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Computed tomography (CT) images show structural features, while magnetic resonance imaging (MRI) images represent brain
tissue anatomy but do not contain any functional information. How to effectively combine the images of the two modes has
become a research challenge. In this paper, a new framework for medical image fusion is proposed which combines
convolutional neural networks (CNNs) and non-subsampled shearlet transform (NSST) to simultaneously cover the advantages
of them both. This method effectively retains the functional information of the CT image and reduces the loss of brain structure
information and spatial distortion of the MRI image. In our fusion framework, the initial weights integrate the pixel activity
information from two source images that is generated by a dual-branch convolutional network and is decomposed by NSST.
Firstly, the NSST is performed on the source images and the initial weights to obtain their low-frequency and high-frequency
coefficients. Then, the first component of the low-frequency coefficients is fused by a novel fusion strategy, which
simultaneously copes with two key issues in the fusion processing which are named energy conservation and detail extraction.
The second component of the low-frequency coefficients is fused by the strategy that is designed according to the spatial
frequency of the weight map. Moreover, the high-frequency coefficients are fused by the high-frequency components of the
initial weight. Finally, the final image is reconstructed by the inverse NSST. The effectiveness of the proposed method is verified
using pairs of multimodality images, and the sufficient experiments indicate that our method performs well especially for
medical image fusion.

1. Introduction

In recent decades, image fusion has played an essential role in
the field of image processing [1]. It is a kind of image
enhancement technology whose purpose is to generate an
informative image by fusing two or more images under the
same scene from various sensors that contain complemen-
tary information. It is quite obvious that the final image
inherits significant information from all the source images.
Nowadays, image fusion technique has been further
developed in many fields and widely employed in medical
applications [2].

Medical imaging takes many forms and is classified
according to structure and functional information into posi-
tron emission computed tomography (PET), computed

tomography (CT), and magnetic resonance imaging (MRI)
[3]. Medical image fusion is to fuse complementary informa-
tion from the different modal sensors to enhance the visual
perception [4].

Recently, the methods based on multiscale transform
(MST) are a widely discussed transform theory in image pro-
cessing. The multiscale transform tools include Laplacian
pyramid (LAP) [5], ratio of low-pass pyramid (RP) [6],
dual-tree complex wavelet transform (DTCWT) [7], con-
tourlet transform (CT) [8], and non-subsampled contourlet
transform (NSCT) [9]. Those fusion methods all consist of
three steps: decomposition, fusion, and reconstruction. By
comparing those methods, it is evident that NSCT generally
achieves more information from the source images to achieve
the best results. The fundamental reason is that the NSCT

Hindawi
BioMed Research International
Volume 2020, Article ID 6265708, 15 pages
https://doi.org/10.1155/2020/6265708

https://orcid.org/0000-0001-6160-2986
https://orcid.org/0000-0003-0139-9415
https://orcid.org/0000-0001-8111-7339
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/6265708


method not only has the characteristic of multiresolution and
time-frequency local of wavelet transform but also has multi-
directivity and anisotropy. However, the operating efficiency
of the NSCT method is time-consuming. In view of that, the
non-subsampled shearlet transform (NSST) method is cre-
ated to greatly improve the utilization rate of resources
[10]. Of course, in the process of the subfields of information
processing, not only the decomposition methods, the fusion
strategies also play an important role. Conventionally, the
high-frequency band fusion strategies are selected in many
ways, while low-frequency bands usually choose the average
weight coefficient as the fusion strategy. According to the
researches, one of the most crucial issues is to calculate the
weight maps from the source images [11]. In addition, in
most MST-based fusion methods, the low-frequency bands
have achieved less attention. However, the kind of activity
measurement and weight assignment are not in all cases on
account of many factors such as noise, misregistration, and
the difference between source pixel intensities [12]. Further-
more, many recently existed methods had made many
changes in the fusion methods and elaborated on weight
assignment strategies [13]. Unfortunately, it is actually a dif-
ficult task to design an ideal activity level measurement or
weight assignment strategy to comprehensively take all the
key issues of fusion into account.

Nowadays, deep learning gets increasing attention in the
field of computer vision perception, because the deep learn-
ing network architecture has the following two advantages
[14]. On the one hand, because the artificial neural network
has multiple hidden layers, it is obviously better than many
traditional neural networks in feature learning ability. On
the other hand, the difficulty of training deep neural network
is reduced by implementing layer-wise pretraining through
an unsupervised learning method. Deep learning simulates
the hierarchical structure of visual perception system which
makes deep learning have excellent performance in presenta-
tion and learning. Convolutional neural networks (CNNs)
are a typical deep learning model [15]; Li et al. introduced a
fusion method combining a Dual-Channel Spiking Cortical
Model (DCSCM) and CNNs [12]. It introduces the CNNs
to encode a direct mapping from the source image to weight
map, which is the fusion framework of the low-frequency
coefficients. Liu et al. proposed a multifocus image fusion
method with CNNs, which mentioned CNNs to extract the
focus region and acquire a decision weight map. It has been
proved that the results fused by CNNs are better than those
from the traditional shallow neural network. What is more,
CNNs consider the nonlinear features of images, while tradi-
tional pixel level methods fail to get high level features. It can
effectively filter redundant information through convolution
and pooling layer [16].

