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Background. Whether and how amarogentin suppresses the angiogenesis effect in liver cancer cells after insufficient radiofrequency
ablation (iRFA) are still poorly studied. Methods. The number of liver cancer stem cells (LCSCs) and the level of vascular
endothelial growth factor A (VEGFA) were assessed in liver cancer tissue after iRFA. Then, CD133-positive cells were detected
in iRFA models of HepG2 and Huh7 cell lines treated with amarogentin. Tube formation assays were applied to observe the
antiangiogenesis effects of amarogentin. In addition, the angiogenesis-related molecules p53, delta-like ligand 4 (Dll4), and
Notch1 were detected in the iRFA cells and mouse models treated with amarogentin. Results. The mRNA and protein
expression levels of CD133 and VEGFA were significantly higher in the residual liver cancer tissue than in the liver cancer
tissues treated by hepatectomy. Amarogentin then markedly decreased the percentage of CD133-positive cells in the iRFA
model in both HepG2 and Huh7 cell lines. The number of tubules formed by human umbilical vein endothelial cells (HUVECs)
was significantly decreased by amarogentin. Inversely, the antiangiogenesis effect of amarogentin was counteracted after p53
silencing in the iRFA cell models. Conclusion. Amarogentin prevents the malignant transformation of liver cancer after iRFA via
affecting stemness and the p53-dependent VEGFA/Dll4/Notch1 pathway to inhibit cancer cell angiogenesis.

1. Introduction

Liver cancer is one of the most malignant cancers in the
world [1]. Millions of patients die from liver cancer because
of lack of timely liver transplantation or hepatectomy [1].
In recent years, increasing clinical studies have confirmed
that the 5-year overall survival rate of liver cancer less than
5 cm in diameter treated with radiofrequency ablation
(RFA) is not inferior to that treated with hepatectomy; RFA
also has a lower rate of complications and is noninvasive
[2]. However, local recurrence and distant metastasis of
residual cancer due to insufficient radiofrequency ablation
(iRFA) remains an obstacle to overcome.

Residual cancer cells generally become more prolifera-
tive, motile, aggressive, and drug-resistant after iRFA [3].
These malignant changes in cells have been verified to confer
stemness; that is, the fraction of liver cancer stem cells
(LCSCs) substantially increased after iRFA [4]. Liu et al. have
revealed that LCSCs induced by vascular endothelial growth
factor A (VEGFA), which are produced under hypoxia and
heat stimulation, accelerate the early recurrence of liver
cancer after RFA treatment [5]. In addition, Kong et al. have
reported that VEGFA secreted by altered liver cancer cells
after heat treatment promotes the growth and angiogenesis
of residual liver cancer after iRFA [6]. Thus, inhibiting
VEGFA produced by LCSCs is a feasible and effective way
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to block the angiogenesis of residual liver cancer after iRFA
treatment.

Angiogenesis is one of the crucial events for residual liver
cancer development and growth [7]. VEGFA, as one of the
most recognized and effective endothelial growth factors,
mobilizes the endothelial progenitor cells to participate in
tumor angiogenesis [7]. Uncontrollably, VEGFA secretion
accelerates the malignant changes of cancer under hypoxia
or heat stimulation [8]. Thus, VEGFA secretion is always
through a complicated network involving in hypoxia-
inducible factor 1, cytokines, hormones, etc. Recently, the
regulatory effects of p53 on the expression of VEGFA have
attracted increasing attention. Pal et al. have reported that
p53 inhibits the expression of vascular permeability factor
(VPF)/VEGF in mammary carcinoma by affecting their
transcriptional activity under hypoxic conditions [9]. During
sustained hypoxic conditions, Farhang et al. have reported
that p53 reduces VEGFA production and inhibits angiogene-
sis through the p21/Rb pathway [10]. Thus, increasing the
expression of p53 is a practical method to inhibit VEGFA-
induced angiogenesis.

Amarogentin, a bioactive molecule extracted from
Swertia davidi Franch, has been reported to activate p53 to
promote apoptosis in liver cancer cells [11]. Our previous
study has verified that amarogentin prevents the malignant
transformation of liver cancer cells through upregulation of
p53 [12]. In addition, amarogentin has been reported to pre-
vent liver carcinogenesis via regulating LCSC renewal [13].
Furthermore, p53 suppresses tumor proliferation by inhibit-
ing the expression of CD133 [14]. However, the roles and
underlying mechanisms of amarogentin in inhibiting
VEGFA-induced angiogenesis in residual liver cancer after
iRFA treatment are poorly understood. Thus, in this study,
we observed the percentage of LCSCs, the number of tubules
produced by human umbilical vein endothelial cells
(HUVECs), and the expression changes in the angiogenesis-
related molecules VEGFA, delta-like ligand 4 (Dll4), and
Notch1 in iRFA cancer cells and mouse models treated with
amarogentin in both the presence and absence of p53 to reveal
the antiangiogenesis effects and mechanisms of amarogentin
in liver cancer after iRFA treatment.

