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Introduction. A previous work has discovered that chromosome 1q32 locus linked to the risk of systemic lupus erythematosus (SLE)
and miR-181b located on the susceptibility site with downregulation inversely correlating to its target molecular interferon alpha 1
(IFNA1). The purpose of this study was to investigate the association of miR-181b and IFNA1 polymorphisms with IS risk.
Methods. The miR-181b rs322931, IFNA1 rs1332190, and rs10811543 were genotyped using a Multiplex SNaPshot assay. miR-
181b expression levels in plasma of SLE patients and controls were analyzed using quantitative PCR. Results. The rs322931 CT,
CT/TT, and T allele exerted an increased trend of SLE risk (CT vs. CC: adjustedOR = 1:71, 95% CI 1.16-2.50, P = 0:01; CT/TT
vs. CC: adjustedOR = 1:45, 95% CI 1.08-1.95, P = 0:01; T vs. C: adjustedOR = 1:38, 95% CI 1.07-1.79, P = 0:01). Combined
genotypes of the rs322931 CT/TT+rs1332190 TT and the rs322931 CC+rs10811543 AG/AA also revealed an increased risk of
SLE. Gene-gene interaction analysis showed that a three-locus model consisting of rs322931, rs1332190, and rs10811543
attributed an increased risk of SLE. Further genotype-phenotype analysis revealed that rs322931 CT/TT carriers displayed lower
levels of miR-181b. Conclusions. These findings indicate that the miR-181b rs322931 may be singly and jointly responsible for
the etiology of SLE by altering miR-181b expression.

1. Introduction

Systemic lupus erythematosus (SLE), a chronic inflammatory
disease characterized by multiple immunologic abnormali-
ties, can damage many organs [1]. The prevalence rates of
SLE are about 17-48/100,000 population worldwide, and
females are 3-6 times more frequently affected than males.
The burden of SLE is not only physical and mental health
but also socioeconomic impact because the most common
age of onset is 20-40 years, and patients with that age are still
raising or supporting families [2]. Risk factors of SLE
included cigarette smoking, oxidative stress, ultraviolet light,
infection, and hormonal action as well as genetic factors
[3–12]. Environmental exposure may trigger SLE in indi-
viduals who carry a predisposing background of genetic sus-
ceptibility [2, 4, 7]. Several single-nucleotide polymorphisms
(SNPs) in coding genes have been found to be involved in the
pathogenesis of SLE, such as rs1051169 in S100B [8]; rs20541
in interleukin- (IL-) 13 [9]; rs11556218, rs4778889, and

rs4072111 in IL-16 [10]; rs2227513 in IL-22 [11]; and
rs7977932 in IL-31 [12].

In addition to coding genes, noncoding transcripts, such
as microRNAs (miRNAs) also play a critical role in modulat-
ing immune response of SLE [13–16]. Until today, more than
1500 miRNAs have been sequenced in human [17], with an
estimation of regulating over one-third of genome expression
[18]. Among them, the miR-181 family was found to be
downregulated in patients with SLE, being an important
modulator of B and T cell differentiation and inflammatory
reaction, which were key events in the initiation and develop-
ment of SLE [13, 19–22].

Recently, miRNA-related genetic variant has been
reported to be a risk factor for a series of human diseases,
including SLE [23–30]. For example, an SNP rs4937333 T
allele was reported to be associated with a significantly
increased risk of SLE by enhancing the binding of miR-
5003 to transcriptional factor ETS1 and decreasing ETS1
expression [26]. A genetic variant of rs322931 was reported
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to alter both transcriptional activity and the expression of
miR-181b [29, 30]. To date, no study reported the association
of miR-181b rs322931 with the risk of SLE. In this hospital-
based case-control study, we investigated whether the miR-
181b rs322931 was related to the occurrence of SLE in a Chi-
nese Han population. As miR-181b may contribute to the
development and progression of SLE through directly target-
ing molecular interferon alpha 1 (IFNA1) [13], two SNPs
(i.e., rs1332190 and rs10811543) in the promoter region of
IFNA1 were also examined for gene-gene interaction analy-
sis. We found that the miR-181b rs322931 and IFNA1
rs1332190 and rs10811543 may play an interactive role in
the etiology of SLE.

