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Diabetic peripheral neuropathy (DPN) is a common complication of diabetes mellitus (DM). Schwann cell (SC) apoptosis
contributes to the occurrence and development of DPN. Effective drugs to prevent SC apoptosis are required to relieve and
reverse peripheral nerve injury caused by DM. Oltipraz [4-methyl-5-(2-pyrazinyl)-1,2-dithiole-3-thione], an agonist of nuclear
factor erythroid derived-2-related factor 2 (Nrf2), exerts strong effect against oxidative stress in animal models or clinical
patients in certain diseases, including heart failure, acute kidney injury, and liver injury. The aim of the present study was to
determine the effectiveness of oltipraz in preventing SC apoptosis induced by high glucose levels. RSC96 cells pretreated with
oltipraz were cultured in high-glucose medium (50mM glucose) for 24 h, and cells cultured in medium containing 5mM
glucose were used as the control. Flow cytometry was used to evaluate the degree of apoptosis. A Cell Counting Kit-8 assay was
used to assess cell viability. The mitochondrial membrane potential was assessed using JC-1 staining, and reactive oxygen
species (ROS) generation was measured using 20,70-dichlorodihydrofluorescein diacetate staining. In addition, the levels of
malondialdehyde (MDA) and superoxide dismutase (SOD) levels were also evaluated using the corresponding kits. Flow
cytometry was subsequently used to detect apoptosis, and western blotting was used to measure the expression levels of nuclear
factor erythroid derived-2-related factor 2 and NADPH quinone oxidoreductase 1. The results showed that high glucose
concentration increased oxidative stress and apoptosis in RSC96 cells. Oltipraz improved cell viability and reduced apoptosis of
RSC96 cells in the high glucose environment. Additionally, oltipraz exhibited a significant antioxidative effect, as shown by the
decrease in MDA levels, increased SOD levels, and reduced ROS generation in RSC96 cells. The results of the present study
suggest that oltipraz exhibits potential as an effective drug for treatment with DPN.

1. Introduction

Diabetes mellitus (DM) is a systemic metabolic disease char-
acterized by high blood glucose levels. DM is the most com-
mon cause of neuropathy worldwide, and up to 50% of all
patients with DM may develop neuropathy [1–3]. Diabetic
peripheral neuropathy (DPN) is a common complication of
DM; ~50% of the patients with DPN are asymptomatic,
whereas others may suffer from complicated symptoms such
as pain, foot ulcers, and paresthesia [4, 5]. DPN severely

affects patients’ quality of life and thus presents a significant
economic burden to patients.

Schwann cells (SCs) are the most common type of glia in
peripheral nerves. SCs ensheath all the axons of the periph-
eral nerves and secrete neurotrophic factors, which help
maintain the structure and function of peripheral nerves
[6, 7]. Increasing evidence has shown that SCs serve an
important role in DPN [8–13]. SC apoptosis induced by a
high glucose environment is thought to be one of the primary
causes of DPN. Increased SC apoptosis was observed in
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diabetic (db/db) mice and diabetic rats treated with strepto-
zotocin [12–15]. A previous study showed that inhibiting
SC apoptosis could alleviate myelin sheath injury and delay
peripheral nerve degeneration in DPN [15–17].

SCs are hypothesized to be an important site of reactive
oxygen species (ROS) generation in peripheral nerves [10].
Hyperglycaemia promotes excessive ROS production in SCs
primarily through the polyol (sorbitol) pathway, the mito-
chondrial electron transport chain, increased production of
advanced glycation end products, NADPH oxidases, and
nitric oxide synthases [18–20]. Excessive ROS levels induced
by hyperglycaemia in SCs can increase intracellular oxidative
stress which results in cell apoptosis, promoting the path-
ological mechanisms underlying peripheral neuropathy
[21, 22]. Preventing oxidative stress in SCs may thus be a
suitable method for preventing apoptosis of SCs.

