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Preeclampsia (PE) is termed as a systemic disease that involves multiple organs; however, the exact etiology is still quite unclear. It is
believed that the poor remodeling of uterine spiral arteries triggers PE, thereby causing failed placentation and producing
inflammatory factors. The decline of blood flow results in lowering the nutrients and oxygen received by the fetus and
augmenting the placental pressure in PE. Decidual immune cells, especially uterine natural killer (uNK) cells, are involved in the
process of placentation. Decidual NK (dNK) cells significantly contribute to the vascular remodeling through the secretion of
cytokines and angiogenic mediators in normal placental development. The abnormal activation of NK cells in both the
peripheral blood and the decidua was counted among the causes leading to PE. The correlation existing between maternal killer
cell immunoglobulin-like receptor (KIR) and HLA-C in trophoblast cells constitutes a robust evidence for the genetic etiology of
PE. The combinations of the two kinds of gene systems, together with the KIR genotype in the mother and the HLA-C group in
her fetus, are likely to exactly decide the pregnancy outcome. The women, who have the inappropriate match of KIR/HLA-C,
are likely to be prone to the augmented risk of PE. However, the combinations of KIR/HLA-C in PE undergo ethnic changes.
The extensive prospective research works in Europe, Asia, and Africa are required for providing more findings in PE patients.

1. Introduction

Preeclampsia (PE) refers to quite a serious obstetrical com-
plication that has high blood pressure and proteinuria,
occurring following the 20-week period of pregnancy, and
it threatens the life of both the mother and the neonate. In
accordance with the statistics of World Health Organization
(WHO), one-tenth of the pregnant females suffer from PE,
and PE constitutes one-seventh of the deaths in pregnant
women [1, 2]. The occurrence of PE in China amounts to
5% [3]. PE is termed as a systemic disease that involves mul-
tiple organs including the nervous system, blood system,
heart, liver, and kidney [4]. In case of the ineffective control
of the symptoms, PE is expected to develop into convulsion
or coma, termed as eclampsia. Moreover, severe PE is likely
to cause fetal growth restriction (FGR) or even fetal death
owing to the placental vascular dysplasia. In treating PE,

magnesium sulfate is usually put to use for the purpose
of preventing eclampsia [5]. In addition, if systolic blood
pressure amounts to higher than 160mmHg or diastolic
blood pressure is above 110mmHg, antihypertensive drugs
are usually put to use intravenously, such as labetalol [6].
Angiotensin-converting enzyme (ACE) inhibitors cannot be
utilized in pregnancy owing to their teratogenic function on
the neonate [7]. Owing to the fact that the current treatment
is incapable of effectively alleviating the symptoms of PE, we
require further exploring the pathogenesis of this disease,
aimed at finding a better treatment.

Even though a number of factors have been discovered
as correlated with the occurrence of PE, the exact etiology
is still quite unclear. These causes count on not only envi-
ronmental factors but also immunological factors, genetic
factors, vascular endothelial cell damage, blood system
abnormalities, and some unidentified factors [8–10]. In PE,
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trophoblast cells fail in invading optimally [11]. It is believed
that the poor remodeling of uterine spiral arteries triggers
PE, thereby causing the failed placentation and producing
inflammatory factors. PE patients have immune inflamma-
tion as well as the generation of autoimmune antibodies
[12]. Inflammatory mediators result in the activation of
maternal endothelial cells, which have the potential of caus-
ing hypertension and proteinuria [13, 14]. In the present
review, we provided the summary of the roles of uterine nat-
ural killer (NK) cells and killer cell immunoglobulin-like
receptor (KIR)/HLA-C combination in the development of
PE according to the literature published in the past few
years. Also, the current manuscript aims at identifying the
theoretical basis for the treatment of immune inflammation
in PE, together with improving the outcome for the neonates
and the women having PE.

