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Bladder cancer (BLCA) is the fifth most common cancer and has the features of low survival rate and high morbidity and mortality.
2e Cancer Genome Atlas (TCGA) is a pool of global gene expression profile and contains huge amounts of cancer genomics data,
which makes it possible to inquire the relationship between gene expression and prognosis of a series of malignant tumors including
BLCA. Immune and stromal cells are two major components of tumor microenvironment (TME) which play an important role in
judging the prognosis of tumor and influencing the progression of malignant, inflammatory, and metabolic disorders. In our study,
we conducted a quantitative analysis of immune and stromal elements based on the ESTIMATE algorithm and thus divided BLCA
cases into high and low groups. 2en the differentially expressed genes closely related to tumor prognosis between groups were
identified and had been shown to correlate with immune response and stromal alterations, which was further confirmed by
functional enrichment analysis and protein-protein interaction networks.We validated those genes through BLCAdates downloaded
from ArrayExpress and thus got the marker genes to predict prognosis of BLCA. Additionally, immune cell infiltration analysis
explored the correlation between the verified genes and immune cells. In conclusion, we identified a series of TME-related genes that
assess the prognosis and explored the interaction between TME and tumor prognosis to guide clinical individualized treatment.

1. Introduction

Bladder cancer is the most commonmalignancy of the urinary
tract, and the diagnostics, treatment, and five-year survival
rates for bladder cancer are largely unchanged since the 1990s
[1]. Approximately 50% of those patients will have a recur-
rence in 2 years after an initial diagnosis and 16–25% will
relapse after transurethral resection [2]. Although its exact
mechanism remains obscure, many studies have shown that
the tumorigenesis and progression of bladder cancer are
closely related to chromosomal anomalies, epigenetic changes,
and genetic polymorphism [3–5], and genetic changes are
obviously involved in its initiation and prognosis [6].
2erefore, there is an urgent need to find an effective method
to predict prognosis and guide clinical treatments of BLCA.

2e tumor microenvironment, which is associated with
tumor progression and metastasis [7, 8], is comprised of

tumor cells and surroundings such as blood vessels, the
extracellular matrix, and other nonmalignant cells such as
tumor-associated macrophages (TAMs), mesenchymal
stem/stromal cells, fibroblasts, pericytes, and immune cells
[9]. Among those nonmalignant cells, stromal cells and
immune cells play an important role in the whole process of
tumors from happening to transferring and have definite
clinical significance for diagnosis and prognosis of tumors.
In the previous studies, an algorithm called ESTIMATE
designed by Yoshihara et al. was used to determine the
expression of certain genes of stromal cells and immune cells
and calculate immune and stromal scores to infer the
fraction of stromal and immune cells in tumor samples and
predict the infiltration of nontumor cells [10, 11]. 2e
previous studies have shown that the ESTIMATE algorithm
based on big data is demonstrated effective in numerous
cancer tissues, such as prostate cancer [12], breast cancer
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[13], colon cancer [14], and glioblastoma [11]. 2ough
widely applied in varieties of cancer, prognostic evaluation
of the ESTIMATE algorithm on BLCA has not yet been
completely clarified. 2erefore, it provides new opportu-
nities to identify gene expression profile associated with
BLCA prognosis. In our study, we took advantage of BLCA
cohorts downloaded from TCGA database and ESTIMATE
algorithm-derived stromal and immune scores to predict the
prognosis of BLCA by a list of microenvironment-associated
genes. Subsequently, another cohort of BLCA from
ArrayExpress proved the prognostic value of those genes. To
further elucidate related immunological mechanisms, we
explored the role of the immune microenvironment in the
development and prognosis of BLCA by immune cell in-
filtration analysis.

2. Materials and Methods

2.1. Data Source and Preprocessing. In this study, gene ex-
pression profiles of and clinical information of 412 patients
with bladder cancer were acquired from the TCGA data
portal (https://tcga-data.nci.nih.gov/tcga/). 2e ESTIMATE
algorithm was used to calculate the stromal and immune
scores and divided the sample patients into two high and low
groups separately in accordance with the scores. In order to
validate genes with prognostic significance, we downloaded
a data set named E-GEOD-13507 containing microarray
gene expression data associated with disease prognosis of
bladder cancer from ArrayExpress (https://www.ebi.ac.uk/
arrayexpress/). Tumor Immune Estimation Resource
(TIMER) (https://cistrome.shinyapps.io/timer/) was used to
analyze the correlation between DEGs expression and im-
mune cell infiltration level.

