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Introduction. DNA methylation plays a vital role in prognosis prediction of cancers. In this study, we aimed to identify novel DNA
methylation site biomarkers and create an efficient methylated site model for predicting survival in kidney renal papillary cell
carcinoma (KIRP). Methods. DNA methylation and gene expression profile data were downloaded from The Cancer Genome
Atlas (TCGA) database and the Gene Expression Omnibus (GEO) database. Differential methylated genes (DMGs) and
differential expression genes (DEGs) were identified and then searched for the hub genes. Cox proportional hazards regression
was applied to identify DNA methylated site biomarkers from the hub genes. Kaplan–Meier survival and ROC analyses were
used to validate the effective prognostic ability of the methylation gene site biomarker. The biomarker sites were validated in the
GEO cohorts. The GO and KEGG annotation was done to explore the biological function of DNA methylated site signature.
Results. Nine DMGs with opposite expression patterns containing 47 methylated sites were identified. Finally, four methylated
sites were identified using the hazard regression model (cg04448376, cg24387542, cg08548498, and cg14621323) located in
UTY, LGALS9B, SLPI, and PFN3, respectively. These sites classified patients into high- and low-risk groups in the training
cohort. The 5-year survival rates for patients with low-risk and high-risk scores were 97.5% and 75.9% (P < 0:001). The
prognostic accuracy and signature methylation sites were validated in the test (TCGA, n = 87) and GEO cohorts (n = 14).
Multivariate regression analysis showed that the signature was an independent prediction prognostic factor for KIRP. Based on
this analysis, we developed methylated site signature nomogram that predicts an individual’s risk of survival. Functional analysis
suggested that these signature genes are involved in the biological processes of protein binding. Conclusions. Our study
demonstrated that the methylated gene site signature might be a powerful prognostic tool for evaluating survival rate and
guiding tailored therapy for KIRP patients.

1. Introduction

Renal carcinoma is a heterogeneous tumor, of which epithe-
lial renal cell carcinoma (RCC) accounts for the most cases.
There are over ten recognized histological subtypes of RCC,
of which chromophobe renal cell carcinoma (ChRCC), kid-
ney renal papillary cell carcinoma (KIRP), and kidney renal
clear cell carcinoma (KIRC) are the three most common sub-
types. Among these subtypes, KIRP has the second-highest
morbidity rate of 10%–15%, while KIRC has the highest inci-

dence of 75%–80% [1–5]. About 30% of RCC patients pres-
ent with distant metastasis at diagnosis and have a poor
prognosis. In clinical studies, patients with KIRC and
ChRCC often have ideal results. However, patients who were
diagnosed with KIRP have worse clinical outcomes [6–8].
Researchers have a relatively good understanding of KIRC
pathogenesis compared to KIRP, as most of the RCC pre-
sented is of KIRC subtype [9, 10]. Many therapies for
advanced RCC are based on blocking known KIRC pathways
using mTOR inhibitors and tyrosine kinase inhibitors to
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regulate the HIF1α and VEGF pathways; however, there are
very few treatments for KIRP.

KIRP is a renal parenchyma malignant tumor, including
two different subtypes (type 1 and type 2), often observed
with a papillary or tubulopapillary architecture [11]. Like
the KIRC, VEGF inhibitors and mTOR inhibitors have been
developed based on the understanding of specific molecular
sites [12]. Although researchers are beginning to develop
therapeutic targets for KIRP, such as foretinib and cabozan-
tinib, these drugs are specific for type 1 KIRP but not the
more aggressive type 2 KIRP [13, 14]. Therefore, we must
identify new and powerful molecular markers for prediction
and treatment sites, which can help develop new targeted
drugs specific for KIRP.