2. Materials and Methods

2.1. Study Population. A total of 402 SLE patients and 430
age- and sex-matched healthy controls were included in this
study. Patients with SLE were consecutively enrolled from
the Affiliated Hospital of Guilin Medical University between
May 2012 and December 2018. All patients fulfilled the
American College of Rheumatology criteria for SLE (1997)
[31]. The controls were also registered from the same hospi-
tal at the same period. We excluded those controls if they had
autoimmune diseases, such as malar butterfly rash, photo-
sensitivity, fever, erythra, and edema. All the subjects without
blood transfusion were genetically unrelated ethnic Han Chi-
nese living in Guangxi province. After written informed con-
sent was signed, each participant donated 3-5mL of
eathylene diamine tetraacetic acid-anticoagulated peripheral
venous blood. Plasma was separated by centrifuging for
10min at 1000 rpm and stored in -80°C until analysis. The
study protocol was approved by the Institutional Review
Board of the Affiliated Hospital of Guilin Medical University.

2.2. SNP Selection. We selected miR-181b rs322931 locating
on the chromosome 1q32 that has been identified to be a risk
locus of SLE [32]. Additionally, we selected SNPs within the
IFNA1 that is a target gene of miR-181b [32], with the inclu-
sion criteria of minor allele frequency > 10% in Chinese Han
population. Two SNPs (i.e., rs1332190 and rs10811543) in
the promoter of IFNA1 were selected.

2.3. Genotyping. Genomic DNA was extracted from leuko-
cytes of peripheral blood using the commercially available
kit (Tiangen, Beijing, China). The miR-181b rs322931 and
IFNA1 rs1332190 and rs10811543 were genotyped using a
Multiplex SNaPshot assay. For quality control, negative con-
trol replacing template DNA with distilled water was used in
each run and about 5% of all samples were randomly selected
for validation using DNA sequencing. The results between
the two genotyping methods were concordant.

2.4. Quantitative PCR (qPCR) of miR-181b. Total RNA was
isolated from plasma using a commercial kit (Qiagen, Hilden,
Germany) following the manufacturer’s protocol. cDNA was
generated using the Mir-X miRNA First-Strand Synthesis Kit
(Takara Bio USA, Mountain View, CA, USA) according to
the manufacturer’s manual. miR-181b levels in cases and
controls were quantified using the Mir-X miRNA qRT-PCR

TB Green Kit (Takara Bio USA). qPCR was run on an ABI
7900HT real-time PCR machine (Applied Biosystems, CA,
USA). U6 was used as an internal control, and relative
expression of miR-181b was determined using the 2-ΔΔCt

method [33].

2.5. Statistical Analysis. Statistical analysis was done using
SPSS software version 13.0 (SPSS, Chicago, IL, USA). The
χ2 test was used to evaluate Hardy-Weinberg equilibrium
(HWE) and the differences of the rs322931, rs1332190, and
rs10811543 between cases and controls. Odds ratios (ORs)
and 95% confidence intervals (CIs) were used to estimate
the association between each SNP and SLE risk using a logis-
tic regression model after adjustment for age and gender.
Linkage disequilibrium (LD) and haplotype analysis were
performed using the SHEsis software [34]. The statistical sig-
nificant value of SNPs was set as 5 × 10−8 that was used in
genome-wide association study. Gene-gene interaction anal-
ysis was performed by using multifactor dimensionality
reduction (MDR) platform [35]. miR-181b expression levels
were compared using the Mann–Whitney U test, and a value
of P < 0:05 was considered statistically significant.

3. Results

3.1. Characteristics of Study Population. The characteristics of
the study population are summarized in Table 1. There were
no significant differences in the distribution of age and gen-
der (P = 0:27 and 0.10, respectively). Approximately half of
the SLE patients had photosensitivity, leucopenia, anaemia,
complement depression, renal disorder, and arthritis, while
only about 30% patients had malar rash and negative AdsA.
Most of the patients (87.3%) had positive ANA.