2.2. Identification of Differentially Expressed Genes (DEGs).
According to the optimal cutoff value of immune/stromal
scores through X-title software [15], we divided the patients
into low and high score groups. 2e DEGs between low and
high score groups were analyzed with package edgeR [16] in
R language (version 3.5.3). 2e adjusted P value <0.05 and |
log2FC|> 1.5 were set as the cutoff criteria.

2.3.HeatmapsandClusteringAnalysis. 2e packages ggplot2
and pheatmap were used for the generation of heatmaps [17]
and clustering analysis [18].

2.4. Function and Pathway Enrichment Analysis of DEGs.
To further explore the biological processes and signal
pathways of those DEGs, we performed functional analyses.
Gene ontology (GO) gathers information on molecular
function (MF), biological processes (BP), and cellular
components (CC). Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) pathway analysis was used to excavate re-
markable pathways associated with DEGs with prognostic
significance. GO and KEGGwere performed by R package of
clusterProfiler [19]. False discovery rate (FDR)<0.05 was
considered to be statistically significant.

2.5. Protein-Protein Interactions (PPIs) Network
Construction. 2e DEGs were employed to construct PPIs
network by Cytoscape software [20]. 2e related data were
downloaded from STRING database [21] to construct PPI
network; then hub genes were obtained.2e protein product
of DEGs serves as a node in the PPI network, and the
interplayed protein numbers reflected the degree of inter-
action among proteins.

2.6. Survival Curves. 2e relationship between DEGs and
survival was explored by plotting the Kaplan–Meier curve
using R. 2e optimal cutoff value of each DEGs was de-
termined by X-title software. P< 0.05 was set as the cutoff
value for selecting survival-related DEGs.

3. Result

3.1. Immune Scores and Stromal Scores Are Remarkably As-
sociated with Smoking, Race, and Bladder Tumor Staging.
We obtained biological omics data and clinical information
of 412 patients with bladder cancer from TCGA data portal.
Among those patients, 108 (26.2%) patients were female and
304 (73.8%) cases were male. Pathological data included 2
(0.5%) cases of stage I, 131 (31.8%) were stage II, 141 (34.2%)
were stage III, 136 (33.0%) were stage IV, and 2 (0.5%) were
not reported. On the basis of ESTIMATE algorithm, im-
mune scores varied from − 2023.05 to 3085.28, and stromal
scores ranged from − 2628.68 to 2175.37, respectively. 2e
ESTIMATE algorithm provided us an opportunity to deeply
probe into the complex relationship between the immune
and stromal scores and the clinical characteristics. 2e
stromal and immune scores showed a rising trend in general
along with increasing duration of cigarette smoking
(Figures 1(a) and 1(b)). In addition, the White race had the
highest averages of immune and stromal scores, followed by
that of Blacks and Asians (Figures 1(c) and 1(d)). As the
stage evolved, stromal scores increased gradually
(Figure 1(f )), indicating that stromal scores are useful in-
dexes to reflect the malignancy of BLCA. However, the
scatter plot shows that there is no significant correlation
between the degrees of malignancy and immune scores
(Figure 1(e)).

According to stromal and immune scores, we divided the
BLCA cases into two halves, which are the low levels and the
high level, and analyzed potential relationships between
scores and survival probability. Kaplan–Meier survival
curves (Figure 1(h)) showed that survival probability of cases
in the low immune group was lower than the cases in the
high score group, although it was not statistically significant.
However, lower stromal scores groups showed higher sur-
vival probability compared to patients with higher stromal
scores (Figure 1(h)).