However, there are still shortcomings in the above
methods. Many MST-based methods are perfectly unsuitable
for medical image fusion; for example, the RP method is usu-
ally used for the fusion of infrared visible, but the artifacts
will be generated when it is applied on medical image. Due
to the large difference of the same part in a group of medical
images, if the weight acquired by CNNs is directly introduced
for fusing the original images, a lot of information will be lost

[17]. Fortunately, the NSST method solves the defect of
information loss in the sampling step by decomposing the
image into directional subbands at different scales and
obtains the multiangle information of the image accurately
at the same time. TheNSSTmethod hasmany advantages that
other sparse decompositionmethods do not have [11, 18, 19].
Based on the idea of NSCT, NSST improved the method to
achieve higher operating efficiency than NSCT, and at the
same time, it was able to obtain more sparse decomposition
results than methods curvelet, contourlet, and wavelet [20].
The application of the NSST algorithm inmedical images will
not generate artifacts and even retain the specific soft tissue
and bone structure information in medical images. At the
same time, we bring in CNNs to overcome difficulties named
designing robust activity level measurement and weight allo-
cation strategies. In fact, CNNs directly map the source image
to the weight map after training [21]. By this, some issues are
jointly resolved by learning network parameters in an “opti-
mal”manner. In addition, to address the problem that the ini-
tial weight is inapplicable tomedical images, the initial weight
is represented in multiscale domain as the high- and low-
frequency coefficients.

In this paper, we commence to deploy a fusion frame-
work that combines CNNs and NSST which simultaneously
contains the advantages of them both. Firstly, the source
images fA, Bg are decomposed by NSST to get their low-
frequency coefficients {LA, LB} and high-frequency coeffi-
cients {Hl,k

A , Hl,k
B }. Moreover, the weight WS is also decom-

posed by NSST to multiple scales {WL
S , W

H,k
S }. Then, the

high-frequency component of the weight WH,k
S is used for

high-frequency coefficient {Hl,k
A , Hl,k

B } fusion to obtain the
fused high-frequency fusion coefficients Hl,k

F . The low-
frequency coefficients are divided into two parts, a part
coefficient {LA1, LB1} which is the first component of the
low-frequency coefficients by a novel strategy which avoids
both energy conservation and detail extraction problems.
The other part {LA2, LB2} which is the second component
of the low-frequency coefficients named low2 is fused by
the spatial frequency of low-frequency component of the
weight WL

S . At last, the final image is reconstructed by
the inverse NSST. The effectiveness of this method is ver-
ified with pairs of multimodality brain image fusion, and
the results of the experiments indicate that the proposed
fusion method performs well, especially for the fusion of
medical images.

The rest of this paper is structured in the following fash-
ion. Section 2 presents the whole fusion framework and ana-
lyzes the subpart in detail. Section 3 shows the detailed fusion
strategies. Experimental results and analysis are summarized
in Section 4. The conclusions are given in Section 5.

2. Theoretical Basis

2.1. Non-subsampled Shearlet Transform. NSST, which was
referenced in [10], is conducive to better maintaining the
edge information and contour structure of images. NSST
uses the nonsampling pyramid transformation (NSP) and
the shearlet filter (SF) to achieve shift invariance which

2 BioMed Research International



makes up for the shortcomings of the contourlet transform
(CT). NSP is a multiscale analysis of the NSST with transla-
tion invariant filter structure, which goes for the same multi-
scale analysis characteristics as LP decomposition. The
equivalent filters of the kth level cascading NSP are as follows:

Heq
n zð Þ =

H1 z2
n−1

� �Yn−2
j=0

H0 z2
j

� �
, 1 ≤ n < 2k,

Yn−1
j=0

H0 z2
j

� �
, n = 2k,

8>>>>><
>>>>>:

ð1Þ

where zj stands for ½zj1, zj2�.
Shearlet transform is a sparse representation method of

nearly optimal multidimensional functions according to the
synthetic expansion affine system, as shown in equation (3).
When

X =
4 0
0 2

" #
,

Y =
1 1
0 1

" #
,

ð2Þ

the synthetic wavelets turn into shearlet.