Although cancer occurrence and development mainly
depend on the alteration of tumor-associated genes, epige-
netic changes such as the DNA methylation of tumor-
related genes play an essential role in the molecular barrier
against tumor development [15, 16]. DNA methylation is
often considered a mechanism of gene silencing, and it func-
tions directly in many cellular processes such as embryonic
development, transcription, genomic imprinting, and X
chromosome inactivation [17–19]. DNA methylation signa-
tures have already been used in the early diagnosis and prog-
nosis of cancers. For example, in breast cancer, the poor
prognosis in patients may be correlated with CDH1 pro-
moter methylation [20]. Also, the DNA methylation of the
promoter regions of P16, CDH13, APC, and RUSSF1A in
stage I patients with non-small-cell lung cancer may be asso-
ciated with early recurrence [21, 22].

There are also a large number of methylation biomarkers
that have been proposed for the prediction of RCC [23],
including the single methylation biomarkers for prognosis
such as CRHBP [24], RCVRN [25], AR [7], CDO1 [26],
BMP-2 [27], KEAP1 [5], and DAB2IP [28]. While promising,
tumorigenesis is a complex process that requires the involve-
ment of multiple genes; thus, many of these biomarkers are
imperfect [29]. Considering that the occurrence and develop-
ment of KIRP is a complex process that requires the joint reg-
ulation of multiple omics, it is necessary to establish a
molecular marker model with high sensitivity and strong
predictive ability to elucidate the prognosis of KIRP.

In this study, we aimed to find potential survival-related
DNA methylation site signatures in KIRP, which may pave
the way for the development of novel prognostic markers
and therapeutic targets for KIRP.

2. Materials and Methods

2.1. DNAMethylation Profiling and Gene Expression Datasets
of KIRP Patients. In the current study, the DNA methylation
profiling (Illumina Human Methylation 450K Bead Chip
Array) and gene expression datasets (Illumina HiSeq RNA
Seq V2) were downloaded from TCGA database. A total of
276 KIRP and 45 control specimens were enrolled in the
methylation dataset, while there were 289 cases and 32 con-
trols in the gene expression dataset. Both datasets contain
clinical data, including survival time, status, gender, age,
and clinical stage. The clinical information of methylation

data is shown in Table 1. Other DNA methylation data were
retrieved from the Gene Expression Omnibus (GEO) data-
base (GSE126441, n = 14), which were used to validate the
methylated level of signature genes. To improve the data
accuracy, we preprocessed both datasets, including removing
the sites in which 70% of the methylated level were NA, and
genes with missing expression values in >30% of the patients.
Genes with RPKM expression values of 0 in all samples were
excluded [30]. The technical route to select the DNAmethyl-
ated site signature is shown in Figure 1.

2.2. Identification of DMGs and DEGs Associated with KIRP.
To identify the differentially methylated genes (DMGs),
we adopted the Benjamini-Hochberg false-discovery rate
(FDR) method to adjust the P value for each gene. The
DMGs were identified by a fold change > 2, P value <0.05,
FDR < 0:05, and beta value > 0:1. The differentially expressed
genes (DEGs) were identified by a fold change > 2, P value
<0.05, FDR < 0:05, and FPKM > 1.

After identifying multiple DMGs and DEGs from these
datasets, we screened nine hub genes, which are both differ-
entially expressed and enriched in differential methylation
between the DMGs and DEGs.

2.3. Constructing a Prognostic DNA Methylation Signature in
the Training Dataset. Statistics were employed to build a
model based on reports of a better method to create a signa-
ture module [31]. Gene methylation often occurs at specific
loci. The methylation of the gene is composed of multiple
methylation sites, so to make the detection more accurate,
we looked for methylation sites of hub genes, then identified
the sites associated with survival. Methylation sites were val-
idated in the GEO dataset. After identifying the methylation
sites of hub genes, we randomly divided all the KIRP methyl-
ation samples into two groups, the test group (87 cases) and
the training group (174 cases). The two groups were sepa-
rated and uncrossed. Univariate Cox proportional hazards
regression analysis was used to identify the association

Table 1: Summary of patient demographics and characteristics.

