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Background. Colorectal cancer (CRC) is the second most common cause of cancer death in the United States and the third most
common cancer globally. The incidence of CRC tends to be younger, and we urgently need a reliable prognostic assessment
strategy. Methods. Protein expression profile and clinical information of 390 CRC patients/samples were downloaded from the
TCPA and TCGA database, respectively. The Kaplan-Meier, Cox regression, and Pearson correlation analysis were applied in
this study. Results. Based on the TCPA and TCGA database, we screened 6 hub proteins and first constructed protein risk
signature, all of which were significantly associated with CRC patients’ overall survival (OS). The risk score was an independent
prognostic factor and significantly related with the size of the tumor in situ (T). 6 hub proteins were differentially expressed in
cancer and normal tissues and in different CRC stages, which were validated at the ONCOMINE database. Next, 40 coexpressed
proteins of 6 hub proteins were extracted from the TCPA database. In the protein-protein interaction (PPI) network, HER1,
HER2, and CTNNB1 were at the center. Function enrichment analysis illustrated that 46 proteins were mainly involved in the
EGFR (HER1) tyrosine kinase inhibitor resistance pathway. Conclusion. Studies indicated that 6 hub proteins might be
considered as new targets for CRC therapies, and the protein risk signature can be used to predict the OS of CRC patients.

1. Introduction

According to the 2020 Colorectal Cancer Statistics, colorectal
cancer (CRC) is the second most common cancer death in
the United States [1]. The latest report points out that the
age of onset of CRC is getting younger, with the median
age dropping from 72 years in 2001-2002 to 66 years in
2015-2016 [2]. Especially for young CRC patients, we need
tailored clinical management strategies, recognize the
patient’s risk in early diagnosis, reduce the side effects of
treatment in low-risk patients, and perform adjuvant chemo-
radiotherapy other than surgery in high-risk patients.

Since the completion of the Human Genome Project and
the rise of microarray profiling and genome-wide sequenc-
ing, increasing studies have predicted the survival of cancer
patients at the genetic level [3–5]. Based on the Cancer

Genome Atlas (TCGA) and the Gene Expression Omnibus
(GEO), hundreds of differentially expressed, metastasis-
related genes and survival-related genes have been identified
in CRC tissues and cell lines [6–8]. Compared with utilizing a
single gene to predict survival, the risk signatures or models
constructed by multiple genes can predict the overall survival
(OS) and disease-free survival more accurately [9]. Unfortu-
nately, protein risk signature has never been constructed to
predict the prognosis of CRC patients.

The Cancer Proteome Atlas (TCPA) database provided
the protein expression profile by integrating RPPA chip data
from TCGA and several independent tumor research pro-
jects [10]. In our research, based on the Kaplan-Meier
method and Cox regression analysis, 6 hub proteins were
identified, and a protein risk signature was firstly con-
structed. The overall survival (OS) of the high-risk group
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was significantly shorter than that of the low-risk group. The
receiver operating characteristic (ROC) curve and the area
under the ROC curve (AUC) further confirmed the accuracy
of the risk signature. Pearson correlation analysis between
the signature and clinical parameters indicated that the pro-
tein risk score of T_3_4 was significantly higher than that of
T_1_2. With the help of the UALCAN website, we further
found that 6 hub proteins were differentially expressed in
cancer and normal tissues and in different CRC stages, which
were validated at the ONCOMINE database. In order to
mine the molecular characteristics of 6 hub proteins, we per-
formed protein-protein interaction (PPI) and enrichment
analysis based on the 6 hub proteins and their coexpressed
proteins. We found that these proteins were mainly enriched
in EGFR (HER1) tyrosine kinase inhibitor resistance, regula-
tion of DNA metabolic process, and pathways in cancers, all
of which were directly associated with tumorigenesis.

In conclusion, protein risk signature, a novel prognostic
assessment tool, had the potential to predict the outcomes
of CRC patients in clinical practice, and 6 hub proteins were
expected to become novel therapeutic targets in the future.

2. Materials and Methods

2.1. Ethics Statement. All data in this study were obtained
from online public databases and did not involve any
in vitro or in vivo experiments.