3.2. Differentially ExpressedGenesWereObtained through the
Comparison between High and Low Immune/Stromal Score
Groups and Used for Further Analysis. By analyzing Affy-
metrix microarray data of all 412 BLCA cases downloaded
from TCGA database, we obtained the differentially
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Figure 1: Immune scores and stromal scores are associated with smoking, race, the malignancy, and the survival probability. (A, B)
Distribution of immune scores (a) and stromal scores (b) of different duration of cigarette smoking (n� 405, P< 0.05). (C, D) Distribution of
immune scores (c) and stromal scores (d) for Asian, Black, and White race (n� 405, P< 0.05). (E, F) Distribution of immune scores (e)
(n� 405, P � 0.1471) and stromal scores (f ) (n� 405, P< 0.05) of different degrees of malignancy cases. (G, H) Kaplan–Meier curves for
survival probability of bladder cancer patients with low versus high immune scores (g) (n� 405, P � 0.07) and stromal scores (h) (n� 405,
P< 0.05).
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expressed genes (DEGs) through the consolidation and
analysis of different gene expression profiles between high
and low groups of immune scores and/or stromal scores.
Heatmaps showed distinct gene expression profiles of cases,
which belonged to high or low immune/stromal scores
groups. Genes with higher expression are shown in red and
those with lower expression are in green (Figures 2(a) and
2(b)). As the Venn diagrams shows, 483 genes were upre-
gulated, and 1039 genes were downregulated on the basis of
stromal scores. Likewise, 834 genes were upregulated, and
849 genes were downregulated on the basis of immune
scores. 2e intersection of stromal and immune group was
chosen for further analysis, including 376 coupregulated
genes and 492 codownregulated genes (Figures 2(c) and
2(d)).

We further assessed the potential function of the DEGs
by functional enrichment analysis of the co-upregulated/
downregulated 868 genes. Molecular function (MF), bio-
logical processes (BP), and cellular components (CC) were
explored separately based on gene ontology. And the major
relevant terms include extracellular matrices, lymphocyte
activation, adaptive immune response, leukocyte activation
involved in immune response, immunoglobulin binding,
and cytokine receptor activity, which provides further evi-
dence that those DEGs were closely related to TME and
immune response.

3.3. Excavation of DEGs with Prognostic Value. Based on
TCGA database, we constructed survival curve to explore
the correlation between DEGs and overall survival. With
univariate Cox, survival analysis of 868 DEGs was per-
formed, and 139 of them had statistical significance
(P< 0.05). Some genes are shown in Figure 3.2e expression
level of some genes was positively correlated with the overall
survival, while some were negative.

3.4. >e Value of >ose DEGs Related to Prognosis Was In-
vestigated at the Level of Protein. Since protein was the
faithful executor of physiological function of the body, we
further explored the underlying causal relationships between
genes by protein-protein interaction (PPI) networks.2e top
four remarkable modules (Figure 4) of PPI networks, which
were referred to as CD27, TBX21, SLC39A5, and HMHB1
modules for simplicity, were chosen for subsequent as-
sessment. In the CD27 module, the nodes of CD27, PDCD1,
GZMA, and SH2D1A had the closest and most extensive
contacts with other members of the module. TBX21 module
was made up of three immune-related genes, and SLC39A5
module contained several membrane transporter genes. For
HMHB1 modules, HMHB1, as one of human minor his-
tocompatibility antigens, had the highest degree values and
played a major role in the induction of cytotoxic
T lymphocyte (CTL) reactivity after allotransplantation.

3.5. Functional and Pathway Enrichment Analysis of DEGs
Associated with Prognosis. In keeping with PPI network
analysis, GO enrichment analysis showed that these DEGs

were closely related to stromal elements and immune re-
sponse. A total of 10 GO terms of cellular component, 20 GO
terms of biological process, and 13 GO terms of molecular
function were significantly enriched. Important GO terms
included apical/basolateral plasma membrane and collagen-
containing extracellular matrix (Figure 5(a)), cellular de-
fense response and T cell activation (Figure 5(b)), and BMP
binding and collagen binding (Figure 5(c)). Besides, KEGG
pathway enrichment analysis was carried, and the result
indicated that a set of pathways was enriched and associated
with microenvironment and immune response, such as
natural killer cell mediated cytotoxicity and cell adhesion
molecules (CAMs).