Characteristic Training (n = 174) Test (n = 87)
Gender

Female 43 26

Male 131 56

Age

<62 years 78 41

≥62 years 96 46

Stage

I 107 52

II 15 6

III 35 18

IV 8 5

Vital status

Living 151 70

Dead 23 17
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between survival time/status and each methylation site in the
training dataset [32]. To screen the most authoritative and
accurate DNA methylation sites to predict KIRP prognosis,
multivariate Cox regression analysis was used to build a
model to assess the prognosis risk according to the following
expression:

Risk score RSð Þ = 〠
n

i=1
methi ∗ Coef i, ð1Þ

where n represents the number of prognostic methylation
gene sites, methi is the methylation value of the gene sites,
and Coef i is a single factor Cox regression coefficient. When
the coefficient of the Coef i < 0, we defined it as a favorable
prognosis site, while the sites with the coefficient of Coef i >
0 were considered as a poor prognosis site. Risk score (RS)
is the multinode weighted sum of risk scores.

2.4. Statistical Analysis. The selected methylated sites were
used to construct a risk model. KIRP patients were dichoto-
mized into either high-risk or low-risk groups in the training
dataset; the median risk score was used as a cutoff value.
Kaplan–Meier survival analysis and ROC analysis were used
to validate the effective prognostic ability of the methylation

gene site signatures. We then confirmed the prognostic abil-
ity of the DNAmethylation signature in the test dataset. Fur-
thermore, multivariable Cox regression analysis was carried
out to identify whether the DNA methylation signature was
an independent factor in survival prediction; we considered
that P < 0:05 indicates a statistically significant difference.
All analyses were performed with the R statistical program
(version 3.5.1).

2.5. Generating the Nomogram.We created a nomogram by
using the “RMS” package of R software. The nomogram
concordance index (C-index) of all patients was obtained
by multivariate Cox regression analysis. The higher the
C-index, the more accurate the prediction. The nomogram
was used to calculate the total score of each patient. Over-
all scores were then used to predict 1-year, 3-year, and 5-
year survival rates [33].

2.6. Functional Annotation of the Selected DNA Methylation
Signature Genes. To further study the function of survival-
related DNA methylation signature genes, we used Gene
Ontology (GO) analysis (http://www.geneontology.org) to
investigate the roles of all the selected genes and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway analysis
(http://www.genome.jp/kegg/) to determine the significant

Univariable Cox (P<0.05)

4 remained to construct predictve model

Validation in the test group (n = 87)

ROC analysis

Training group
(n =174)

Multivariable Cox (P<0.05)

8 methylated sites

47 methylated sites

GSE56044 database
Validated the methylation level of signature genesThe nomogram develop

TCGA expression database

(P<0.05, FDR<0.05, Fold change>2)Different screen

TCGA methylation database

5109 DEGs

9 methylated genes which has opposite foldchage in expression

289 patients vs. 32 adjacent normal samples 276 patients vs. 45 adjacent normal samples

88 DMGs

(P<0.05, FDR<0.05, Fold change>2)Different screen

KM analysis

Figure 1: Flowchart of the study.
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pathways. Fisher’s exact test and chi-square tests were used to
select significant GO and pathway categories, with the
threshold of significance of P < 0:05.

3. Results

3.1. Identification of DMGs and DEGs Associated with KIRP.
After preprocessing the methylation dataset, 261 cancerous
tissues were remaining. We identified the DEGs and DMGs
in the two datasets. To determine the KIRP-related DMGs,
we performed comparisons between 276 cancerous tissues
and 45 adjacent tissues from KIRP patients. A total of 88
DMGs (Table S1) were identified in the methylation
dataset (P < 0:05; Δβ > 0:1). Among these, there were 48
hypomethylated genes and 40 hypermethylated genes. For
the DEGs identified, we compared the 289 cases and 32
controls in the gene expression dataset. We obtained 5109
DEGs (Table S2), of which 3076 were upregulated, and 2033
were downregulated. After identifying the DMGs and DEGs,
there were nine overlapping genes with hypomethylated-
high-expression and hypermethylated-low-expression, which
contained seven hypomethylated-high-expression and two
hypermethylated-low-expression genes as described in Fig.
S1; the nine hub genes are shown in Table S3.