2.2. Data Mining. The protein expression profiles and the
matching clinical information of colorectal cancer (CRC)
patients were downloaded from the Cancer Proteome Atlas
Portal (TCPA) (https://www.tcpaportal.org/tcpa/) [11] and
the Cancer Genome Atlas website (TCGA) (https://portal
.gdc.cancer.gov/) [12], respectively. The TCPA is a compre-
hensive resource for accessing, visualizing, and analyzing
functional proteomics of patient tumor samples and cancer
cell lines. The TCGA is currently the largest cancer genetic
information database and molecularly characterized over
20,000 primary cancer and matched normal samples cover-
ing 33 cancer types [13]. All the data in this study is the latest
data from the above official website sources.

2.3. Identification of Candidate Proteins. The TCPA database
had converted the raw data into a recognizable format [14].
Candidate proteins associated with the overall survival (OS)
were extracted based on both univariate Cox proportional
hazard regression analysis and Kaplan-Meier [15]. Proteins
with a p value below 0.05 were defined as significant. Proteins
with HR < 1 were defined as candidate protective proteins,
while proteins with HR > 1 were considered candidate risky
proteins [16].

2.4. Construction of the Prognostic Risk Signature. Based on
the step-wise multivariate Cox proportional hazard regres-
sion analysis, we obtained 6 hub proteins from 24 candidate
risk proteins [17]. The prognostic risk signature was built by
combining the expression values of 6 hub proteins weighted
by their regression coefficients. The median risk score was
set as a cutoff value and divided CRC patients into high-
and low-risk groups [18]. R “survival” package (https://

CRAN.R-project.org/package=survival) was used to assess
the significance of the OS difference between high- and
low-risk groups.

2.5. Performance Assessment. To measure the performance of
our hub protein risk signature, the receiver operating charac-
teristic (ROC) curve and the corresponding areas under the
ROC curve (AUC) were produced using the R “survivalROC”
packages [19]. The univariate and multivariate Cox propor-
tional hazard regression analyses were performed to evaluate
the independent prognostic potential of protein risk signa-
ture. Multivariate Cox analysis adjusted the influences of
age, gender, pathological American Joint Committee on
Cancer (AJCC) stage, tumor size in situ (T), lymph node
metastasis (N), and distant metastasis status (M) on risk sig-
nature [20].

2.6. Clinical Parameter Correlation. Based on the TCGA clin-
ical information, we performed the Pearson correlation anal-
ysis between risk signature and age, gender, stage, T , N , and
M [21].

2.7. Differential Expression Analysis. UALCAN is a user-
friendly and interactive web resource for analyzing cancer
OMICS data based on level 3 RNA-seq data and clinical data
of 31 cancer types from the TCGA database [22]. The differ-
ential expression of 6 hub proteins and their encoding genes
were analyzed at the UALCAN website (http://ualcan.path
.uab.edu/) [23].

The ONCOMINE database (http://www.oncomine.org/)
is a cancer microarray database and integrated data-mining
platform designed to facilitate discovery from genome-wide
expression analysis [24]. In our research, transcriptional data
of 6 encoding genes between CRC tissues and normal tissue
were obtained from this database. Thresholds were designed
as follows: p value: 0.001, fold change: 1.5, gene rank: top
10%, data type: mRNA.

2.8. Protein Coexpression Analysis. Based on 6 hub proteins,
we performed Pearson correlation analysis and found their
coexpressed proteins. The correlation filtering criteria were
p less than 0.001, and Pearson correlation coefficient (PCC)
greater than 0.4. PCC > 0 meant a positive correlation with
hub protein, and PCC < 0meant a negative correlation. Next,
we generated a Sankey diagram using ggplot2 and ggalluvial
package among 6 hub proteins and their coexpressed
proteins.

2.9. Molecular Network and Functional Enrichment Analysis.
Protein-protein interaction (PPI) and functional enrichment
analysis were constructed using the STRING database
(https://string-db.org/), Cytoscape software version 3.7.1
[25], and the Metascape (https://metascape.org/gp/index
.html) [26]. The STRING database helps to explore the inter-
action network between proteins and discover core regula-
tory proteins. If the network contained between 3 and 500
proteins, the Molecular Complex Detection (MCODE) algo-
rithm would be applied to identify densely connected net-
work components [26]. To clearly illustrate the functions
and molecular pathways of 6 hub proteins and their
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coexpressed proteins, we conducted the Gene Ontology (GO)
enrichment analysis and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis at the Metascape website [27].

2.10. Statistical Analysis. In this study, all statistical analyses
were performed using R software (version 3.6.1; https://
www.r-project.org/). Significance was defined as p < 0:05.