Oltipraz [4-methyl-5-(2-pyrazinyl)-1,2-dithiole-3-thione]
is an agonist of nuclear factor erythroid derived-2-related
factor 2 (Nrf2), an important transcription factor involved in
regulating the intracellular antioxidant response [23, 24].
Nrf2 functions as an activator of antioxidant response element
(ARE), which is recognized as the cis-element essential for the
basal and inducible expression of several antioxidant genes,
including NADPH quinone oxidoreductase 1 (NQO-1)
[25–27]. Oltipraz and its oxidized metabolites have proven
strong antioxidant effects in animal models or clinical
patients in certain diseases [28–32]. However, it is still
unclear whether oltipraz may reduce apoptosis of SCs
through reducing oxidative stress. The aim of the present
study was to investigate the effect of oltipraz on apoptosis
of SCs induced by high glucose.

2. Materials and Methods

2.1. Cell Culture and Treatment. RSC96 cells, a rat SC line,
was purchased from The Cell Bank of Type Culture Collec-
tion of the Chinese Academy of Sciences. RSC96 cells were
cultured in DMEM (Gibco; Thermo Fisher Scientific, Inc.)
supplemented with 10% FBS (Thermo Fisher Scientific,
Inc.) with 5% CO2 at 37

°C. Cells were trypsinized and subcul-
tured in 6-well plates (5 × 105 cells/well) or 96-well plates
(1 × 104 cells/well) for subsequent experiments. After reach-
ing ~70% confluence, RSC96 cells were cultured in DMEM
supplemented with 10% FBS (5mM glucose; control) or
high-glucose DMEM supplemented with 10% FBS (50mM
glucose) for 24 h. Cells were pretreated with 20μM oltipraz
(Sigma-Aldrich; Merck KGaA) for 24h prior to high glucose
treatment. For the control conditions, 45μM mannitol was
used to match the hyperosmolality of the cells cultured in
the hyperglycemic conditions. The glucose concentrations
and oltipraz concentrations used in the present study were
based on previous studies [15, 31].

2.2. Determination of Cell Viability. The viability of RSC96
cells was assessed using a Cell Counting Kit-8 (CCK-8) assay
(KeyGen Biotech). Briefly, cells were subcultured in 96-well
plates (1 × 104 cells/well). Following high glucose treatment
for 24 h, the cells were incubated with 10μl CCK-8 solution
combined with 100μl serum-free DMEM at 37°C for 2 h.

The absorbance at 450 nm was measured using a microplate
reader (Epoch; BioTek Instruments, Inc.).

2.3. Determination of Mitochondrial Membrane Potential.
JC-1 staining (Beyotime Institute of Biotechnology) was used
to evaluate the mitochondrial membrane potential of RSC96
cells. Cells were washed twice with PBS (KeyGen Biotech)
and incubated with JC-1 working buffer at 37°C for 20min.
The cells were then washed twice with JC-1 staining buffer
and observed under a fluorescence microscope (magnifica-
tion, x100). In addition, the mitochondrial membrane poten-
tial of RSC96 cells was analysed using a BD Accuri C6 Plus
flow cytometer (BD Biosciences) and FlowJo software (version
10.0.7). Green fluorescence was detected in the FL1 channel,
and red fluorescence was detected in the FL2 channel.

2.4. Determination of Cell Apoptosis. RSC96 cell apoptosis
was assessed using Annexin V-fluorescein isothiocyanate
(FITC)/propidium iodide (PI) staining (BD Biosciences).
RSC96 cells were digested with EDTA-free trypsin (Gibco;
Thermo Fisher Scientific, Inc.). Cells were washed twice with
ice-cold PBS and resuspended in 100μl binding buffer. Cells
were incubated with 5μl Annexin V-FITC and 5μl PI for
15min at room temperature in the dark. Apoptosis was ana-
lysed using flow cytometry within 30min of staining.

2.5. Determination of Intracellular ROS. 20,70-Dichlorodihy-
drofluorescein diacetate (DCFH-DA; Sigma-Aldrich; Merck
KGaA) was used to assess intracellular ROS levels in RSC96
cells. Cells were collected and resuspended in 10mM DCFH-
DA solution with serum-free DMEM and incubated at 37°C
for 20min. The cells were then washed three times with
serum-free DMEM to remove extracellular DCFH-DA. Flow
cytometry was used to detect ROS levels with an excitation
wavelength of 488nm and an emission wavelength of 519nm.