3.2. Identifying the Four-DNA Methylation Site Signature in
the Training Group. The 261 patients were randomly divided
into two groups (training group, n = 174; test group, n = 87)
to identify and test the prognostic methylated gene sites
found in the KIRP patients. In total, we identified 47 methyl-
ation sites (Table S4) in the nine hub genes. Then, univariate
Cox proportional hazards regression analysis was conducted

in the training group to identify the methylation sites
significantly associated with overall survival time from the
47 sites. Eight methylated sites were significantly related to
the survival of KIRP patients (P < 0:05, Figure 2(a),
Table S5). To select the most significant prediction power
signature, we conducted a multivariable Cox regression
analysis and a model with the four-methylated gene site set
(cg04448376, cg24387542, cg08548498, and cg14621323,
Figure 2(b)) to assess the prognosis risk that was created.
The risk score (RS, Table S6) was determined as follows:

RS = −4:15 × methcg04448376
� �

+ 4:58 ×methcg24387542
� �

+ −2:37 ×methcg08548498
� �

+ 2:50 × methcg14621323
� �

:

ð2Þ

RS and meth are the risk score and the methylation value,
respectively.

3.3. Identification of the Survival Power of the DNA
Methylation Signature. Each patient got a risk score from
the selected methylated signature, and the median risk score
was used as the cutoff to divide the training group patients
into either the low-risk group (n = 87) or high-risk group
(n = 87). Kaplan–Meier survival analysis showed that the
overall survival (OS) rate of the low-risk group was signifi-
cantly higher than that of the high-risk group (OS rate:
97.7% vs. 75.9%; log-rank test P < 0:001; Figure 3(a)). To val-
idate the prediction power of the DNA methylation signa-
ture, we confirmed it in the test group using the same
prognostic risk score model. We found significant differences
between the high-risk and low-risk groups (Figure 3(b)). In
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Figure 2: (a) Univariable and (b) multivariable Cox regression analyses of the association between the methylated site signature and the
survival of KIRP patients in training group.
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the test dataset, the high-risk group had a significantly lower
OS rate than the low-risk group (OS rate: 69.8% vs. 90.9%;
log-rank test P = 0:032).

3.4. The Four-Methylation Site Signature Has Great Survival
Predictive Power. To test the DNA methylation signature
model’s predictive ability, we conducted a time-dependent
ROC analysis, which showed a high predictive ability of the
four methylation signature sites in the training group
(AUCsignature = 0:890, Figure 3(c)). It further indicates that
the signature in our study is a new, highly accurate prognos-
tic prediction marker. Similar results were found in the test
group (AUCsignature = 0:900, Figure 3(d)). The sensitivity
and specificity of prognostic prediction are higher than the
stage (Figures 3(c) and 3(d)).

3.5. Nomogram of Combined Methylated Site Signature and
Clinical Variables Predicts Patient’s OS. Our multivariate
Cox regression model demonstrated that the signature risk
score’s predictive power was independent of clinical charac-
ters (high-risk group vs. low-risk group: HR = 1:40, 95% CI:
1.01–2.00, and P = 0:045; Figure 4(a)). According to the
above analysis results, we developed a methylated gene site
nomogram, which combined the clinical-related factors
(stage) and methylated gene site signature. In the training
group, the calibration chart of the five-year operating sys-
tem is well predicted (Figure 4(b)). We have compared C-
index of this risk score to the cluster of cluster signature
of that in the previous study in KIRP dataset (PMID:
26536169). The results showed that our risk score was bet-
ter than clusters in KIRP dataset (PMID: 26536169) in
Table 2.
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Figure 3: Methylated site signature predicts prognosis of KIRP patients. (a, b) Kaplan–Meier survival curves classified KIRP patients into
high-risk and low-risk groups using the site signature in the training and test datasets. P values were calculated by log-rank test. (c, d)
Results of receiver operating characteristic (ROC) analysis.
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3.6. Validated Methylation Sites in Independent GEO
Cohorts. To confirm the four-methylation site pattern in dif-
ferent populations, we evaluated the samples (4 patients vs.
10 normal) in GSE126441 (Table S7). It showed that
cg04448376 and cg14621323 were downregulated, and
cg08548498 and cg24387542 were upregulated in patients vs.
normal (Figure 5), which is the same methylation pattern in
TCGA dataset. GO and KEGG functional annotation
showed that the survival-related DNA methylation signature
genes were significantly enriched in only three different GO
terms (P < 0:05). The four genes were mainly enriched in
protein binding, an integral component of membrane and

cytoplasm (Table S8). The four-methylated site signature
may participate in tumorigenesis by regulating cellular
metabolic processes.