3. Results

3.1. Identification of Candidate Survival-Related Proteins.
The workflow of our study was illustrated in Figure 1. At
the TCPA database, we downloaded protein expression pro-
file of 390 CRC patients/tissues. The corresponding clinical
information was downloaded from the TCGA database.
There was no requirement for ethical approvals. As predict-
ing the prognosis of CRC that was critical for cancer patients,
we performed univariate Cox regression analysis and
explored 24 candidate survival-associated proteins, including
10 protective proteins and 14 risky proteins, all of which were
displayed in the forest plot (Figure 2(a)) and volcano plot
(Figure 2(b)). Risky proteins meant that the higher its expres-
sion, the higher the patient’s risk of death and the shorter the
overall survival (OS).

3.2. Identification of Hub Proteins. To extract hub proteins
that were actively involved in the onset and progression of
CRC, we further performed multivariate Cox regression
analysis and finally identified 6 survival-related proteins,
CCNE1, HER1, INPP4B, RPS6KA1, SRC, and SLC1A5, and
named them hub proteins (p < 0:05). All of the identified

hub proteins were significantly related to the OS of CRC
patients and were potential prognostic markers for monitor-
ing patients’ outcomes (Figure 3).

3.3. Construction and Validation of a Prognostic Signature.
Based on multivariate Cox regression analysis, we further
constructed a protein risk signature, and the formula was as
follows: ½expressions of CCNE1 × ð−0:7475Þ� + ½expressions
of HER1 × 0:8318� + ½expressions of INPP4B × 0:3337� + ½
expressions of RPS6KA1 × ð−0:8763Þ� + ½expressions of SRC
× ð−0:7350Þ� + ½expressions of SLC1A5 × 0:6579�. Based on
the median of the risk score, we separated CRC patients into
2 groups, the high- and low-risk group (Figure 4(a)). CRC
patients belonging to the high-risk group doomed to a poor
prognosis, and the number of patients who died of CRC
was significantly more than that of the low-risk group
(Figure 4(b)). The differential expression of 6 hub proteins
between the high- and low-risk groups was illustrated in
the heat map. HER1, INPP4B, and SLC1A5 were highly
expressed in the high-risk group, while CCNE1, RPS6KA1,
and SRC were highly expressed in the low-risk group
(Figure 4(c)). The protein risk signature was significantly
associated with the OS of CRC patients. The OS in the
high-risk group was significantly shorter than that of the
low-risk group (Figure 4(d)).

The area under ROC curve (AUC) of the receiver operat-
ing characteristic (ROC) curve was 0.694, suggesting that its
predictive effectiveness of the OS was moderate
(Figure 4(e)). In particular, it was worth mentioning that
the AUC of our risk signature was larger than the existing
clinic parameters stage, T , N , and M, which vigorously filled

Clinical associated analysis
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Figure 1: Flow chart of our study.
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Figure 2: 24 candidate proteins were significantly correlated to prognosis in CRC. (a) Forest plot of 24 candidate proteins. (b) Volcano plot of
24 candidate proteins. The green dots indicated low-risk proteins, while the red dots represented high-risk proteins. p < 0:05.
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Figure 3: Kaplan-Meier survival curve among high- and low-risk groups based on 6 hub proteins. (a) The higher the expression of CCNE1,
RPS6KA1, and SRC, the longer the OS of CRC patients. (b) The higher the expression of HER1, INPP4B, and SLC1A5, the shorter the OS of
CRC patients.
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Figure 4: Continued.
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the blanks of existing clinical prognosis. To investigate our
risk signature’s independence, we performed univariate
(Figure 4(f)) and multivariate Cox regression analysis
(Figure 4(g)) and found that protein risk signature was an
independent and reliable prognostic factor. The clinical char-
acteristics of TCGA patients were shown in Table 1. 36 cases
with incomplete clinical information were eliminated, and
the remaining 354 CRC patients were finally evaluated. The
median age of 354 CRC patients was 68 years. The OS was
compared between high- and low-risk groups of different
clinical characteristics (Figure 5).

3.4. Clinical Relevance Assessment. To understand our pro-
tein signature’s clinical relevance, we investigated the rela-
tionships between the risk signature and age, gender, stage,
T , N , and M. The risk score was significantly higher in
seniors and advanced T stage cases (Figure 6). As shown in
Figure 7(a), expressions of 6 encoding genes were signifi-
cantly related to CRC patients’ pathological stage. In the late
stage, expressions of CCNE1, INPP4B, SRC, and SLC1A5
were significantly increased to varying degrees while expres-
sions of HER1 and RPS6KA1 were significantly reduced to
varying degrees. The same conclusion was reached at the
protein level (Figure 7(b)).