3.2. Main Effects of SNPs in miR-181b and IFNA1 on SLE
Risk. The genotype and allelic frequencies of the selected
SNPs among cases and controls are presented in Table 2.
The genotype distributions of the miR-181b rs322931 and
IFNA1 rs1332190 and rs10811543 met the HWE require-
ments in both cases and controls (P > 0:05). Compared to
the miR-181b rs322931 CC genotype, individuals with the
CT variant genotype exerted an increased trend of SLE risk
(adjustedOR = 1:71, 95% CI 1.16-2.50, P = 0:01). Under the
dominant genetic of inheritance, carriers with the CT/TT
genotypes had a 1.45-fold increased risk of SLE
(adjustedOR = 1:45, 95% CI 1.08-1.95, P = 0:01). Moreover,
carriers with the T allele had a 1.38-fold increased risk of
SLE (adjustedOR = 1:38, 95% CI 1.07-1.79, P = 0:01). For
the rs1332190 and rs10811543, no significant difference
between SLE patients and controls was found (P > 0:05).
Stratification analysis also showed null association between
the three SNPs and clinical features of SLE (Table 3).

3.3. Haplotype and Combined Analysis. LD results revealed
that the rs1332190 and rs10811543 were in strong LD
(D′ = 0:97, r2 = 0:67). The frequencies of 4 possible haplo-
types are shown in Table 4. There was no significant differ-
ence of the haplotype between cases and controls.
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Compared to the combined genotypes rs322931 CC
+rs1332190 TT, the combined genotypes rs322931 CT/TT
+rs1332190 TT and rs322931 CC+rs1332190 CT/CC were
associated with a reduced risk of SLE (OR = 0:06, 95% CI
0.02-0.18, P = 2:55 × 10−11; adjustedOR = 0:37, 95% CI
0.26-0.53, P = 3:74 × 10−8, respectively). Compared to the
combined genotypes rs322931 CC+rs10811543 GG, the
combined genotypes rs322931 CC+rs10811543 AG/AA were
associated with a reduced risk of SLE (OR = 0:33, 95% CI
0.22-0.49, P = 3:07 × 10−8) (Table 5).

3.4. Interaction Analysis. Table 6 shows interaction analysis
among the miR-181b rs322931 and IFNA1 rs1332190 and
rs10811543. When taking the three SNPs together, the accu-

racy was the highest with the cross-validation consistency of
10/10 (OR = 9:99, 95% CI 6.54-15.26, P < 0:001), indicating
that the miR-181b rs322931 and IFNA1 rs1332190 and
rs10811543 were interactively associated with the risk of SLE.

3.5. The rs322931 CT/TT Exhibited Lower Levels of miR-181b.
The expression levels of miR-181b were analyzed using qPCR
in controls (n = 44) and SLE patients (n = 42). As shown in
Figure 1(a), the miR-181b expression was lower in SLE
patients compared to controls (P < 0:05). When comparing
the relationship of the rs322931 to miR-181b expression,
we found that the rs322931 CT/TT carriers had lower levels
of miR-181b than rs322931 CC carriers (P < 0:05)
(Figures 1(b) and 1(c)).

Table 2: Association between SNPs in miR-181b and IFNA1 and risk of SLE.

Polymorphisms Controls, n = 430 (%) SLE, n = 402 (%) Adjusted OR (95% CI)† P value

miR-181b rs322931

CC 310 (72.1) 257 (63.9) 1.00

CT 114 (26.5) 135 (33.6) 1.71 (1.16-2.50) 0.01

CT/TT 120 (27.9) 145 (36.1) 1.45 (1.08-1.95) 0.01

C allele 734 (85.3) 649 (80.7) 1.00

T allele 126 (14.7) 155 (19.3) 1.38 (1.07-1.79) 0.01

IFNA1 rs1332190

TT 220 (51.2) 199 (49.5) 1.00

CT 185 (43.0) 168 (41.8) 1.02 (0.77-1.36) 0.89

CT/CC 210 (48.8) 203 (50.5) 1.08 (0.83-1.42) 0.56

T allele 625 (72.7) 566 (70.4) 1.00

C allele 235 (27.3) 238 (29.6) 1.13 (0.91-1.40) 0.27

IFNA1 rs10811543

GG 260 (60.5) 250 (62.2) 1.00

AG 146 (34.0) 132 (32.8) 0.96 (0.71-1.28) 0.76

AG/AA 170 (39.5) 152 (37.8) 0.95 (0.71-1.25) 0.70

G allele 666 (77.4) 632 (78.6) 1.00

A allele 194 (22.6) 172 (21.4) 0.95 (0.75-1.20) 0.66

SNP: single-nucleotide polymorphism; IFNA1: interferon alpha 1; SLE: systemic lupus erythematosus; OR: odds ratio; CI: confidence interval. †Adjusted by age
and gender.