4. Discussion

KIRP remains a clinical challenge due to high histologic het-
erogeneity, poor prognosis, and limited treatment options.
KIRP is the second most prevalent phenotype of RCC [34];
however, the carcinogenesis mechanism of KIRP is not fully
understood. Much of the previous research on KIRP genes
has focused on some known cancer-related genes of KIRC.
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Figure 4: (a) Multivariable Cox regression analysis and (b) nomogram of combined methylated site signature and clinical variables predict
patients’ OS.

Table 2: Comparison of the four-methylated site prognostic signature to the published KIRP prognostic signature.

Studies HR (95% CI) P C-index

Present study, 4-methylated site signature 3.80 (2.2-6.3) 8.102e-10 0.85

PMID: 26536169, the cluster signature 2.25 (1.48-3.98) 1.48e-03 0.613
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There is a lack of epigenetic biomarkers, and most of the
prognosis of KIRP biomarker research is focused on the
mRNA, lncRNA, and miRNA. For instance, Lan et al. identi-
fied seven lncRNAs that could predict the prognosis of KIRP
[8]; Luo et al. identified hsa-mir-3199-2 and hsa-mir-1293 as
novel prognostic biomarkers for KIRP [35]; and Gao et al.
[36] found that five mRNAs (CCNB2, IGF2BP3, KIF18A,
PTTG1, and BUB1) can predict KIRP patient survival.
Although some prognostic markers of KIRP have been found
in previous studies, the results are not consistent, and there is
no analysis at multiple omics levels. Therefore, reliable
molecular signatures are needed to predict the survival of
KIRP patients.

Our study identified 47 methylated gene sites from nine
differentially methylated genes (DMGs), with opposite differ-
ential expression patterns. We used various statistical
approaches to identify four-methylated site signature from
the 47 methylated sites. The signature that we selected can
separate the KIRP patients into high-risk and low-risk groups
with significantly different survival times in the training and
test datasets, indicating that it has a powerful prediction abil-
ity. The independence of the selected DNA methylation gene
signature in predicting OS in the entire dataset was identified
using multivariable Cox regression analysis, which con-
firmed that the risk score of DNA methylation site signature
maintained an independent related to OS.

The ROC curve showed that the AUC is 0.791 in the
training group and 0.742 in the test group. Considering that
larger AUC usually indicates better prediction power, this
result further demonstrated that the DNAmethylation signa-
ture in our study is a high accuracy novel prognostic marker

and has significant clinical value. Also, our signature of
DNA methylation sites did not depend on other clinical fea-
tures. Moreover, we validated the signature of methylation
gene sites and methylation sites in TCGA and GEO cohorts
and demonstrated their ability to predict the overall survival
of KIRP patients. We also established a methylation gene site
nomogram, including methylation gene site signature and
clinical-related risk factors (e.g., stage and age) to predict
OS. Our study results help in understanding the develop-
ment of KIRP and for developing tailored therapy and ulti-
mately may contribute to an increase in survival rates of
KIRP patients.