2. Materials and Methods

2.1. Patients and Liver Cancer Samples. All 19 patients with
liver cancer nodule (only 1 tumor nodule and less than
5 cm in diameter) were hospitalized at the Department of
Hepatobiliary Surgery, the Third Hospital of Mianyang, from
March 2016 to March 2018. Nine liver cancer patients were
previously treated with RFA and later underwent hepatec-
tomy after confirmation of iRFA by spiral computed tomog-
raphy epigastric enhancement scanning. The remaining 10
liver cancer patients were only treated with hepatectomy.
The use of patient liver cancer tissue samples in the pres-
ent study was approved by the Ethics Committees of the
Third Hospital of Mianyang. The clinical characteristics
of patients with liver cancer are showed in Supplementary
Table 1. There is no difference between the iRFA and
hepatectomy groups.

2.2. Cell Culture. HepG2 and Huh7 cell lines were both
purchased from the Cell Bank Type Culture Collection of
the Chinese Academy of Sciences (Shanghai, China). Liver
cancer cells were cultivated in a 37°C incubator at 5% CO2
and a suitable humidity level with DMEM containing 10%
fetal bovine serum (FBS) (HyClone, USA).

2.3. iRFAModel and Amarogentin Treatment In Vitro. Suble-
thal heat treatment was used to mimic iRFA cells. That is, the
iRFA cell model was generated as previously reported [8].
Briefly, HepG2 and Huh7 cells (5 × 104) were plated in a 6-
well plate and cultured for 12 h before incubation in a 50°C
water bath for 10min. Then, the cells were cultured at 37°C
for 12, 24, and 48h for subsequent experiments. For amaro-
gentin (21018-84-8, PUSH Bio-Tec, China) treatment, the
iRFA models of HepG2 and Huh7 cell lines were incubated
in a 50°C water bath for 10min before treatment with amar-
ogentin (120μg/ml) for 24 h. The optimal effective dose of
amarogentin for liver cancer cell lines was determined in
our previous study [12].

2.4. Transfection Assay.A p53-shRNA plasmid containing the
green fluorescence gene was purchased fromGenePharma Inc.
(Shanghai, China) and transfected with Lipofectamine®3000
(Thermo Fisher, USA) into Huh7 cells for 48 h. Then, iRFA
cell model was generated as above. The transfection efficiency
was greater than 70% (Supplementary Figure 1).

2.5. Tube Formation Assay. HUVECs were purchased from
Procell Life Science & Technology Co. Ltd. (Wuhan, China).
HUVECs (5 × 104) were plated into a 48-well plate that was
precoated with 50μl of Matrigel™ Basement Membrane
Matrix (354234, BD Biosciences) and cultivated with a super-
natant from the iRFA HepG2 and Huh7 cells for 6 h. The
HUVECs tube formation was determined by optical micros-
copy and averaged from 5 fields. The quantification of tube
formation was detected by ImageJ (NIH, USA).

2.6. Flow Cytometry Assay. The iRFA Huh7 cells (1 × 106)
were incubated with 10μl of phycoerythrin-CD133 antibody
(372804, Biolegend, USA). The cells were incubated in a dark
room at 4°C for 25min before flow cytometry detection.

2.7. Enzyme-Linked Immunosorbent Assays. The supernatant
levels of VEGFA (EK0539, Boster, China) were quantified
using commercially available ELISA kits. For VEGFA detec-
tion in the supernatants, the concentrations were diluted to
20%. All the procedures were performed strictly in accor-
dance with the manufacturer’s instructions.

2.8. Animals. All BALB/c nu/nu male mice (8 weeks old, 22-
25 g, specific pathogen-free) were purchased from the Exper-
imental Animal Center of Chongqing Medical University.
The mice were housed in sterile polycarbonate cages with
free access to water and food with human care. All animal
experimental procedures in the present study were approved
by the Ethics Committee of Chongqing Medical University.