3.6. Prognostic Value of DEGs Was Verified through Another
BLCACohort fromArrayExpress Database. We downloaded
and analyzed a data set, named E-GEOD-13507, from
ArrayExpress to see if DEGs with prognostic value were
applicable for other BLCA cases. 2e data set was built to
study the expression of prognosis-related genes and in-
cluded 165 primary bladder cancer samples. Finally, a total
of 14 genes had proven to be enormously valuable for
predicting prognosis of BLCA. Part of the result was shown
in Figure 6. 2e following is all genes: AADACL2,
MOGAT2, COMP, KRTAP5-11, FAM57B, DSG1,
TNFAIP6, SLC26A5, SPINK4, KRT1, SLC17A1, ATP12A,
ERN2, and CTSE.

3.7. Immune Cell Infiltration Analysis Revealed the Correla-
tions between the Identified DEGs Expression and
Immunocyte. To further reveal the role of the immune
microenvironment in the development and prognosis of
BLCA, we analyzed the correlation between the identified
DEGs and immunocyte infiltration. As Figure 7 showed, the
expressions of mainly identified DEGs (TNFAIP6, CTSE,
COMP, and DSG1) were separately in positive or negative
relation to the infiltration level of different immune cells,
indicating that the identified DEGs modulated immunologic
microenvironment by influencing immune cell infiltration.

4. Discussion

Accumulating evidence shows that various components of
TME, such as immune cells, soluble factors, and altered
extracellular matrix, contribute actively to cancer progres-
sion, while linkage between TME-associated genes and
cancer prognosis has not been fully elucidated. Analysis of
the tumor microenvironment in patients with a variety of
solid tumors has revealed that most tumor cells express
antigens that can mediate recognition by host CD8+ T cells
and must have evaded antitumor immune responses to grow
progressively [22]. Additionally, the spontaneous T cell
infiltrate of several solid tumor histologies, including breast
cancer [23], renal cell carcinoma, melanoma [24], ovarian
cancer, and gastrointestinal stromal tumors [25], may have
significant prognostic value. Meanwhile, solid tumor stroma
consists of fibroblasts, macrophages, and vascular endo-
thelial cells, with variable amounts of extracellular matrix, all

4 BioMed Research International



Immune score
3

0

–3

High
Low

(a)

Stromal score
3

0

–3

High
Low

(b)

DEGs immune DEGs stromal

458
(48.7%)

376
(40%)

107
(11.4%)

(c)

DEGs immune DEGs stromal

357
(25.6%)

492
(35.2%)

547
(39.2%)

(d)

0 5 10 15 20
–log10 (P)

GO:0001533: Cornified envelope
GO:0045121: Membrane raft
GO:0001891: Phagocytic cup
GO:0031225: Anchored component of membrane
GO:0009898: Cytoplasmic side of plasma membrane
GO:0016324: Apical plasma membrane
GO:0030139: Endocytic vesicle
GO:0099056: Integral component of presynaptic membrane
GO:0035580: Specific granule lumen
GO:0098636: Protein complex involved in cell adhesion
GO:0005771: Multivesicular body
GO:0005764: lysosome
GO:0044297: Cell body
GO:0016323: Basolateral plasma membrane
GO:0060205: Cytoplasmic vesicle lumen
GO:0001772: Immunological synapse
GO:0098797: Plasma membrane protein complex
GO:0031012: Extracellular matrix
GO:0070820: Tertiary granule
GO:0098552: Side of membrane

Cellular component

(e)

GO:0006968: Cellular defense response
GO:0007200: Phospholipase C-activating G protein-coupled receptor signaling pathway
GO:0070374: Positive regulation of ERK1 and ERK2 cascade
GO:0001906: Cell killing
GO:0032729: Positive regulation of interferon-gamma production
GO:0006909: Phagocytosis
GO:0032103: Positive regulation of response to external stimulus
GO:0042113: B cell activation
GO:0072507: Divalent inorganic cation homeostasis
GO:0019221: Cytokine-mediated signaling pathway
GO:0050727: Regulation of inflammatory response
GO:0046631: Alpha-beta T cell activation
GO:0006959: Humoral immune response
GO:0050900: Leukocyte migration
GO:0001816: Cytokine production
GO:0002253: activation of immune response
GO:0009617: Response to bacterium
GO:0002366: Leukocyte activation involved in immune response
GO:0002250: Adaptive immune response
GO:0046649: Lymphocyte activation

Biological process

10 20 30 400
–log10 (P)

(f )

Figure 2: Continued.