3.5. Differential Expression Analysis of 6 Hub Proteins. Com-
pared with normal samples, mRNA expressions of CCNE1,
INPP4B, SRC, and SLC1A5 increased significantly in pri-
mary tumors. At the protein expression levels, we found that
expressions of CCNE1 and SLC1A5 increased significantly in
CRC tissues. Expressions of HER1 and RPS6KA1 in CRC
were significantly reduced at both mRNA and protein levels
(Figure 8). Next, we validated mRNA expressions of 6 encod-
ing genes at the OMCOMINE website and finally drew the
same conclusion (Figure 9).

3.6. Pearson Correlation Analysis of the TCPA Database. In
organisms, proteins that have the same function or exist in

the same pathway tend to be coexpressed. Based on the
TCPA protein expression profile and 6 hub proteins, we
extracted 11 significant coexpressed proteins (pearson corre-
lation coefficient (PCC) was approximately equal to 0.5)
(Figure 10(a)) and 29 coexpression proteins (PCC > 0:4).
All of them were displayed in the Sankey diagram
(Figure 10(b)).

3.7. Molecular Network and Functional Enrichment Analysis.
Based on these 46 proteins, we performed protein-protein
interaction (PPI) and functional enrichment analysis. PPI
network demonstrated that HER1, HER2, and CTNNB1

Age

Gender

Stage

T

M

N

RiskScore

<0.001

0.198

0.962

0.175

0.033

0.238

<0.001

p value

1.058 (1.031−1.087)

0.729 (0.451−1.179)

1.018 (0.489−2.119)

1.456 (0.846−2.507)

3.188 (1.096−9.271)

1.330 (0.828−2.137)

1.540 (1.277−1.857)

Hazard ratio

Hazard ratio
0 2 4 6 8

(g)

Figure 4: Construction and validation of protein risk signature. (a) Risk score distribution of CRC patients based on the median of risk score
(low, green; high, red). (b) Scatterplots of CRC patients with different survival status in both groups. (c) Heatmap of expression profiles of
included 6 hub proteins. (d) Kaplan-Meier curve of the high-risk (red) and low-risk (blue) CRC patients and patients in the high-risk
group had a shorter overall survival. (e) The predictive accuracy of risk signature. (f) Univariate and (g) multivariate Cox regression
analysis to verify that the risk score was an independent prognostic factor.

Table 1: Clinical characteristics of 354 CRC patients included in
our study.

Clinical characteristics No. of patients (%)

Age

≤68 181 (51.13)

>68 173 (48.87)

Gender

Male 186 (52.54)

Female 168 (47.46)

Stage-AJCC

Stage_I_II 208 (58.76)

Stage_III_IV 146 (41.24)

T

T_1_2 65 (18.36)

T_3_4 289 (81.64)

N

N0 214 (60.45)

N_1_2_3 140 (39.55)

M

M0 302 (85.31)

M1 52 (14.69)

7BioMed Research International



0 2 4 6 8 10 12

0.0

0.2

0.4

0.6

0.8

1.0

High risk (n = 84)

Low risk (n = 97)

High risk (n = 100)

Low risk (n = 73)

Female (n = 168)

High risk (n = 83)

Low risk (n = 85)

p value = 0.0128

High risk (n = 101)

Low risk (n = 85)

High risk (n = 100)

Low risk (n = 108)

High risk (n = 84)

Low risk (n = 62)

T_1_2 (n = 65)
High risk (n = 26)

Low risk (n = 39)

0 2 4 6 8 10 12

T_3_4 (n = 289)

High risk (n = 158)

Low risk (n = 131)

N0 (n = 214)

High risk (n = 103)

Low risk (n = 111)

0 2 4 6 8 10

N_1_2_3 (n = 140)

High risk (n = 81)

Low risk (n = 59)

M0 (n = 302)

High risk (n = 151)

Low risk (n = 151)

0 1 2 3 4 5 6 7

M1 (n = 52)

High risk (n = 33)

Low risk (n = 19)

Su
rv

iv
al

 ra
te

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 ra
te

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 ra
te

0.0

0.2

0.4

0.6

0.8

1.0
Su

rv
iv

al
 ra

te

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 ra
te

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 ra
te

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 ra
te

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 ra
te

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 ra
te

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 ra
te

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 ra
te

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 ra
te

Time (years)