2.9. Xenograft and Amarogentin Treatment.A 1 × 107 aliquot
of normal Huh7 cells and iRFA model cells (48 h) (0.1ml
total volume) was injected subcutaneously into the left flank

2 BioMed Research International



of each nude mouse. For amarogentin treatment, the mice
were treated orally with amarogentin (0.2μg/g/d) as soon as
they received the Huh7 cell xenograft. All mice were sacri-
ficed after feeding for 30 days. Next, the tumors were
removed for western blotting (WB) and immunohistochem-
ical staining (IHC) assays. The optimal effective dose of
amarogentin for mice with liver cancer was determined in
previous studies [11–13].

2.10. Pathological and Immunohistochemical Analyses.
Tumor tissues were fixed with 4% paraformaldehyde at 37°C
for 48 h before being embedded in paraffin. The paraffin sam-
ples were cut into 3- to 5-μm sections, followed by dewaxing
and hydration. For histology, the sections were stained with
hematoxylin and eosin (HE). For IHC, the sections were
blocked with 5% BSA at 37°C for 2 h after denaturation of
endogenous peroxidase was blocked with 30ml/l hydrogen
peroxide. Then, the sections were incubated with specific pri-
mary antibodies at 4°C overnight. Next, the sections were
exposed to a horseradish peroxidase-conjugated secondary
antibody, followed by incubation with a DAB detection kit
(AR1026, Boster, China) at 37°C for 2-10min. The details of
the antibodies used are shown in Supplementary Table 2.

2.11. Western Blotting Analysis. Total protein was extracted
with RIPA lysis buffer (AR0105; Boster, China) and separated
on 10% sodium dodecyl-sulfate (SDS) polyacrylamide gels;
then, the proteins were transferring onto polyvinylidene fluo-
ride (PVDF) membranes and incubated with primary anti-
bodies at 4°C overnight. Next, the PVDF membranes were
reacted with horseradish peroxidase-conjugated anti-IgG
secondary antibodies at 37°C for 2 h before incubation with
enhanced chemiluminescence detection buffer (KGP1122;
KEYGEN, China). The relative intensities of target protein
bands were detected using a Chemico-EQ system (Bio-Rad,
USA) and normalized to the amount of β-actin. The details
of antibodies used are shown in Supplementary Table 2.

2.12. Reverse Transcriptase-Polymerase Chain Reaction
Analysis. Total RNA was extracted using an ultrapure RNA
kit (CW0597, Cwbiotech, China) and reverse transcribed into
cDNA using a Primescript™ RT Reagent Kit with gDNA
Eraser (RR047A, Takara, Japan). Polymerase chain reaction
(PCR) was conducted using a SYBR Premix Ex Ta II Kit
(RR820A, Takara, Japan) as follows: First, a total reaction sys-
temof 25μl was created bymixing 2×SYBR®Premix ExTaq II
(12.5μl), 10μmol/l forward primer(1μl), 10μmol/l reverse
primer (1μl), cDNA (2μl), and RNase-free water (8.5μl);
then, the mixture was denatured at 95°C for 30 s. Next, the
mixture was subjected to 40 cycles of amplification at 95°C
for 5 s and annealing at 60°C for 60 s. The relative expression
levels of the target genes were determined using the 2(-Delta
C(T)) method after normalization to the glyceraldehyde-
phosphate dehydrogenase (GAPDH) gene. The primers of
the target genes are shown in Supplementary Table 3.

2.13. Statistical Analysis. All data were expressed as the
mean ± standard deviation (x ± s) and were analyzed using
SPSS18.0 software (Chicago, Illinois, USA). Comparisons of
multiple groups were performed with a single factor analysis

of variance (one-way ANOVA), and pairs of independent
samples were analyzed using Student’s t-test. Differences
were considered significant at a p value of less than 0.05.

3. Results

3.1. iRFA Promotes Angiogenesis via Inducing Stemness in
Human Liver Cancer Tissues. CD133 is a recognized surface
marker for LCSCs [15]. The mRNA and protein expression
levels of CD133 in the iRFA-liver cancer samples were
higher than those in the hepatectomy-liver cancer sample
(Figures 1(a)–1(c)). The mRNA and protein expression
levels of VEGFA in the iRFA-liver cancer samples were
higher than those in the hepatectomy-liver cancer samples
(Figures 1(a)–1(c)). In addition, the protein levels of CD31
detected by IHC in the iRFA-liver cancer tissue were higher
than those in the hepatectomy-liver cancer samples
(Figure 1(d)). Thus, the expression trend for VEGFA and
CD31 in the iRFA-liver cancer samples was similar to that
for CD133, indicating that angiogenesis was promoted by
LCSCs induced by iRFA.