2.6. Determination of Malondialdehyde (MDA) and
Superoxide Dismutase (SOD) Levels. A lipid peroxidation
MDA assay kit (Beyotime Institute of Biotechnology) was
used to measure MDA levels, and a WST-8 assay kit
(Beyotime Institute of Biotechnology) was used to detect
SOD levels according to the manufacturer’s protocol. Briefly,
cell lysates were incubated with working solution for 30min
at 37°C. Absorbance was measured at 450nm for SOD and
at 523nm for MDA using a microplate reader. Total protein
concentration was measured using a bicinchoninic acid
(BCA) protein assay kit (Thermo Fisher Scientific, Inc.) and
was used to normalize the MDA and SOD levels.
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Figure 1: The structural formula of oltipraz.
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2.7. Western Blot Assay.Western blotting was used to eval-
uate the expression levels of Nrf2 and NQO1. After 24 h of
treatment, total protein was extracted from RSC96 cells
using radioimmunoprecipitation assay buffer (Sigma-Aldrich;
Merck KGaA). The samples were sonicated for 10 sec. Follow-
ing centrifugation at 2,000 × g for 15min at 4°C, protein con-
centrations were measured using a BCA protein assay kit.
Total protein (20μg per sample) was separated by SDS-
PAGE on a 12% gel and subsequently transferred to a nitrocel-
lulose membrane (EMD Millipore). The membranes were
incubated overnight at 4°C with the following antibodies:
Anti-Nrf2 (1 : 1,000; cat. no. 12721; Cell Signalling Technology
Inc.), anti-NQO1 (1 : 1,000; cat. no. ab80588; Abcam), or anti-
β-actin (1 : 1,000; cat. no. 4970; Cell Signalling Technology,
Inc.). Membranes were washed with TSB-Tween (0.05%) for
30min and incubated with an anti-rabbit secondary antibody
(1 : 5,000; cat. no. 7074; Cell Signaling Technology, Inc.) for
2h at room temperature. Enhanced chemiluminescence Plus
(Tanon Science and Technology Co., Ltd.) was used to visualize
the protein bands. Densitometry analysis was performed using
ImageJ software (version 1.8.0; National Institutes of Health).

2.8. Statistical Analysis. Each experiment was independently
performed at least three times. Data are expressed as the
mean ± standard deviation. Statistical analysis was performed

using SPSS software (version 20.0; IBM Corp.). Statistical
comparisons among different groups were performed using
one-way ANOVA followed by Bonferroni’s multiple compar-
ison test. P < 0:05 was considered to indicate a statistically
significant difference.

3. Results

3.1. Oltipraz Ameliorates High Glucose Induced RSC96 Cell
Injury. The structural formula of oltipraz was shown in
Figure 1. A CCK8 assay was used to determine the viability
of RSC96 cells. The results showed that 50mM high glucose
reduced the viability of RSC96 cells (P < 0:01), and treatment
with Oltipraz significantly increased cell viability in response
to high glucose conditions (P < 0:01) (Figure 2(c)).

Depolarized mitochondrial membrane potential is
considered a primary marker of early cell apoptosis. JC-1
staining was used to evaluate the mitochondrial membrane
potential of RSC96 cells. The control group showed red
fluorescence whereas the cells incubated in high-glucose
showed increased green fluorescence when observed under
the fluorescence microscope, suggesting that high-glucose
conditions depolarized the mitochondrial membrane poten-
tial in RSC96 cells. Green fluorescence was decreased in the
oltipraz-treated cells compared with the cells in the high-
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Figure 2: Flow cytometry was used to detect apoptosis of RSC96 cells. (a) Representative flow cytometry histograms. (b) Apoptotic rate of
RSC96 cells in the different groups. The apoptotic rate in the high-glucose treatment group was significantly increased compared with the
control group. Oltipraz reduced the apoptotic rate compared with high-glucose treatment alone. (c) Cell viability in the different groups
after 24 h of treatment. Significant differences were observed among all groups in apoptosis rate and cell viability (P < 0:01, one-way
ANOVA). ∗∗P < 0:01.
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glucose group (Figure 3(a)). Flow cytometry analysis also
showed that the red/green fluorescence ratio in the oltipraz-
treated cells was higher compared with the high-glucose group
(P < 0:01), suggesting that oltipraz protected RSC96 cells
against glucose-induced mitochondrial damage (Figure 3(b)).