Table 1: Characteristics of the study population.

Variables Controls, n = 430 Patients with SLE, n = 402 P value

Age (mean ± SD) 34.3 (±12.2) 33.2 (±16.0) 0.27

Male/female (%) 105 (24.4)/325 (75.6) 79 (19.7)/323 (80.3) 0.10

Malar rash (%) 123 (30.6)

Photosensitivity (%) 241 (60.0)

Leucopenia (%) 214 (53.2)

Anaemia (%) 224 (55.7)

Complement depression (%) 264 (65.8)

Renal disorder (%) 205 (51.0)

Arthritis (%) 235 (58.5)

ANA (%) 351 (87.3)

AdsA (%) 272 (67.7)

SLE: systemic lupus erythematosus; SD: standard deviation; ANA: antinuclear antibodies; AdsA: anti-double stranded DNA antibody.
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4. Discussion

In this hospital-based case-control study, we found that the
miR-181b rs322931 C but not IFNA1 rs1332190 and

rs10811543 was associated with an increased trend of SLE
risk, whereas combined analysis showed a significant associ-
ation of rs322931-rs1332190 and rs322931-rs10811543 with
SLE risk. Gene-gene interaction analysis also showed that

Table 3: Stratification analyses of SNPs in miR-181b and IFNA1 and clinical features of SLE.

Variables
miR-181b rs322931

CT/TT vs. CC
IFNA1 rs1332190
CT/CC vs. TT

IFNA1 rs10811543
AG/AA vs. GG

Adjusted OR† P value Adjusted OR† P value Adjusted OR† P value

Malar rash 1.18 (0.75-1.85) 0.47 1.09 (0.71-1.67) 0.70 1.29 (0.82-2.02) 0.26

Photosensitivity 1.18 (0.75-1.85) 0.20 0.61 (0.40-0.91) 0.02 0.78 (0.52-1.19) 0.25

Leucopenia 0.80 (0.53-1.21) 0.30 0.75 (0.51-1.12) 0.16 0.88 (0.59-1.32) 0.54

Anaemia 0.99 (0.66-1.49) 0.96 1.17 (0.79-1.74) 0.43 1.07 (0.71-1.60) 0.76

Complement depression 1.10 (0.71-1.68) 0.67 1.05 (0.69-1.58) 0.83 1.03 (0.67-1.58) 0.89

Renal disorder 1.13 (0.75-1.71) 0.55 1.36 (0.92-2.01) 0.13 1.13 (0.75-1.69) 0.56

Arthritis 0.75 (0.50-1.15) 0.19 0.92 (0.62-1.37) 0.68 1.06 (0.70-1.59) 0.80

ANA 0.87 (0.47-1.62) 0.66 0.85 (0.47-1.52) 0.58 0.71 (0.38-1.34) 0.28

AdsA 1.10 (0.71-1.70) 0.67 1.34 (0.88-2.04) 0.18 1.10 (0.72-1.70) 0.66

SNP: single-nucleotide polymorphism; IFNA1: interferon alpha 1; SLE: systemic lupus erythematosus; OR: odds ratio; CI: confidence interval. †Adjusted by age
and gender.

Table 4: Haplotype analysis of SNPs in IFNA1 between cases and controls.

rs1332190 rs10811543 Controls, n (%) SLE, n (%) OR (95% CI) P value

T G 619 (72.0) 566 (70.4) 1.00

C A 188 (21.9) 172 (21.4) 1.00 (0.79-1.27) 1.00

C G 47 (5.5) 66 (8.2) 1.54 (1.04-2.27) 0.03

T A 6 (0.7) 0 (0.0) — —

SNP: single-nucleotide polymorphism; IFNA1: interferon alpha 1; SLE: systemic lupus erythematosus; OR: odds ratio; CI: confidence interval.