2. Reduced Blood Flow during
Placentation in PE

In the early phase of normal pregnancy, the uterine arteries
undergo changes in the structure, thereby increasing the
blood flow to the uterus by 100 times [15]. The transforma-
tion of uterine arteries has a close correlation with placenta-
tion. In the process of placentation, fetal trophoblasts from
the placenta immerse into the uterine wall, besides implant-
ing into uterine arteries and penetrating the smooth muscle

of the uterus. This change in trophoblasts makes uterine
arteries significantly conductive catheters, leading to the
decline of the speed and pressure of uterine blood flow into
the placenta. The cessation of uterine artery dilation further
lowers the velocity of blood flow into the villous space. This
provides sufficient time for exchanging the nutrients between
the mother and the fetus, in particular, when the demand for
nutrients is the highest in the late pregnancy. In addition,
some important signaling pathways including YY1/MMP2
play important roles in the invasion of trophoblasts during
the first trimester [16].

In PE, trophoblast cells fail in helping with the struc-
tural transformation of arteries, thereby causing the artery
blood to flow into the villus space without essential conver-
sion; also, it causes the injury of the villus structure. The
decline of blood flow results in lowering the nutrients and
oxygen received by the fetus and augmenting the placental
pressure [17]. Accordingly, one of the main causes of PE
is the insufficient remodeling of uterine arteries [18]. Decid-
ual natural killer (dNK) cells and extravillous trophoblasts
(EVT) are involved in placental formation [19]. Now, a
number of scholars hold the belief that the unusual immune
response of the mother to the fetus constitutes a preliminary
factor of PE, which causes the systemic inflammatory
response in the female [20]. A number of evidence suggest
that PE is a result of poor placentation in early pregnancy
[21, 22] (Figure 1).
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Figure 1: Preeclampsia (PE) is related to the poor placentation in the early pregnancy. In normal early pregnancy (left picture), extravillous
trophoblast cells (EVT) invade deeply enough in the myometrium and also migrate into the endothelium of maternal spiral arteries. This
ensures that there is abundant blood flow at the maternal fetal interface. However, in PE patients (right picture), the depth of trophoblast
invasion is decreased with insufficient remodeling of trophoblast cells. Blood flow is also reduced in PE. Inappropriate combination of
KIR/HLA-C in PE will inhibit the functions of NK cells including secreting angiogenic cytokines. As a result, uterine NK (uNK) cells in
these women have low functional activity and they do not support placental growth as needed.
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3. The Process of Placentation Involved by
Immune Cells in PE

For the purpose of comprehending the mechanism of the
decidua regulating placentation, the decidual immune cells
have been concentrated on [23, 24]. Considering that the rea-
son of immune cells is from the epidemiological investigation
of PE [25], firstly, it refers to a disease, occurring in the first
pregnancy, after which the mother could get immunity.
Changing the father following a normal pregnancy is likely
to induce PE; nonetheless, if the patients, having had PE
change their sexual partners, the incidence of PE is going to
be lowered [26]. Moreover, the incidence of this disease has
memory and specificity, which is consistent with the charac-
teristics of immune diseases. There have been a number of
investigations dealing with the family history and genetics
of mothers; furthermore, several research works have shed
light on the fact that the paternal factor also plays a major
role in the incidence of PE, together with its association with
the fetal weight [27–29]. Numerous research works have
revealed that the relationship between the maternal and fetal
immune systems has the potential of determining the out-
come of pregnancy. The immune cells in the decidua play
quite a critical role at the maternal fetal interface. Since the
mother and the fetus form the two different genetic individ-
uals, the invading trophoblasts carry genes and molecules
with the paternal source; in immunologic terms, the fetus is
alien to the mother.