3.2. Liver Cancer Stemness Induced by iRFA Facilitates
Angiogenesis In Vitro. In HepG2 cells, the supernatant levels
of VEGFA after iRFA treatment at 24 h and 48 h were higher
than those of nontreated cells (Figure 2(a)). Similarly, the
mRNA and protein levels of CD133 and VEGFA in the
iRFA-treated cells (24 h) were higher than those of non-
treated cells (Figures 2(b) and 2(c)). In addition, the number
of tubes formed by HUVECs cultured with the supernatant
from iRFA-treated cells (24 h) was markedly higher than that
formed by nontreated cells (Figure 2(d)). More dramatic
changes in these indicators described above were also
observed in Huh7 cells. Thus, the data indicated that the liver
cancer cell stemness induced by iRFA treatment promoted
angiogenesis in vitro.

3.3. Amarogentin Inhibits Angiogenesis by Decreasing the
Liver Cancer Cell Stemness Induced by iRFA. The mRNA
and protein levels of CD133 and the supernatant levels of
VEGFA in iRFA-treated HepG2 cells were obviously
decreased by amarogentin (Figure 2(e)). The same effects of
amarogentin were observed in iRFA-treated Huh7 cells. In
addition, the mRNA and protein levels of Dll4 and Notch1
in iRFA-treated cells were decreased by amarogentin, and
phosphorylated p53 levels were increased (Figure 2(f)). Thus,
the data suggested that amarogentin inhibited angiogenesis
by decreasing the liver cancer cell stemness induced by iRFA.

3.4. Amarogentin Suppresses Liver Cancer Growth by
Inhibiting Angiogenesis in Xenograft Mice.The tumor weights
and volumes of the iRFA model mice were significantly
decreased by amarogentin (Figure 3(a) and Supplementary
Figure 2). Consistently, the expression levels of CD133,
VEGFA, Dll4, and Notch1 in iRFA tumor tissues were
decreased by amarogentin, and phosphorylated p53 levels
were increased (Figures 3(b) and 3(c)). Thus, these data
implied that amarogentin suppresses liver cancer growth by
inhibiting angiogenesis in xenograft mice.
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3.5. Amarogentin Inhibits iRFA-Induced Angiogenesis via
Affecting the p53-Dependent VEGFA/Dll4/Notch1 Pathway.
The effects of amarogentin on the fraction of CD133-
positive cells and the mRNA levels of VEGFA, CD133,
Dll4, and Notch1 after iRFA treatment were also downregu-
lated by p53 knockdown in Huh7 cells (Figures 4(a)–4(d)).
Similarly, the effects of amarogentin on the number of
tubes formed by HUVECs cultured with supernatant from
iRFA model cells were counteracted by p53 knockdown in
iRFA models of Huh7 cells (Figure 4(e)). Thus, these data
indicated that amarogentin inhibited iRFA-induced angio-
genesis via affecting the p53-dependent VEGFA/Dll4/-
Notch1 pathway.

