intense investigations
into immunotherapies are also underway in HNSCC. Prom-
ising results from clinical trials showed that immunotherapy
for HNSCCmight be superior to the standard chemotherapy.

A total of 45 relevant clinical trials of immune checkpoint
inhibitors have been performed since 2010. Pembrolizumab
extended the duration of response in recurrent and/or meta-
static (R/M) HNSCC by approximately 53 weeks. Therefore,
pembrolizumab had obtained accelerated approval by the
FDA for the treatment of refractory R/M HNSCC after
platinum-based chemotherapy [19–26]. So far, two immuno-
therapeutic agents, nivolumab and pembrolizumab, were
approved by the US Food and Drug Administration (FDA)
for the management of platinum-treated refractory R/M
HNSCC patients in 2016. In 2019, pembrolizumab was

approved by the FDA for first-line care in patients with unan-
ticipated R/M HNSCC [27].

The commonly used immunosuppressive checkpoint
inhibitors in these studies included PD-1, CD27, and
CTLA-4 [28], which were consistent with our study. In the
univariate analysis, CD27 (HR = 0:564, P < 0:01), CTLA-4
(HR = 0:655, P = 0:002), and ENTPD1 (HR = 0:707, P =
0:012) were all significantly correlated with prognosis.

The construction of the gene prediction model has been
applied in many tumors, such as esophageal cancer, lung can-
cer, and thyroid cancer, but there are only few relevant stud-
ies on head and neck tumors. In some studies, by comparing
three separate comprehensive gene expression omnibus
(GEO) databases, researchers claimed that overlapping dif-
ferentially expressed genes [29] like SPP1, POSTN, and
COL1A2 could be used as potential diagnostic indicators of
head and neck carcinoma. However, classical factors of head
and neck tumors were not taken into account in the study.
Moreover, reports [30] showed that different methylation
status by the MethylMix R package based on the β mixture
model constructed using six genes (INA, LINC01354,
TSPYL4, MAGEB2, EPHX3, and ZNF134) could predict
OS in HNSCC patients. However, the area under the curve
(AUC) for the model was only 0.723. Further, four candidate
genes (TPM1, CLASRP, PRRC1, and DNASE1L1) were
screened out among the 42,849 alternating splicing events
identified in 10,121 genes in another study, which built a
prognostic prediction model with an AUC of 0.704 [31].
These results were much lower than the AUC of 0.963 in
our study.

In summary, our report systematically investigated the
potential role of 718 immune-related genes in the OS of
HNSCC patients. Dynamic involvement of immune signa-
tures was identified by survival analyses, and a total of 35
factors remained as independent prognosis factors. Sur-
prisingly, the final prediction model yields high efficiency
in distinguishing good or poor OS in HNSCC patients.
With future validations in larger HNSCC cohort and
mechanism studies of these survival-related immune signa-
tures, these novel predictors and therapeutic targets might
assist in the management and immunotherapeutic treat-
ment of HNSCC patients.
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