The hypothesis that decidual immune cells are involved
in the placentation is primarily owing to two reasons. Firstly,
the cell-cell interaction in the decidua takes place between the
two allogeneic individuals. Secondly, the pivotal role of the
decidua in placentation is reflected in the investigation of
obstetrical complications. In the patients having placenta
percreta with the absence of the decidua, the trophoblasts
deeply invade the uterine muscle wall. In this event, the pla-
centa is most likely to grow in the scar of the former cesarean
section [30]. In the early pregnancy, 70% of neutrophils in
the endometrium are uNK cells. These cells have KIRs, com-
bining with HLA-C ligands in the trophoblasts [31]. Owing
to the genetic variability of KIR as well as HLA-C, there are
a number of varying types of combination of not only mater-
nal KIR but also fetal HLA-C in each of the pregnancies [32].
Moreover, integrating the KIR and HLA-C figures out
whether uNK cells are capable of secreting angiogenic cyto-
kines. This field is comparatively newer; nonetheless, the
comprehension of this knowledge could offer new percep-
tions and ideas not only for the diagnosis but also for the
treatment of obstetrical complications like PE.

4. uNK Cells in the Pathogenesis of PE

Which type of immune cells is likely to be involved in the
development of PE? Our answer is uNK cells, because they
account for the majority (70%) of leukocytes in the process
of implantation and placentation, and they have receptors
that could combine with ligands in the trophoblasts. In spite
of T cells, as the effector immune cells in charge of rejecting
organ transplants, which account for 10 to 30% of leukocytes

in the endometrium in the early phase of pregnancy, no avail-
able investigation indicates that the failure of pregnancy is a
result of the rejection of T cells to the placental tissue [33].
Precisely, there are no research works that have found that
maternal T cells are capable of recognizing and acting on tro-
phoblasts. Approximately 90% of pNK cells are cytotoxic,
together with having a CD56dimCD16+ surface phenotype,
and the remaining 10% are CD56brightCD16- phenotypes
with little cytotoxicity [24, 34]. In addition, immune factors
were collaborative for characterizing the pregnancy as a
mildly inflammatory condition. The proportion of pNK cells
undergoes a gradual increase in the early phase of pregnancy,
together with a decrease in the middle phase of pregnancy,
continuing the decline in the third trimester in a normal
pregnancy [35]. Carolis et al. were of the belief that the
changes in pNK cells played a pathogenic role in PE [36].
The abnormal activation of NK cells in both the peripheral
blood and the decidua was counted among the causes leading
to PE [36].

The uNK cells differ with pNK cells in phenotype and
function [17]. uNK cells are phenotypic CD16-CD56bright

NK cells with little cytotoxicity that have a direct contact with
the allogeneic EVT cells. uNK cells are regarded as playing a
pivotal function in the adjustment of fetal EVT for the estab-
lishment of a fine placentation [35]. The specific uNK cells
(CD56+, CD3-, CD16-, and CD9+) were similar in the late
and early pregnancies, which demonstrated that these uNK
cells contributed to the normal development of the fetus all
through the entire pregnancy [37]. Mice without uNK cells
do not have the compatible vascular formations associated
with pregnancy [38, 39].

There are two different kinds of uNK cells that have been
confirmed in mice in accordance with their activities towards
Dolichos biflorus agglutinin (DBA) [40]. DBA+ uNK cells
produce angiogenic mediators, while DBA- uNK cells secrete
IFN-γ [40]. There was an experiment that had a more rigor-
ous design, making use of the alymphoid mice, achieving the
bone marrow from either IFN-γ-/- mice or serious combined
immunodeficient mice, which were absent for T and B lym-
phocytes; thereafter, they discovered the fact that the IFN-γ
produced by NK cells was quite pivotal for the spiral artery
remodeling [41]. In another research work, the researchers
made use of BPH/5 mice, having the core characteristics of
PE; also, they discovered that there was a decline in the num-
ber of dNK cells in their decidua [42]. The reduction of uNK
cells had an association with the upregulation of Cox2 and
IL-15 at the uterus-placenta interface [42]. Following the
addition of the Cox2 inhibitor, lowering the expressions of
Cox2 and IL-15, the number of uNK cells recovered [42].