BioMed Research International 5



0 2 4 6 8 10 12 14 16
–log10 (P)

GO:0005540: Hyaluronic acid binding
GO:0001871: Pattern binding
GO:0001608: G protein-coupled nucleotide receptor activity
GO:0008289: Lipid binding
GO:0038187: Pattern recognition receptor activity
GO:0031735: CCR10 chemokine receptor binding
GO:0033691: Sialic acid binding
GO:0001540: Amyloid-beta binding
GO:0001848: Complement binding
GO:0005509: Calcium ion binding
GO:0030414: Peptidase inhibitor activity
GO:0005539: Glycosaminoglycan binding
GO:0015267: Channel activity
GO:0043177: Organic acid binding
GO:0001618: Virus receptor activity
GO:0001664: G protein-coupled receptor binding
GO:0004896: Cytokine receptor activity
GO:0019865: Immunoglobulin binding
GO:0008528: G protein-coupled peptide receptor activity
GO:0030246: Carbohydrate binding

Molecular function

(g)

Figure 2: Gene expression profile is of great relevance to immune scores and stromal scores in BLCA. (a, b) Heatmaps show that dif-
ferentially expressed genes profiles between high and low immune scores/stromal scores groups. Red represents higher expression genes,
green represents lower expression genes, black represents same expression genes (fold change >1.5 and P< 0.05). (c, d) Venn diagrams show
the number of coupregulated (c) or codownregulated (d) DEGs in immune and stromal score groups. (e, f, and g)2e major relevant terms.
P< 0.05.

P < 0.0001

Strata
CTSE = high
CTSE = low

80 26 12 3 2 1
326 71 26 9 2 1

Number at risk

0.00

0.25

0.50

0.75

1.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

1000 2000 3000 4000 50000
Time

CTSE = low
CTSE = high

St
ra

ta

1000 2000 3000 4000 50000
Time

(a)

Strata
ERN2 = high
ERN2 = low

P = 0.00015

60 16 8 1 0 0
346 81 30 11 4 2

Number at risk

0.00

0.25

0.50

0.75

1.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

1000 2000 3000 4000 50000
Time

ERN2 = low
ERN2 = high

St
ra

ta

1000 2000 3000 4000 50000
Time

(b)

Strata
FAM57B = high
FAM57B = low

P < 0.0001

355 92 38 12 4 2
51 5 0 0 0 0

Number at risk

0.00

0.25

0.50

0.75

1.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

1000 2000 3000 4000 50000
Time

FAM57B = low
FAM57B = high

St
ra

ta

1000 2000 3000 4000 50000
Time

(c)

Strata
KRTAP5-11 = high
KRTAP5-11 = low

P = 0.018

58 10 3 0 0 0
348 87 35 12 4 2

Number at risk

0.00

0.25

0.50

0.75

1.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

1000 2000 3000 4000 50000
Time

1000 2000 3000 4000 50000
Time

KRTAP5-11 = low
KRTAP5-11 = high

St
ra

ta

(d)

Figure 3: Continued.
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of which contribute as a support structure for tumor growth.
And in addition to significantly regulating tumor growth,
these components can impair host immune responses and
likely contribute to the degree of immune cell infiltration
[26]. Specific to BLCA, although previous findings dem-
onstrated that some immune cells, such as CD3+ tumor-
infiltrating lymphocytes (TILs), CD8+ cytotoxic T cells
(CTLs), CD68+ TAM [27], and foxp+ regulatory T cells
(Treg) [28], and stromal cells play a vital role in the de-
velopment of BLCA, few studies have integrated multiple
immunological factors into single scores to analyze the
significance of immune/stroma-related genes in estimation
of the prognosis of BLCA. We downloaded and analyzed
microarray gene expression data from TCGA and extracted
139 prognostic DEGs, which were correlated with the
stromal element and immune response. To verify whether
those DEGs could be applied to other data sets, we took
advantage of data from ArrayExpress, a repository to archive
functional genomics data from microarray and sequencing

platforms, and validated 14 genes with prognostic value in
BLCA patients.