4. Discussion

Although RFA is the most effective method for treating liver
cancer other than liver transplantation and hepatectomy, an
effective solution has not been found for the occurrence of
residual cancer. The heat produced by RFA is not enough
to kill marginal cancer cells; instead, it increases the malig-
nant progression of liver cancer [3]. Sublethal heat treatment
promotes liver cancer cell development of a spindle-like
morphology and transformation CD133-positive liver cancer
cells, which are progenitor-like cancer cells that are highly
proliferative [4]. Tong et al. have asserted that residual liver
cancer cells show a higher percentage of stem-like cells and
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Figure 1: iRFA promotes angiogenesis via induction of stemness in human liver cancer tissues. (a) The mRNA expression levels of VEGFA
and CD133 in iRFA liver cancer samples and hepatectomy liver cancer samples were detected by RT-PCR assay. (b, c) The protein expression
levels of VEGFA and CD133 in the iRFA liver cancer samples and hepatectomy liver cancer samples were detected by WB and IHC (400x)
assays. (d) The protein expression levels of CD31 in the iRFA liver cancer samples and hepatectomy liver cancer samples were detected by
IHC (200x) assays (p < 0:05).
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Figure 2: Amarogentin inhibits angiogenesis by decreasing the liver cancer cell stemness induced by iRFA. (a) The VEGFA supernatant levels
in normal liver cancer cells and iRFA treatment cells at 12 h, 24 h, and 48 h were detected by ELISA. (b, c) The mRNA and protein expression
levels of VEGFA and CD133 in normal liver cancer cells and iRFA cells at 48 h were detected by WB and reverse transcription-polymerase
chain reaction (RT-PCR) assays. (d) HUVECs were cultured with supernatant from normal liver cancer cells and iRFA cells at 48 h to observe
tube formation (400x). (e, f) The mRNA and protein expression levels of CD133 in normal liver cancer cells, iRFA cells, and iRFA cells treated
with amarogentin were detected by WB and RT-PCR assays. (g) The VEGFA supernatant levels in normal liver cancer cells, iRFA cells, and
iRFA cells treated with amarogentin were detected by ELISA. (h, i) The protein, phosphorylation, and mRNA expression levels of p53, Dll4,
and Notch1 in normal liver cancer cells, iRFA cells (48 h), and iRFA cells treated with amarogentin were detected byWB and RT-PCR assays.
N = normal liver cancer; iRFA= iRFA cells; iRFA+A= iRFA cells with amarogentin treatment group (p < 0:05).
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have levels of invasiveness, metastasis, and drug resistance
[15]. In addition, Wang et al. have reported that downregu-
lating the expression of CD133 suppressed proliferation,
invasion, and autophagy in iRFA-treated liver cancer [4].
Consistently, in our study, we have observed that the mRNA
and protein levels of CD133 were higher in the iRFA liver
cancer samples. Moreover, we have observed that the fraction

of CD133-positive cells was markedly increased by iRFA
treatment. Thus, the cancer cells treated with iRFA generally
achieve stemness. That is, more liver cancer cells transform
into LCSCs.

Cancer stem cells (CSCs), or tumor-initiating cells
(TICs), are regarded as the origin of cancer and are thought
to cause treatment tolerance [16]. In addition to the stronger
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Figure 3: Amarogentin suppresses liver cancer growth by inhibiting angiogenesis in xenograft mice. (a) The tumor weights and volume were
significantly higher in iRFAmodel mice than in mice treated with amarogentin. (b) HE staining was used to observe the tumor tissues. (c) The
protein and phosphorylation levels of CD133, VEGFA, p53, Dll4, and Notch1 were detected by IHC assay in the normal Huh7 cell xenograft
group, the iRFA cell xenograft group, and the iRFA cell xenograft treated with amarogentin group (400x). N = normal Huh7 cell xenograft
group; iRFA= iRFA cell xenograft group; iRFA+A= iRFA cell xenograft treated with amarogentin group (p < 0:05).
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proliferation, invasion, metastasis, differentiation, and drug
resistance of CSCs, promotion of tumor angiogenesis is
another main feature. Eyler et al. and Atala et al. have found
that breast CSC-derived endothelial cells contribute to tumor
angiogenesis [17, 18]. Zheng et al. have reported that down-
regulation of CD13, a marker for LCSCs, inhibits the growth
of liver cancer by killing LCSCs and suppressing angiogenesis

[7]. In addition, Kong et al. have confirmed that tumor-
associated endothelial cells enhance angiogenesis and
promote the invasiveness of residual liver cancer after iRFA
treatment [19]. In the present study, we have observed that
residual liver cancer angiogenesis is promoted by LCSCs
induced by iRFA. Moreover, the increased fraction of LCSCs
facilitates angiogenesis in iRFA-treated cells, further
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Figure 4: Amarogentin inhibits iRFA-induced angiogenesis via the p53-dependent VEGFA/Dll4/Notch1 pathway in Huh7 cells. (a–c) The
supernatant levels of VEGFA, the mRNA levels of CD133 and VEGFA, and the protein and phosphorylation levels of p53, Dll4, and
Notch1 in iRFA cells treated with amarogentin, iRFA cells transfected with p53-shRNA, and iRFA cells transfected with p53-shRNA
before treatment with amarogentin were detected by ELISA, RT-PCR, and WB assays, respectively. (d) The percentages of LCSCs in
normal liver cancer cells, iRFA cells, iRFA cells treated with amarogentin, iRFA cells transfected with p53-shRNA, and iRFA cells
transfected with p53-shRNA before treatment with amarogentin were indicated by CD133-PE staining and detected by flow cytometry. (e)
HUVECs were cultured with supernatant from normal liver cancer cells, iRFA cells, iRFA cells treated with amarogentin, iRFA cells
transfected with p53-shRNA, and iRFA cells transfected with p53-shRNA before treatment with amarogentin (400x). N = normal liver
cancer; iRFA= iRFA cells; iRFA+A= iRFA cells with amarogentin treatment group; iRFA+shRNA= iRFA cells iRFA cells transfected with
p53-shRNA group; iRFA+shRNA+A= iRFA cells transfected with p53-shRNA before treatment with amarogentin group (p < 0:05).
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promoting liver cancer growth in xenograft mice. Thus, kill-
ing CSCs is an unquestionably effective method to retard the
angiogenesis of residual liver cancer, as well as the recurrence
and metastasis of residual liver cancer.