Furthermore, the invasion of trophoblast cells in mice
was lower as compared with that in human beings, so tropho-
blast cells in mice significantly differ with those in humans
[43]. Even though the majority of NK receptors in mice are
from the Ly49 receptor family, their function seems to have
a similarity with KIR in humans. With regard to mouse stud-
ies, on the addition of H2-Dd, the vascular remodeling was
declined and fetal growth was decreased in comparison with
the homotypic mice that lacked merely H2-Dd [44]. This
major histocompatibility complex (MHC) molecule has the
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potential to bind to the inhibitory receptor Ly49A, besides
decreasing the extra uNK subtype cells on their appearance
[44]. Being specific, the growth rate of fetus slowed down
irrespective of the parental source of the H2-Dd molecule
[44]. These findings suggest that some combinations of
maternal NK receptors and paternal/maternal MHC groups
had the potential of impacting the trophoblast invasion and
vascular remodeling. The research works dealing with the
pregnant transgenic mice discovered the fact that the uterine
spiral arteries of transgenic mice, which lacked uNK cells,
were aberrantly straight as well as narrow [45, 46]. In mice
studies, adrenomedullin (AM), a pregnancy-related peptide,
has been termed as a pivotal factor, facilitating the accumula-
tion and activation of maternal uNK cells to the placenta,
together with helping the process of spiral arteries remodel-
ing eventually [47]. The placentas that lack AM or its recep-
tor manifested the decreased fetal vessel branching in the
uterus, the failure of spiral artery remodeling, and re-endo-
thelialization, in addition to apparently decreasing the
amounts of maternal uNK cells [47].

5. Angiogenic Factors Produced by uNK
Cells in PE

The human placenta experiences the elevated degrees of
angiogenesis as well as vasculogenesis all through the growth
of the fetus [48]. Also, the human placenta experiences the
phase of pseudovascularization, which indicates that all
through the mechanism of placentation, the cytotrophoblasts
of the placenta are transformed from the epithelial type to the
endometrial type [49]. PE is featured by the extensive sys-
temic impairment of endothelial cells in the maternal body
[50]. Currently, a general belief is held that the incidence of
PE is owing to the placental vascular dysplasia; contrarily,
this changed placenta is expected to cause the extensive dam-
age of vascular endothelial cells [51]. The declining recon-
struction of uterine spiral arterioles is considered the
outcome of the defect of the intravascular invasion as well
as the damaged formation of pseudovessels [52]. Both the
animal and human experiments have discovered the fact that
PE takes place when the invasion of trophoblast declines,
besides the occurrence of the uterine placental hypoperfu-
sion. For instance, in animal experiments, it was discovered
that placental ischemia caused the continuous mechanical
contraction of uterine arteries and aorta, thereby causing
hypertension, proteinuria, and endothelial hyperplasia of
renal tubules [53]. Besides that, the pathological report of
severe PE patients sheds light on the fact that the placenta
has infarction and the arteries have rigid stenosis [54]. By
means of ultrasonic monitoring, it could be discovered that,
prior to the medical manifestations emerging in PE patients,
the blood flow between the uterus and the placenta
undergoes a decline, coupled with the increase in the resis-
tance of uterine blood vessels [55]. Nonetheless, this change
was observed as insignificant in one-third of PE patients.
The placental ischemia itself is deemed as insufficient for
causing PE. A number of factors, promoting or inhibiting
the angiogenesis, significantly contribute to the placental
development [56].