In addition, we analyzed the function of the selected
DNA methylation genes. The four methylation sites
cg04448376, cg24387542, cg08548498, and cg14621323 were
located in UTY, LGALS9B, SLPI, and PFN3, respectively.
SLPI is a gene-encoding secretory leukocyte protease inhibi-
tor, 11.7 kDa serine protease inhibitor, and is a member of
the whey acidic protein four-disulfide core family [37, 38].
SLPI can reduce the activities of trypsin, neutrophil elastase,
chymotrypsin, and cathepsin G [39]. Therefore, SLPI may
be a potential tumor marker to predict the prognosis [39].
Previous studies have shown that SLPI is related to tumor
metastasis. In some high-risk, aggressive or metastatic
tumors, such as the pancreatic, uterine cervix, papillary thy-
roid, and ovarian cancers, SLPI was often found to be highly
expressed [40, 41]. However, in bladder tumors, nasopharyn-
geal carcinoma, and some breast cancers, SLPI has a low
expression. SLPI has high expression in gastric cancer cells
with serosa invasion, and SLPI overexpression in gastric can-
cer cell lines can improve the cell migration and invasion rate
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Figure 5: Validated methylation sites of signature in independent GEO cohorts.
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[38]. These observations are entirely consistent with the pre-
vious view that the expression of SLPI in tumors is often
associated with poor prognosis. As far as we know, the pres-
ent study is the first report of SLPI methylation sites as a
prognostic biomarker in human KIRP. SLPI is hypomethy-
lated and overexpressed in this report, just like the previous
study demonstrated, so we believe that SPLI is a favorable
biomarker for prognosis.

UTY is located on the Y chromosome and can encode a
demethylase and was reported to be an epigenetic-related
gene. UTY is essential in the development of teratoma
through the regulation of epigenetic changes [42, 43]. In
urothelial bladder cancer (UBC), 22.8% (8/35) of patients
were found to have a reduced UTY copy number, and cell
proliferation was found to increase in a UTY knockout.
UTY also plays a vital role in some regulatory pathways, such
as the NF-B and p53 pathways [44, 45]. In this study, we
showed that methylation of UTY was significantly associated
with KIRP survival and that UTY can act as a survival-related
methylation biomarker for KIRP.

For LGALS9B and PFN3, there is very little known about
their regulatory mechanisms. The LGALS9B gene was ini-
tially thought to represent a pseudogene of galectin 9; how-
ever, the association of LGALS9B gene and tumors is
unclear. This gene is one of two similar loci on chromosome
17p identical to galectin 9 and is now thought to be a protein-
encoding gene. We have found that its functions are primar-
ily associated with protein binding. Thus, we suspect that it is
similar in function to galectin 9. Galectin-9 was reported to
be related to different aspects of tumor growth, metastasis,
immunosuppression, and immunomodulation [46, 47]. In
breast carcinoma, liver cancer, and cervical tumors, LGALS9
expression affects disease prognosis [48–51]. PFN3, one of
the isoforms of profilin, is an actin-binding protein. Previous
studies show that PFN3 is expressed in the brain, testis, and
kidney [52]. Genetic variation of PFN3 is significantly related
to nephrolithiasis of Japanese individuals [53]. Although the
functions of LGALS9B and PFN3 are unclear, they are signif-
icantly associated with KIRP survival. Our study indicates
that UTY, LGALS9B, SLPI, and PFN3 have essential roles
in KIRP.

The limitations of this study need to be recognized. First,
the samples of our study are entirely retrospective, and inher-
ent biases may influence the results. Hence, we may have lost
signatures that are potentially correlated with KIRP survival.
Secondly, we have not further searched the mechanism of
action of these DNA methylation genes in KIRP. Finally,
although we identified the selected DNA methylation sites
as a powerful prediction signature, applying it in a clinical
setting will require more research.

5. Conclusions

Taken all together, by performing a comprehensive analysis
for DNA methylation data, gene expressed profiles, and cor-
responding clinical information, our study demonstrated
that the four-methylated site signature was a potential prog-
nosis marker for KIRP, the significant and consistent correla-
tion between our four-methylated site signature, and overall

survival in two independent datasets which indicated that it
is a potentially powerful prognostic marker for KIRP. In
summary, we identified a novel methylated site signature
to predict prognosis in KIRP. We confirmed that this sig-
nature could serve as a potentially robust and specific bio-
marker in the prognosis prediction and tailored therapy
for KIRP patients.
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