Firstly, we analyzed 868 differentially expressed genes
extracted from the intersection of stromal and immune score
groups. For further understanding of functions involved for
the differentially expressed genes, GO analysis was per-
formed and showed that those genes were correlated with
stromal element and immune response. Growing evidences
have shown that the TME not only influences the ability of
growth, invasion, and transfer of tumor cells but also has
profound effects on therapeutic efficacy [29]. 2e current
study supported the conclusion that tumor stroma and
immune response play a pivotal role in TME-mediated
tumor progression.

Afterwards, survival analysis was carried out to dem-
onstrate that 139 of those DEGs had the clinical value of
statistically predicting survival probability. Subsequently, we
made up 4 modules to comprehend protein-protein inter-
actions and found out that those modules were associated
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Figure 3: Association between DEGs expressions and overall survival in TCGA. Kaplan–Meier curves for OS (d) of bladder cancer patients
with low versus high immune/stromal scores were made to select the DEGs. P< 0.05.
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Figure 7: Correlation analysis between the expressions of mainly identified DEGs (TNFAIP6, CTSE, COMP, and DSG1) and infiltration
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with immune response or transporter. Furthermore, it has
been confirmed that the nodes with higher degree values,
such as CD27, TBX21, and HMHB1, have a stronger effect
on immune cells proliferation and production and induction
of cytokines [30–33]. Besides, the SLC39A5, encoding a zinc
transporter, is crucial to the maintenance of TME homeo-
stasis because zinc is a critical component of many enzymes
involved in hypoxia, angiogenesis, cell proliferation, and
cancer metastasis [34]. PPI analysis further strengthens the
evidence linking DEGs with prognosis.

To prove the effectiveness of prognostic significance of
those DEGs, we analyzed a data set from ArrayExpress,
containing gene expression data of 165 primary bladder
cancer samples, to see if prognostic significance of the
identified DEGs is applicable for other BLCA cases and
identified that 14 genes were associated with BLCA prog-
nosis. Besides, studies in the past found that the expression
of two genes (TNFAIP6 and CTSE) among those was sig-
nificantly related to pathological features and strongly as-
sociated with overall survival [35, 36], suggesting that the
selected genes from TCGA and ArrayExpress database based
on the algorithm have important clinical value in the pro-
motion of estimating prognosis of bladder cancer. But until
now, no study has shown that the remaining 12 genes have
notable correlation with BLCA prognosis and could act as a
potential prognostic biomarker and therapeutic target in
BLCA.

We have paid particular attention to COMP and DSG1
among the remaining genes. As a crucial component of
ECM, COMP has the capacity to regulate activation of the
complement system and thus innate immunity [37]. In
addition, high expression of COMP protects the cells from
endoplasmic reticulum (ER) stress, and cells overexpressing
the COMP gene undergo a metabolic switch known as the
Warburg effect [38, 39]. Furthermore, high COMP ex-
pression plays a crucial role in regulating cellular meta-
bolism by blocking intracellular Ca2+ signaling and thus
blocking the apoptosis process of the cells [39]. Previous
studies have shown that COMP expression in breast cancer
cells is significantly associated with poor prognosis [40].
Moreover, COMP expression was also found in colorectal,
gastric, lung, ovarian, and pancreatic cancers as shown in the
analysis of expression data using the Oncomine database
[38]. DSG1, a member of the desmoglein protein subfamily
[41], plays a crucial role in cell adhesion [42], whose dys-
function promotes the process of epithelial-mesenchymal
transition (EMT) and thus the invasion and metastasis of
cancer cells [43, 44]. It has been shown that, in a variety of
tumors such as skin, head and neck, gastric, colorectal,
bladder, breast, prostate, cervical, and endometrial cancers,
desmosomal proteins were downregulated or even lost,
which was associated with poor clinical outcome [45].

One of the basic challenges in cancer is to detect the
regulators of gene expression changes in tumorigenesis and
the correlation between that and prognosis. 2e different
intracellular signal transduction pathways of low-grade and
high-grade tumor heterogeneity in tumor progression and
postoperative recurrence are some of the unique charac-
teristics of bladder cancer that contribute to the challenges of

evaluating the tumor prognosis [46, 47]. 2e Cancer Ge-
nome Atlas (TCGA) and other large-scale collaborative
initiatives collect the comprehensive molecular character-
ization of multiple cancer types and patients’ clinical data
and thus provide opportunities for the studies of the ge-
nomic and molecular characterization of BLCA [48, 49].