As indicated by in vitro experiments, dNK cells could
secrete two cytokines that include interleukin-8 (IL-8) and
interferon-inducible protein-10 (IP-10), promoting the inva-
sion of trophoblast cells [54]. Subsequent to the addition of
the monoclonal antibodies of IL-8 as well as IP-10 to the cul-
tured trophoblast cells, the migration capability of cells
underwent a decline [54]. In vitro, dNK cells also secreted
factors promoting angiogenesis, for instance, vascular endo-
thelial growth factor (VEGF) and placental growth factor
(PlGF) [57]. In comparison with peripheral NK (pNK) cells,
the secretion of VEGF and PlGF augmented significantly fol-
lowing the addition of IL-15 in dNK cells [57]. The migration
of human umbilical vascular endothelial cells (HUVEC) was
augmented in dNK cells supplied with IL-15 in vitro, besides
the reticular structure appearing earlier; nonetheless, they did
not receive the same impacts in pNK cells [57]. As the
researchers added Flt1-Fc, which was an inhibitor of the
VEGF and PlGF signal pathway, some of these functions
were declined [57]. Following the subcutaneous injection of
dNK cells and JEG-3 choriocarcinoma cell line into the nude
mice, the volume of JEG-3 tumor and the number of blood
vessels augmented, which suggested that dNK cells had the
potential of promoting angiogenesis [57]. In the earliest
phase of arterial recasting, matrix metalloproteinase-7
(MMP-7) and MMP-9 were observed in dNK cells in the
specimens of the decidua basalis, which suggested that dNK
cells had involvement in the independent stage of arterial
recasting [58]. In mouse experiments, not only TGF-β but
also PlGF and VEGF contributed to the angiogenesis [59].
These experiments suggest that dNK cells significantly con-
tribute to the vascular remodeling through the secretion of
cytokines and angiogenic mediators in the development of
the placenta.

6. The Roles of KIR and HLA-C in Immunity,
Normal Pregnancy, and Preeclampsia

Under physiological conditions, the acting ways between
KIRs and HLA class I ligands determine whether NK cells
can play normal functions. The consequence of KIR and
HLA combination on NK cell function could change accord-
ing to the resting status or in an immune state. For instance,
if there is under the resting status, inhibitory KIRs make NK
cells play a functional role, while activating KIR decreases NK
cell abilities when combined with their cognate ligand (called
NK cell education). In an immune state, inhibitory KIR could
reduce NK cell ability unless HLA class I expression is
decreased, while activating KIR could prime NK cell roles.
The KIR/HLA combination is very complex and extremely
polymorphic. The relationships between KIRs and HLAs
are related to many diseases, including infectious diseases,
autoimmune diseases, malignant tumors, and transplant
reactions [60–63]. In pregnancy, the inhibitory or activating
KIRs are capable of regulating the activity of uNK cells,
thereby playing an immunomodulatory role at the maternal
fetal interface. KIR A do not have stimulatory receptors,
whereas KIR B have both stimulatory and inhibitory recep-
tors. In each of the pregnancies, the KIR genes of the preg-
nant woman are expected to change, since these KIR genes
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are inherited and expressed by uNK cells. The paternal HLA-
C group is also expected to be different (even from the same
father), for the reason that the fetus is likely to inherit any
group of HLA-C from the father. Besides that, the mixes of
the two kinds of gene systems, together with the KIR geno-
type in the mother and the HLA-C group in her fetus, are
likely to exactly decide the reaction between trophoblast cells
and uNK cells.

The correlation existing between KIR/HLA-C and PE
constitutes a robust evidence for genetic etiology of PE
(Table 1). Until today, the largest study that ever took place
in Britain involved 200 patients, who had PE in the experi-
mental group, together with 201 women in the control group
with normal deliveries [64]. When the mother had inhibitory
KIR (KIR AA genotype), besides the fetus having HLA-C2, it
was more likely to have the abnormalities during the spiral
artery remodeling and defective placentation, eventually
resulting in PE [64]. In comparison with C1, C2 combines
more closely with homologous KIR. Moreover, inhibitory
KIR has KIR2DL1, capable of strongly inhibiting NK cells.
Nevertheless, there is no activating KIR at this time, failing
in providing activation signals. Consequently, NK cells in
these women manifested low functional activity, besides not
supporting placental growth as required.

Nonetheless, an extensive research from Japan did not
support this finding [65]. To our understanding, Caucasian
men are more likely to carry HLA-C2 allele as compared with
Japanese men. Accordingly, for Japanese women, the risk of
PE in combination with Caucasian men should be higher as
compared with that in combination with Japanese men.
However, no expected experimental results have been
attained that the incidence of PE in the former combination
was lower as compared with that in the latter (1.54% vs.
2.67%) [65].