0 2 4 6 8 10
Time (years)

0 2 4 6 8 10
Time (years)

0 2 4 6 8 10
Time (years)

0 2 4 6 8 10 12
Time (years)

0 2 4 6 8 10 12
Time (years)

0 2 4 6 8 10 12
Time (years)

0 2 4 6 8 10 12
Time (years)

0 2 4 6 8 10 12
Time (years)

Time (years) Time (years) Time (years)

p value = 0.3 p value = 0.00328

p value = 0.101p value = 0.0311p value = 0.00929

p value = 0.00682p value = 0.00432p value = 0.842

p value = 0.12p value = 0.0894p value = 0.0012

Age ≤ 68 (n = 181) Stage_I_II (n = 208)

Stage_III_IV (n = 146)Male (n = 186)Age > 68 (n = 173)

Figure 5: The OS of high- and low-risk groups in different clinical characteristics.
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were the top 3 nodes ranked by degrees calculated by Cytos-
cape plugin cytoHubba (Figure 11(a)). The Molecular Com-
plex Detection (MCODE) algorithm had been applied to
identify the densely connected network components, and
the MCODE_1 was displayed in Figure 11(b). At the Metas-
cape, we performed PPI enrichment analysis, and the top 3
clusters were displayed in Table 2. Nodes of MCODE_1 were
mainly enriched in pathways in cancer (Table 2). Gene
enrichment analysis mainly focused on EGFR (HER1) tyro-
sine kinase inhibitor resistance and regulation of the DNA
metabolic process (Figure 11(c)). Enrichment analysis results
at the protein, and gene levels all indicated that the
prognostic-related proteins of CRC were related to EGFR
tyrosine kinase inhibitor resistance.

4. Discussion

Incidence and mortality of colorectal cancer (CRC) in the
United States rank third and second, respectively. The latest
report states that CRC is getting younger and younger, and
mortality increases with the delay of discovery. Advances in
sequencing and microarray technology and the opening of
various online databases have promoted the diagnosis and
treatment of diseases at the genomic level.

Reviewing the previous literature on the prognosis of
CRC, 4 gene signatures [28], 9 gene signatures [7], hypoxia-
related signature [29], autophagy score signature [30, 31],
somatic mutation signatures [32], metabolism-related signa-
ture [33], chemokine/chemokine receptor signature [34], and
immune-related signature [35] had been constructed to pre-
dict the OS of CRC patients. However, these bioinformatic
analyses only predict the prognosis of CRC patients at the

RNA level, and there are few studies on the protein prognos-
tic signature. Besides, these previous RNA bioinformatic
studies did not identify the same protein-coding genes of
our signature.

In this study, based on the TCPA and TCGA database, we
performed K-M and Cox regression analysis. 6 hub proteins
were screened, all of which were significantly associated with
the overall survival (OS) of CRC patients. Based on these 6
hub proteins, we first developed a protein-related prognostic
signature, which was an independent prognostic factor and
significantly associated with CRC patients’ OS. The receiver
operating characteristic (ROC) curve and the areas under the
ROC curve (AUC) further validated its accuracy. And our
protein risk signature’s performance was better than the exist-
ing clinical-pathological parameters, including T, N , M, and
stage. Based on the median of the risk score, we divided
CRC patients into high- and low-risk groups and found that
CRC patients in the high-risk group had significantly more
deaths than the low-risk group. Differential expression analy-
sis found that 6 hub proteins were significantly differentially
expressed in CRC patients with different stages and cancer tis-
sues than normal tissues. Given the potential clinical signifi-
cance of 6 hub proteins, we performed protein-protein
interaction (PPI) and enrichment analysis on 6 hub proteins
and their coexpressed proteins. The relationship between
EGFR tyrosine kinase inhibitor resistance and CRC’s develop-
ment and prognosis urgently needs more research.

The CCNE1 protein (Cyclin E1) belongs to the highly
conserved cyclin family, which forms a complex with
CDK2 and functions as its regulatory subunit, whose activity
is necessary for the G1/S transition in the cell cycle [36]. Pre-
vious studies have shown that CCNE1 amplification and
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Figure 7: Relationships between expressions of 6 encoding genes and hub proteins and individual cancer stages of CRC patients (UALCAN).
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overexpression result in chromosome instability and further
lead to tumorigenesis, which is associated with poor progno-
sis in CRC [37].