Amarogentin, an anticancer compound extracted from
Swertia davidi Franch, has been reported to inhibit liver
cancer, cervical cancer, gastric carcinoma, and skin carcino-
genesis in vivo and in vitro [11, 12, 20–22]. Sur et al. have con-
firmed that amarogentin significantly reduces the numbers of
LCSCs in both the pre- and postinitiation stages of carcino-
genesis [13]. Park et al. have reported that the antiproliferative
effects of p53 are antagonized by rescuing CD133 expression
in a p53-overexpressing cell line [14]. Their results have indi-
cated that the tumor-suppressive activity of p53 might be
mediated by CD133 suppression. p53, as a most important
tumor-suppressing gene, inhibits tumorigenesis by activating
a lot of effector pathways. Although mutant p53 is known to
be transcriptionally inactive and promotes the initiation and
progression of cancer, phosphorylated p53 as a transcrip-
tional factor plays an important role in tumor inhibition.
Importantly, our previous study has verified that amarogentin
prevents the malignant transformation of liver cancer cells
through upregulating p53. Moreover, we have observed that
the number of CD133-positive cells is obviously decreased
by amarogentin in both HepG2 and Huh7 cells, accompanied
by increased p53 phosphorylation and angiogenesis inhibi-
tion. However, the mechanism that is involved in amarogen-
tin inhibition of liver cancer angiogenesis upon iRFA
treatment via killing LCSCs requires further clarification.

As a highly specific vascular endothelial growth factor,
VEGFA is involved in various conditions of angiogenesis
via initiating the Dll4/Notch1 pathway [23]. Inflammation
and hypoxia are characteristics of the tumor microenviron-
ment, but they also promote VEGFA secretion in cancer cells
[24]. Liu et al. have reported that VEGFA induced by iRFA
promotes tumor stemness and accelerates tumorigenesis in
liver cancer cells [5]. In addition, Kong et al. have reported
that the hypoxic-inducible factor 1α (HIF1α)/VEGFA
pathway was involved in the angiogenesis of residual liver
cancer after iRFA treatment, and bevacizumab, which targets
VEGFA, inhibited tumor growth and angiogenesis in iRFA
model cells [6]. Thus, VEGFA should be an appropriate
target for antitumor therapy. Pfaff et al. have reported that
augmentation of p53 expression could decrease the levels of
VEGFA in an ischemia-induced angiogenesis and arterio-
genesis mouse model [25]. However, the roles of p53 in the
regulation of VEGFA have always been controversial. Quite
a few studies have reported that p53 inhibits the expression
of VEGFA in several solid tumors [9, 10]. Other studies have
reported that the expression of p53 is positively related to the
expression of VEGFA in lung cancer and renal carcinoma
[26, 27]. These controversial results may be due to the lack
of differentiation between mutations and nonmutations in
p53. In our study, we have founded that the phosphorylation
levels of p53 oppose the levels of VEGFA in iRFAmodel cells.
After amarogentin treatment, the expression of p53 was
increased, leading to decreases in CD133 and VEGFA. In
addition, the effects of amarogentin on the inhibition of
VEGFA were counteracted by silencing p53 in CD133-

positive cells after iRFA treatment. In addition, the expres-
sion levels of the angiogenesis-related molecules Dll4 and
Notch1 were homodromous to the expression of VEGFA.
Thus, amarogentin suppresses liver cancer growth after iRFA
treatment by affecting the p53-dependent VEGFA/Dll4/-
Notch1 pathway to inhibit tumor angiogenesis. This may
be the mechanism by which amarogentin inhibits liver
cancer angiogenesis after iRFA treatment by killing LCSCs.

In conclusion, our present results suggest that amarogen-
tin affects liver cancer angiogenesis via the p53-dependent
VEGFA/Dll4/Notch1 pathway in CD133-positive cells after
iRFA treatment, implying a novel supplementary strategy
for the treatment of residual liver cancer after iRFA treatment.
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