2e TME plays a vital role in tumor cell proliferation,
infiltration, and metastasis and can even determine the
extent of malignancy of bladder cancer [50, 51]. 2erefore,
the TME components determined by gene expression
profiles are one of the determining factors in tumor prog-
nosis. In this study, we integrated the gene expression data
associated with extracellular matrix and immune response
and obtained a great deal of DEGs with prognostic signif-
icance to improve the prediction of BLCA clinical outcomes
and explore the interplay between tumor cells and the
microenvironment [29, 52, 53]. Additionally, we analyzed
the correlation between mainly identified DEGs (TNFAIP6,
CTSE, COMP, and DSG1) and immune cell infiltration,
whose result proved that the identified DEGs modulated the
immune microenvironment by influencing the infiltration
level of various immune cells. However, the immune-related
signaling pathways and the precise mechanism of those
genes affecting progression and prognosis of BLCA
remained unknown. In addition to surgical treatment, ad-
juvant chemotherapy (ACT) is considered as a first-line
regimen for advanced or metastatic urothelial bladder
cancer. Previous studies have confirmed that the stromal
immunotypes could serve as a practical predictive tool to
identify pT3 + pT4 patients who would benefit from ACT
and be used as a predictor of upcoming popularity of im-
munotherapy [54]. Accordingly, we could establish an in-
dependent prognostic indicator based on immune and
stromal scores to analyze whether advanced or metastatic
urothelial bladder cancer patients could benefit from ACT
[55]. However, due to our limited level, we have not yet
retrieved a data set with a sufficiently large sample size and
containing ACT information. 2is will also be the focus of
our work in the future.

5. Conclusions

In conclusion, we identified novel TME-related gene bio-
markers using ESTIMATE algorithm based on immune and
stromal scores for predicting clinical outcomes. Besides, we
explored the interaction between TME and tumor prognosis,
guiding the clinical individualized treatment. However,
further studies should be carried out to investigate the
molecular mechanisms of TME-related genes affecting
prognosis.
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[14] M. H. Alonso, S. Aussó, A. Lopez-Doriga et al., “Compre-
hensive analysis of copy number aberrations in microsatellite
stable colon cancer in view of stromal component,” British
Journal of Cancer, vol. 117, no. 3, pp. 421–431, 2017.

[15] R. L. Camp, M. Dolled-Filhart, and D. L. Rimm, “X-tile: a new
bio-informatics tool for biomarker assessment and outcome-
based cut-point optimization,” Clinical Cancer Research,
vol. 10, no. 21, pp. 7252–7259, 2004.

[16] M. D. Robinson, D. J. McCarthy, and G. K. Smyth, “edgeR: a
bioconductor package for differential expression analysis of
digital gene expression data,” Bioinformatics, vol. 26, no. 1,
pp. 139-140, 2010.

[17] Z. Gu, R. Eils, and M. Schlesner, “Complex heatmaps reveal
patterns and correlations in multidimensional genomic data,”
Bioinformatics, vol. 32, no. 18, pp. 2847–2849, 2016.

[18] R. Xu and D. C. Wunsch, “Clustering algorithms in bio-
medical research: a review,” IEEE Reviews in Biomedical
Engineering, vol. 3, pp. 120–154, 2010.

[19] G. Yu, L.-G. Wang, Y. Han, and Q.-Y. He, “clusterProfiler: an
R package for comparing biological themes among gene
clusters,” OMICS: A Journal of Integrative Biology, vol. 16,
no. 5, pp. 284–287, 2012.

[20] P. Shannon, A. Markiel, O. Ozier et al., “Cytoscape: a software
environment for integrated models of biomolecular interac-
tion networks,” Genome Research, vol. 13, no. 11,
pp. 2498–2504, 2003.

[21] D. Szklarczyk, A. L. Gable, D. Lyon et al., “STRING v11:
protein-protein association networks with increased coverage,
supporting functional discovery in genome-wide experi-
mental datasets,” Nucleic Acids Research, vol. 47, no. D1,
pp. D607–D613, 2019.

[22] V. G. Brichard and D. Lejeune, “GSK’s antigen-specific cancer
immunotherapy programme: pilot results leading to Phase III
clinical development,”Vaccine, vol. 25, no. 2, pp. B61–B71, 2007.