Table 5: Combined analyses of SNPs in miR-181b and IFNA1 and risk of SLE.

Combined genotypes Controls, n = 430 (%) SLE, n = 402 (%) OR (95% CI) P value

miR-181b rs322931-IFNA1 rs1332190

rs322931 CC+rs1332190 TT 166 (38.6) 195 (48.5) 1.00

rs322931 CT/TT+rs1332190 TT 54 (12.6) 4 (1.0) 0.06 (0.02-0.18) 2:55 × 10−11

rs322931 CC+rs1332190 CT/CC 144 (33.5) 62 (15.4) 0.37 (0.26-0.53) 3:74 × 10−8

rs322931 CT/TT+rs1332190 CT/CC 66 (15.3) 141 (35.1) 1.82 (1.27-2.60) 0.001

miR-181b rs322931-IFNA1 rs10811543

rs322931 CC+rs10811543 GG 196 (45.6) 216 (53.7) 1.00

rs322931 CT/TT+rs10811543 GG 64 (14.9) 34 (8.5) 0.48 (0.31-0.76) 0.002

rs322931 CC+rs10811543 AG/AA 114 (26.5) 41 (10.2) 0.33 (0.22-0.49) 3:07 × 10−8

rs322931 CT/TT+rs10811543 AG/AA 56 (13.0) 111 (27.6) 1.80 (1.24-2.62) 0.002

SNP: single-nucleotide polymorphism; IFNA1: interferon alpha 1; SLE: systemic lupus erythematosus; OR: odds ratio; CI: confidence interval.

Table 6: Interaction analysis of SNPs in miR-181b and IFNA1 and risk of SLE.

Best candidate models Accuracy Cross-validation consistency OR (95% CI) P value

rs322931 0.55 10/10 1.46 (1.09-1.95) 0.01

rs322931/rs1332190 0.67 10/10 9.53 (6.24-14.55) <0.001
rs322931/rs1332190/rs10811543 0.67 10/10 9.99 (6.54-15.26) <0.001
SNP: single-nucleotide polymorphism; IFNA1: interferon alpha 1; SLE: systemic lupus erythematosus; OR: odds ratio; CI confidence interval.
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the three-locus model consisting of rs322931, rs1332190, and
rs10811543 attributed an increased risk of SLE. In addition,
genotype-phenotype analysis revealed that the rs322931
CT/TT carriers displayed lower levels of miR-181b. Our data
shed light on the importance of miR-181b rs322931 in the
setting of SLE.

The miR-181 family including miR-181a, miR-181b,
miR-181c, and miR-181d is a critical regulator in the patho-
genesis of SLE [13–16, 19, 36, 37]. Altered expression of miR-
181a was not only observed in SLE and lupus nephritis
patients but also correlated to clinical features, such as the
erythrocyte sedimentation rate, C reactive protein, anti-
dsDNA antibody, complements, and score of SLE disease
activity index [14–16, 36, 37]. miR-181b was also reported
to be differentially expressed in SLE patients [13]. These find-
ings indicate that miR-181 may be a biomarker for the diag-
nosis of SLE and monitor of SLE activity.

Previously, an SNP rs322931 was found to be a risk fac-
tor for positive emotion, reward processing, and ischaemic
stroke through influencing transcriptional activity and the
expression levels of miR-181b [29, 30, 38]. The current
work has discovered that chromosome 1q32 locus linked
to the risk of SLE and miR-181b located on the susceptibil-
ity site with the downregulation inversely correlating to its
target molecular IFNA1 [32]. Based on this background,
we hypothesized that the rs322931 may affect individual’s
susceptibility to SLE. Our findings in this association study
confirmed this hypothesis. We found that the rs322931
CT/TT genotypes and T allele carriers had a 1.45-fold and
1.38-fold increased risk of SLE, respectively. qPCR was then
performed to detect the expression of miR-181b, and we
found that the miR-181b levels were significantly lower in
SLE patients than controls, confirming previous report
[32]. Of note, after comparing the correlation of the
rs322931 to miR-181b expression, we found that carriers
with the rs322931 CT/TT genotypes exhibited lower levels
of miR-181b in both SLE patients and controls. Taken
together, we may conclude that the rs322931 CT/TT geno-
types and T allele contributed to the risk of SLE by decreas-
ing the levels of miR-181b.