It requires observation that the proportion of KIR AA in
patients having PE augmented only when the fetus inherited
paternal HLA-C2 [19]. Obstetrical complications had lower
likelihood of occurrence in the females, having KIR B geno-
type, including activating KIR2DS1, which was bound, in
particular, to HLA-C2 [19]. uNK cells produce a number of
cytokines that include TGF-β, PlGF, and VEGF, which may
be of pivotal significance in guiding immune reactions [57,
66]. KIR2DS1 is capable of stimulating uNK cells that aug-
ment the angiogenesis and immune response, thereby result-
ing in healthy pregnancy, whereas inhibiting uNK cells is
likely to lower the secretion of cytokines, thereby causing
PE [66]. It has been discovered that KIR2DS1-positive
females having a fetal HLA-C2 had a preferable trophoblast
invasion as well as spiral artery remodeling through the
secretion of granulocyte-macrophage colony-stimulating
factor (GM-CSF), while in the females having the KIR AA
genotype, PE was more likely to take place [67].

The correlation between activating KIR genes and lower
risk of PE changes among different populations. KIR2DS5
protectively contribute to Ugandans, which are unique to
sub-Saharan Africa (SSA) [68]. Researchers are unaware of
the fact of what the ligands of KIR2DS5 are; nonetheless, all
of the research works carried out the single European
KIR2DS5∗002 allele that refers to an activating KIR fre-

quently observed in the tel-B in European people. Together
with that, the KIR2DS5∗006 allele refers to a protective allele
that appears in the cen-B in SSA and can be activated while
binding to HLA-C2 [68].

It has also been illustrated that the expressions of
KIR2DL/S1, 3, and 5 were decreased on the percentage of
dNK cells in a case where patients had elevated uterine artery
resistance index (RI), indicating poor spiral artery remodel-
ing [65]. This is termed as the mechanical application of PE
as a result of the interactions between dNK cells and tropho-
blasts [69].

In the context of China, women having PE have an evi-
dently larger frequency of KIR AA genotype, primarily con-
taining the inhibitory receptors, in addition to the lower
frequency of maternal activating gene KIR2DS1 as compared
with normal pregnancies [70]. Furthermore, this finding
shows consistency with earlier research works in other popu-
lations [66, 67]. It is believed that activating KIR2DS1 refers
to a protective determinant, and insufficient activation of
uNK cells is expected to lead to decreased invasion of tropho-
blasts, thereby resulting in PE [70]. Moreover, it was also
indicated that if the fetus possessed more numbers of HLA-
C2 genes as compared with the mother, the maternal KIR
AA genotype was correlated with a higher risk for PE [70].
This research work also supports the hypothesis that
immune factors from fathers contribute to the development
of PE [71]. In another extensive investigation from China,
there were 271 women in the experimental group, together
with 295 women in the control group, who were collected
with the use of the polymerase chain reaction with sequence
specific primers (PCR-SSP) assay [72]. They figured out that
PE patients had fewer activating KIR2DS2, KIR2DS3, and
KIR2DS5 [72]. Besides that, the gene frequency of total acti-
vating KIRs in PE group was evidently smaller in comparison
with that of the control group (P=0. 03) [72].

PE patient showed more likelihood of being KIR2DL1
positive when the fetus had HLA-C2C2; in addition, in this
case, uNK cells were expected to receive the strongest inhib-
itory signals [72]. Furthermore, the same trend was also dis-
covered in Mexico [37]. 10 normal decidual specimens and 9
decidual samples from PE patients were employed in the pro-
cess of cesarean section [37]. They discovered that inhibitory
KIRs were predominated in PE patients in comparison with
normal pregnant women [37].