[23] B. Kreike, M. van Kouwenhove, H. Horlings et al., “Gene
expression profiling and histopathological characterization of
triple-negative/basal-like breast carcinomas,” Breast Cancer
Research, vol. 9, no. 5, p. R65, 2007.

[24] F. Azimi, R. A. Scolyer, P. Rumcheva et al., “Tumor-
infiltrating lymphocyte grade is an independent predictor of
sentinel lymph node status and survival in patients with
cutaneous melanoma,” Journal of Clinical Oncology, vol. 30,
no. 21, pp. 2678–2683, 2012.

[25] S. Rusakiewicz, M. Semeraro, M. Sarabi et al., “Immune in-
filtrates are prognostic factors in localized gastrointestinal
stromal tumors,” Cancer Research, vol. 73, no. 12, pp. 3499–
3510, 2013.

[26] T. F. Gajewski, H. Schreiber, and Y.-X. Fu, “Innate and
adaptive immune cells in the tumor microenvironment,”
Nature Immunology, vol. 14, no. 10, pp. 1014–1022, 2013.
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D. Heinegård, and A.M. Blom, “Regulation of complement by
cartilage oligomeric matrix protein allows for a novel mo-
lecular diagnostic principle in rheumatoid arthritis,” Arthritis
& Rheumatism, vol. 62, no. 12, pp. 3574–3583, 2010.

[38] A. M. Blom, “2e role of complement inhibitors beyond
controlling inflammation,” Journal of Internal Medicine,
vol. 282, no. 2, pp. 116–128, 2017.

[39] E. Englund, G. Canesin, K. S. Papadakos et al., “Cartilage
oligomeric matrix protein promotes prostate cancer pro-
gression by enhancing invasion and disrupting intracellular
calcium homeostasis,” Oncotarget, vol. 8, no. 58, pp. 98298–
98311, 2017.

[40] E. Englund, M. Bartoschek, B. Reitsma et al., “Cartilage
oligomeric matrix protein contributes to the development and
metastasis of breast cancer,” Oncogene, vol. 35, no. 43,
pp. 5585–5596, 2016.

[41] D. R. Garrod, A. J. Merritt, and Z. Nie, “Desmosomal cad-
herins,” Current Opinion in Cell Biology, vol. 14, no. 5,
pp. 537–545, 2002.

[42] M. D. Kottke, E. Delva, and A. P. Kowalczyk, “2e desmo-
some: cell science lessons from human diseases,” Journal of
Cell Science, vol. 119, no. Pt 5, pp. 797–806, 2006.

[43] S. Valastyan and R. A. Weinberg, “Tumor metastasis: mo-
lecular insights and evolving paradigms,” Cell, vol. 147, no. 2,
pp. 275–292, 2011.

[44] J.-M. Peng, R. Bera, C.-Y. Chiou et al., “Actin cytoskeleton
remodeling drives epithelial-mesenchymal transition for
hepatoma invasion and metastasis in mice,” Hepatology,
vol. 67, no. 6, pp. 2226–2243, 2018.

[45] R. L. Dusek and L. D. Attardi, “Desmosomes: new perpe-
trators in tumour suppression,” Nature Reviews Cancer,
vol. 11, no. 5, pp. 317–323, 2011.

[46] J. Leal, R. Luengo-Fernandez, R. Sullivan, and J. A. Witjes,
“Economic burden of bladder cancer across the European
union,” European Urology, vol. 69, no. 3, pp. 438–447, 2016.

[47] D. S. Morera, M. S. Hennig, A. Talukder et al., “Hyaluronic
acid family in bladder cancer: potential prognostic biomarkers
and therapeutic targets,” British Journal of Cancer, vol. 117,
no. 10, pp. 1507–1517, 2017.

[48] D. S. Chandrashekar, B. Bashel, S. A. H. Balasubramanya et al.,
“UALCAN: a portal for facilitating tumor subgroup gene
expression and survival analyses,” Neoplasia, vol. 19, no. 8,
pp. 649–658, 2017.

[49] K. Tomczak, P. Czerwinska, and M. Wiznerowicz, “2e
Cancer Genome Atlas (TCGA): an immeasurable source of
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