Annexin V/PI staining was subsequently used to investi-
gate RSC96 cell apoptosis (Figure 2(a)). Flow cytometry anal-
ysis showed that the apoptotic rate in the high-glucose group
was significantly increased compared with the control group
(P < 0:01), and oltipraz treatment significantly reduced apo-
ptosis compared with the high-glucose group (P < 0:01), indi-
cating that oltipraz protected against apoptosis induced by
high glucose in RSC96 cells (Figure 2(b)). Mannitol was used
to normalize the hyperosmolality, and the results showed that
hyperosmolality did not affect cell viability or apoptosis.

3.2. Oltipraz Inhibits ROS Generation. After 24 h of treat-
ment, DCFH-DA staining was used to measure the ROS
levels of RSC96 cells in different groups (Figure 4(a)). Flow
cytometry analysis showed that the proportion of positively
stained cells in the high-glucose group was significantly
higher compared with the control group (P < 0:01). Oltipraz
treatment reduced the proportion of positively stain cells in

the high glucose-treated cells compared with high-glucose
treatment alone (P < 0:01). Mannitol did not affect ROS pro-
duction (Figure 4(b)). The results demonstrated that oltipraz
effectively prevented excessive ROS generation as a result of
the high glucose conditions.

3.3. Oltipraz Increases SOD Levels and Decreases MDA Levels.
A lipid peroxidation MDA assay kit was used to measure
MDA levels and a WST-8 assay was used to assess SOD
levels. The results showed that high glucose conditions
increased MDA levels and decreased SOD levels in RSC96
cells (Figures 4(c) and 4(d); P < 0:01). Compared with high-
glucose treatment alone, oltipraz treatment significantly
reduced MDA levels and increased SOD levels (P < 0:01).
There was no significant difference between the mannitol
group and the control group. The lower levels of MDA and
higher levels of SOD in the oltipraz-treated cells suggesting
that oltipraz protected RSC96 cells from oxidative stress.

3.4. Oltipraz Treatment Increases the Expression of Nrf2 and
NQO1.Western blotting was used to measure the expression
levels of Nrf2 and NQO1 in RSC96 cells in the four groups.
Western blot analysis showed that in the oltipraz groups,
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Figure 3: JC-1 staining was used to detect cell apoptosis. (a) Fluorescence microscopy showed that the mitochondrial membrane potential of
RSC96 cells was decreased (green fluorescence) in the high-glucose group compared with the control group. Oltipraz prevented
mitochondrial damage as a result of treatment with high glucose. (b) Flow cytometry analysis showed that the red/green fluorescence ratio
of cells in the high-glucose group was higher compared with the control group. Oltipraz treatment significantly increased the red/green
fluorescence ratio compared with the high-glucose group. Scale bar, 50 μm. Significant differences were observed among all groups
(P < 0:01, one-way ANOVA). ∗∗P < 0:01.
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the expression levels of Nrf2 and NQO1 were significantly
increased compared with the high glucose group (P < 0:01).
There was no significant difference observed between the
mannitol group and the control group (Figure 5). The results
show that oltipraz treatment significantly increased the
expression of Nrf2 and the downstream molecule NQO1,
and thus exerted a potential antioxidant effect.

4. Discussion

Previous studies have demonstrated that apoptosis of SCs
induced by high glucose contributes to the development of
DPN [12–15]. Effective drugs to prevent apoptosis of SCs
are important for relieving and reversing peripheral nerve
injury caused by DM. The present study showed that oltipraz
effectively prevented oxidative stress caused by high glucose,
and thus reduced SC apoptosis. Oltipraz treatment decreased
MDA levels, increased SOD levels, reversed excessive ROS
generation in SCs incubated with high glucose, and pro-
tected SCs from mitochondrial damage. Oltipraz treatment
increased the expression of Nrf2 and the downstream mol-
ecule NQO1 in SCs incubated in a high-glucose environ-
ment, and this may underlie the beneficial antioxidant
effects of oltipraz.

Peripheral neuropathy is the most common complication
of diabetes, with a prevalence of up to 50% in diabetic
patients [2–5]. Several drugs have been reported to be
less effective, such as oxcarbazepine and acetyl L-carnitine
[33–35]. Therefore, we still need to find more effective treat-
ments. Although the pathogenesis of DPN is not fully under-
stood, increasing evidence has shown that SC injury is one of
the characteristics of DPN [8–13]. Oxidative stress induced
by high glucose conditions in DM is a primary cause of tissue
damage. SCs are considered an important producer of ROS.
Excessive ROS levels caused by high glucose levels result in
mitochondrial damage and apoptosis in SCs, affecting the
protective effect and nerve repair function of SCs [9]. In addi-
tion, SC interactions with other tissues, including axons and
microvessels are disrupted, which contribute to the occur-
rence and development of DPN [10]. Therefore, preventing
oxidative stress in SCs in a high glucose environment, and
further preventing the excessive apoptosis of SCs, may be
an effective method for treating DPN.