Besides that, it has also been highlighted that activating
maternal KIR-B genotype itself, in combination with fetal
HLA-C2, had an evident correlation with decidual acute
atherosis in PE patients [73]. In PE patients having acute
atherosis, the incidence of this combination amounted to be
60%, whereas, in PE patients not having acute atherosclero-
sis, the rate was 24.5% (P=0.001) [73]. They held the belief
that the appearance of acute atherosis was a result of decidual
inflammatory reactions owing to the reactions between fetal
HLA-C2 and maternal activating KIRs on dNK cells [73].

Nevertheless, some negative findings were made as well.
In a Danish study, 259 pregnant females, who had severe
PE or eclampsia in the trial group, together with 259 preg-
nant females, who did not have PE or eclampsia in the con-
trol group, were enrolled [74]. The blood of these pregnant
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women as well as their newborns was gathered [74]. No cor-
relation existing between maternal KIR AA and HLA-C2 in
their newborns was observed [74]. With the newborns carry-
ing more HLA-C2 allele as compared with the pregnant
women, no difference in maternal KIR AA genotype between
the trial cohort and the control cohort was observed [74].

Contradictory results of KIR/HLA-C combination in PE
patients are likely owing to the changes in KIR gene and
repertoire frequencies between different ethnicities. KIR
genotypes also have an extensive variation in geographical
distribution. Therefore, the direct comparison of these stud-
ies about KIR and HLA correlation with PE is a difficult
task because they were conducted in various populations,
together with distinct methods.

With regard to the future studies, it is necessary to carry
out large-scale prospective randomized controlled research
on different ethnic groups in Europe, Asia, and Africa, and
researchers should select suitable control groups for their stud-
ies, simultaneously collect KIR classification of mothers and
HLA-C groups of husbands and neonates, and analyze and
judge whether different combination types of KIR/HLA-C
are related to the prognosis of mothers and newborns.

Except for class I HLA-C, EVT also express atypical class
Ib HLA-E, F, and G [75]. HLA-G can inhibit the effect of NK
cells [76]. In the first trimester, the embryo could produce
soluble HLA-G [77] and it is important for immunotolerance
in maternal fetal interface [78]. Compared with nonpregnant
females, the expression of soluble HLA-G in serum of preg-
nant women at all stages was significantly higher [79] and
the soluble HLA-G increased the production of IL-10 [80].
It was found that the expression of soluble HLA-G in the
serum and placenta of PE women was significantly lower
than that of normal pregnant women [81–85]. It is suggested
that soluble HLA-G may be involved in the pathogenesis of
PE. Recently, it has been found that class II HLA-DR can
be detected in placentas from PE patients (n = 23), but not
in normal placentas (n = 14) [86]. The mechanism of HLA-
DR in PE needs to be further explored.

7. Conclusions

To conclude, NK cells are existent in the decidua in abun-
dance in early pregnancy, which are of immense significance
for the maintenance of normal pregnancy. In the mechanism
of placentation, uNK cells require necessary activation for the
purpose of releasing cytokines, promoting angiogenesis, and
helping remodel uterine spiral arteries. The women, who
have the inappropriate match of KIR/HLA-C, are likely to
be prone to the augmented risk of PE. With regard to these
women, the RI of the uterine artery could be monitored in
early pregnancy, whereas timely and effective intervention
could be performed for the prevention of PE.

Because of reproductive failure, more and more couples
choose gestational carriers. In 2013, gestational carriers
accounted for 2.5% of all assisted reproductive technologies
in USA [87]. The incidence of PE in gestational carriers has
not been reported, while that of multiple births and preterm
birth is relatively high [88]. Accordingly, HLA-C and KIR
genotyping could be potentially applicable for selecting the

third party gametes or gestational carriers, aimed at avoiding
the obstetrical complications including PE. In clinical work,
for the high-risk patients of PE, the role of uNK cells in the
process of placentation should be taken into account; for
the women with high-risk combinations of KIR/HLA-C,
the frequency of prenatal examination should be increased.
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