In addition to the miR-181b rs322931, we examined
much more SNPs in this study because SLE is a complex dis-
ease and involved in more than one gene. Genome-wide
association study has provided evidence of susceptibility loci
of SLE in the interferon (IFN) signaling pathway [39]. IFN-α
is highly expressed and has emerged as a key pathogenic
cytokine in SLE [40, 41]. For example, IFN-α in sera from
active SLE patients can induce differentiation of dendritic
cells that capture and present antigens to CD4+ T cells
[42]. IFN-α also exerts stimulatory effects on the adaptive
immune system by enhancing B cell differentiation and sur-
vival of autoimmune B cells [43, 44]. Moreover, IFN-α
impairs autophagic degradation of mtDNA and vasculogen-
esis in SLE, serving as a drug target [45, 46]. IFN-α is encoded
by IFNA1 that is a target gene of miR-181b [13]. Genetic
polymorphisms in IFNA1, therefore, were analyzed in this
study. Although no significant association of the rs1332190
and rs10811543 in the promoter of IFNA1 with SLE risk
was observed in single site analysis, combined analysis
revealed an association of the 2 SNPs with SLE occurrence.
Both the rs322931 CT/TT+rs1332190 CT/CC and the
rs322931 CC+rs10811543 AG/AA were associated with a
reduced risk of SLE. Finally, we performed miR-181b/IFNA1
interaction analysis, and we found that the miR-181b
rs322931/rs1332190/rs10811543 was the best candidate
model with the accuracy of 0.67. Our findings indicate that
the miR-181b rs322931 may be singly and jointly responsible
for the etiology of SLE.

Some limitations should be discussed in the interpreta-
tion of our data. It is evident that nongenetic factors such
as cigarette smoking, oxidative stress, ultraviolet light,
infection, and hormonal action play important roles in
the development of SLE [3–6]. In this study, we did not
collect these factors and thus, the association of miR-
181b and IFNA1 polymorphisms with environment factors
cannot be analyzed. Additionally, the samples in this study
were not large enough and all of them were enrolled from
Han Chinese. Further studies with larger sample sizes are
required to assess whether our positive findings can be
confirmed in other ethnicities.

5

4
Re

la
tiv

e e
xp

re
ss

io
n 

of
m

iR
-1

81
b 3

2

1

0
SLEControl

⁎

(a)
Re

la
tiv

e e
xp

re
ss

io
n 

of
m

iR
-1

81
b 

in
 co

nt
ro

ls

5

4

3

2

1

0

rs
32

29
31

 C
C

rs
32

29
31

 C
C/

TT

⁎

(b)

Re
la

tiv
e e

xp
re

ss
io

n 
of

m
iR

-1
81

b 
in

 S
LE

4

3

2

rs
32

29
31

 C
C

rs
32

29
31

 C
C/

TT

1

0

⁎

(c)

Figure 1: The rs322931 CT/TT exhibited lower levels of miR-181b. (a) Relative expression levels of miR-181b in controls (n = 44) and SLE
patients (n = 42). (b, c) The association of the rs322931 with miR-181b expression in controls and SLE patients (∗P < 0:05).
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In summary, we found for the first time that the rs322931
C risk allele was related to the development of SLE and the
rs322931 CT/TT genotypes altered miR-181b expression
levels in SLE patients. Of note, miR-181b-IFNA1 interaction
conferred the risk of SLE. Once confirmed in other ethnicities
with larger sample sizes, it is likely to be important for future
personalized treatment of SLE by genotyping the miR-181b
rs322931 and IFNA1 rs1332190 and rs10811543.

Data Availability

The digital data used to support the findings of this study are
available from the corresponding author upon request.

Additional Points

Key-points. 1. Individuals with the miR-181b rs322931 CT,
CT/TT, and T allele had an increased trend of SLE risk. 2.
Combined analysis showed a significant association of
rs322931-rs1332190 and rs322931-rs10811543 with SLE risk.
3. Gene-gene interaction analysis showed that the three-locus
model consisting of rs322931, rs1332190, and rs10811543
attributed an increased risk of SLE. 4. The rs322931 CT/TT
carriers displayed lower levels of miR-181b.
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