Nrf2 is a transcription factor that controls the basal and
induced expression of a range of antioxidant enzymes. The
Nrf2 signalling system involves interacting proteins and
regulatory molecules to counter oxidative stress. Studies have
reported that Nrf2 has an antioxidant effect through
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Figure 4: DCFH-DA staining was used to detect RSC96 cell apoptosis. (a) Representative flow cytometry histograms. (b) Flow cytometry
analysis showed that high glucose levels significantly increased ROS generation, and oltipraz treatment reduced excessive ROS generation.
(c) MDA levels of RSC96 cells in the different groups. (d) SOD levels of RSC96 cells in the different groups. Significant differences were
observed among all groups in levels of ROS, MDA, and SOD (P < 0:01, one-way ANOVA). ∗∗P < 0:01. DCFH-DA: 20,70-
dichlorodihydrofluorescein diacetate.
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inducing expression of the NQO1 isoenzyme [25, 26]. Olti-
praz activates Nrf2 and subsequently increases the expression
of genes encoding antioxidants. Oltipraz has been shown to be
effective in animalmodels of certain diseases due to its antiox-
idant properties, including heart failure, acute kidney injury,
and liver injury [30–32]. Therefore, oltipraz may potentially
inhibit SC apoptosis by preventing oxidative stress.

The present study demonstrated that high glucose-
induced oxidative stress promoted RSC96 cell apoptosis. To
mimic hyperglycemia, 50mM glucose was used in the high-
glucose group, and 5mM glucose was used as the control.
Mannitol was used to normalize the hyperosmolality of
hyperglycemia. The results showed that high-glucose levels
promoted ROS generation, increased MDA levels, and
decreased SOD levels in SCs, suggesting that high-glucose
conditions induced oxidative stress in SCs. Furthermore,
incubation with high glucose depolarized the mitochondrial
membrane potential, suggesting the presence of mitochon-
drial damage. Oxidative stress results in SC injury, consistent
with the reduced viability and increased apoptosis of SCs
treated with high-glucose in the present study. Oltipraz treat-
ment exhibited a strong antioxidant capacity with low ROS
levels, low MDA levels, and high SOD levels. Mitochondria
are the primary source and target of ROS. Mitochondria are
damaged as a result of oxidative stress, and mitochondrial
damage is used as a marker of cell apoptosis and oxidative
stress [36]. Oltipraz treatment alleviated mitochondrial dam-
age, and thus improved cell viability and prevented cell apo-
ptosis. Western blotting demonstrated that oltipraz increased
Nrf2 and NQO1 protein expression in SCs. Thus, it is
hypothesized that oltipraz prevented oxidative stress through
the activation of the Nrf2/NQO1 signalling pathway.

In conclusion, the present study showed that oltipraz
effectively prevents oxidative stress induced by high glucose,
and thus reduced SC apoptosis through increasing the

expression of Nrf2 and its downstream signalling molecule,
NQO1. However, considering that SCs are not the only type
of cells damaged in DPN, the effectiveness of oltipraz for the
treatment of other types of damaged neural tissues and cells
should be examined. In addition, further experiments
in vivo are required to determine whether oltipraz may effec-
tively relieve the symptoms of DPN. However, the present
study highlights the potential of oltipraz for the treatment
of DPN.
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Figure 5: Western blotting was used to assess the expression levels of Nrf2 and NQO1. (a) Representative western blotting image showing
Nrf2 and NQO1 expressions in SCs. (b) Oltipraz treatment significantly increased the expression levels of Nrf2 and NQO1 compared with
cells incubated in high-glucose conditions without treatment. Significant differences were observed among all groups in Nrf2 and NQO1
expression (P < 0:01, one-way ANOVA). ∗∗P < 0:01. Nrf2: nuclear factor erythroid derived-2-related factor 2; NQO-1: NADPH quinone
oxidoreductase 1.
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