Epidermal growth factor receptor (EGFR, HER1),
belonging to the protein kinase superfamily, is a transmem-
brane glycoprotein that binds to epidermal growth factor,
which induces receptor dimerization and tyrosine autophos-
phorylation and leads to cell proliferation [38, 39]. Another
mechanism for the HER1 activation is the overproduction
of its ligands. Previous studies have revealed that targeting
HER1 can inhibit the proliferation and induce apoptosis of
CRC cells [40]. Adding HER1 mAb to chemotherapy or best
supportive care improves progression-free survival (moder-
ate to high-quality evidence), the OS (moderate evidence),
and tumor response rate (moderate to high-quality evidence)
in CRC patients [41].

The inositol polyphosphate-4-phosphatase type IIB
(INPP4B) protein belongs to the enzyme of the phos-
phatidylinositol signaling pathway. Themechanism of INPP4B
is to remove the phosphate group of the inositol ring from ino-
sitol 3,4-bisphosphate. Previous studies have shown that
INPP4B restrains CRC’s proliferation and metastasis [42, 43].
However, some studies also demonstrated that NPP4B pro-
motes survival and proliferation of tumor cells, including
triple-negative breast cancer and leukemia [44–46].

Ribosomal protein S6 kinase A1 (RPS6KA1) is a member
of the RSK (ribosomal S6 kinase) family of serine/threonine
kinases and can phosphorylate members of the mitogen-
activated kinase (MAPK) signaling pathway. RPS6KA1 par-
ticipates in the carcinogenic process by regulating cell
growth, insulin, and inflammation. Research also has shown
that genetic variation of RPS6KA1 is significantly associated
with the risk of developing colon cancer [47].

SRC proto-oncogene, nonreceptor tyrosine kinase (SRC), is
the protein encoded by the proto-oncogene. Studies have shown
that abnormal activation of intracellular tyrosine kinase SRC
has been considered as a mechanism for acquired chemother-
apy resistance in metastatic CRC [48]. SRC phosphorylation
and activation can promote CRC invasion and metastasis [49,
50]. Stabilization of SRC promotes epithelial-mesenchymal
transition in CRC [51]. And mutations of SRC can be involved
in the malignant progression of colon cancer [52].

The solute carrier family 1 member 5 (SLC1A5) protein is
a sodium-dependent neutral amino acid transporter, func-
tioning as a receptor for RD114/type D retrovirus [53, 54].
Studies have found that SLC1A5 is an important transporter
of glutamine, and upregulated SLC1A5 promotes the growth
and survival of CRC cells [55]. And inhibition of SLC1A5
sensitizes CRC to cetuximab both in vitro and in vivo. The
sensitization mechanism is that inhibition of SLC1A5
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Figure 11: Protein-protein interaction (PPI) and enrichment analysis among coexpressed 46 proteins. (a) The PPI was ranked by degrees
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Table 2: PPI enrichment analysis at the Metascape.

GO Description Log10 (p)

hsa01521 EGFR tyrosine kinase inhibitor resistance -15.2

hsa04012 ErbB signaling pathway -10.8

hsa01522 Endocrine resistance -10.4

MCODE_1_GO Description Log10 (p)

hsa05200 Pathways in cancer -10.5

hsa05213 Endometrial cancer -8.5

GO : 0048732 Gland development -8.1
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promotes ubiquitin-proteasome degradation of HER1 and
reduces the nuclear HER1 expression [56].

Based on previous studies, these 6 proteins are involved
in the development and resistance of CRC. Our study further
reveals the prognostic roles of these 6 proteins in CRC. More
molecular research is urgently needed.

In this study, at the Metascape, enrichment analysis
revealed that 6 hub proteins and their coexpressed proteins
mainly enriched in EGFR (HER1) tyrosine kinase inhibitor
resistance. HER1 serves as a stimulus for cancer growth,
and some tyrosine kinase inhibitor (TKI) targeting HER1
has been currently administered. However, TKI resistance
is common and leads to the recurrence of tumors. The effi-
cacy of combined targeting 6 hub proteins in patients with
CRC needs to be further studied.

In summary, our studies revealed that differentially
expressed 6 hub proteins and the protein risk signature were
significantly associated with the OS of CRC patients. Our risk
signature has the potential for clinical application to predict
the outcomes of CRC patients, and 6 hub proteins are
expected to become novel therapeutic targets in the future.
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