ΛAB ψð Þ = ψj,l,k xð Þ = det Xj jj/2ψ YlXjx − k
� �n o

, ð3Þ

where j, l ∈ Z, k ∈ Z2.
The NSST is to combine the 2D NSP and the SF, and the

result of the filtering structure is equal to the ideal partition of
the frequency plane. The NSST decomposition block dia-
gram is shown in Figure 1.

2.2. Convolutional Neural Networks. The idea of CNN was
first proposed by LeCun in 1989 which has been successfully
applied in the recognition of English handwriting, and a

CNN-based method performed exceedingly good results
which were demonstrated in [22]. CNN consists of input
and output layers and multiple hidden layers, which are
divided into convolutional layer, pooling layer, and fully con-
nected layer. The input layer mainly preprocesses the original
image. The convolution layer which is the most important
layer of CNN includes two key operations, namely, local asso-
ciations and sliding window. The convolution layer is the fea-
ture extraction layer, and the calculation process is as follows:

anj = σ 〠
i∈Mn

j

an−1i ∗ knij + bnj

0
@

1
A, ð4Þ

where anj is the calculation results of the jth node in the nth
layer, Mn

j is the index set of multiple input feature graphs
corresponding to the jth output feature graph in the nth layer,
bnj is a common bias term of all input feature graphs, and knij is
the convolution kernel.

The pooling layer is sandwiched between successive con-
volution layers and is mainly helpful for image compression.
Both of the reducing feature dimension and preventing over-
fitting are carried out through the pooling layer operation.
The calculation process of the pooling layer is as follows:

anj = σ βn
j down an−1j

� �
+ bnj

� �
, ð5Þ

where the function down(·) is a downsampling function and
β is a specific multiplicative bias to correspond to the output
of the function.

The output layer is fully connected which fully excavates
the mapping relationship between the features extracted at
the end of the network and the output category tags.

The convolutional network introduced in our fusion
strategy is shown in Figure 2, which is a Siamese network
which shares the same architecture and weights around the
two branches [21, 23]. Each of the branch contains three con-
volutional layers and a max-pooling layer. The feature maps
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directional
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…
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NSP
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Figure 1: NSST decomposition block diagram.
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of two branches are concatenated and then pass through a
fully connected layer which is viewed as the weight assign-
ment part of a pair of the fusion method. The input images
fA, Bg are subject to a 2-dimensional vector through the
dual-branch network and then through a Softmax layer to
produce a probability distribution over two classes {0 or 1}.
Finally, a weight map S is finally achieved by assigning the
value of all the pixels within the location and averaging the
overlapped pixels. We make use of high-quality image patches
and their blurred version to train the network. The training
process is operated on the popular deep learning framework
Caffe [24], and there is a detailed training process in [23].
Moreover, the work has demonstrated the extraordinary suit-

ability of the CNNs for image fusion. On account of that, we
introduce the network architectures as the feature extractor
directly and remove a full-connection layer to gain time.

3. Fusion Strategies

First of all, the overview of the proposed brain medical image
fusion framework is shown in Figure 3. Each part of the
fusion framework will be analyzed in detail, and the advan-
tages will be exhibited in this section. In particular, the initial
weights taken out by CNN is also decomposed by NSST to
get the low- and high-frequency components of the weights.

Convolution Convolution Max-pooling Convolution
Concatenation

Full connection

3

3 3
3

3
3

3

3

3

3

3
3

2
2

2
2

Input patch p1 64 feature maps 128 feature maps

128 feature maps 256 feature maps

Input patch p1 64 feature maps 128 feature maps

128 feature maps
256 feature maps

Size:16 × 16

Size:16 × 16

Size:16 × 16

Size:16 × 16

Size:16 × 16

Size:16 × 16 Size:8 × 8

Size:8 × 8 Size:8 × 8

Size:8 × 8

2

Figure 2: The architecture of the dual-branch network for training.
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Figure 3: The schematic diagram of our fusion framework.
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Spatial frequency of low-frequency component is setting as
the fusion strategy of the low2-frequency coefficient.

3.1. Low-Frequency Coefficient Fusion Strategy. Generally, an
image is regarded as a two-dimensional piecewise smooth
signal [25], and most of its energy is commonly contained
in the low-frequency coefficients. Furthermore, the image
edge and contour information are contained in the high-
frequency coefficients. In MST-based fusion, the choice of
low-frequency fusion strategy also affects the final fusion
result. The simple weighted averaging and maximum-based
strategies are the most common fusion strategies. When the
low-frequency coefficients are fused, those fusion strategies tend
to lose the energy of the images, resulting in poor fusion effect.
Indeed, the brightness of some areas may drop sharply, result-
ing in decreased visual perception. To tackle the above issues,
this paper introduces WLEs which is an activity level measure.

WLEs u, vð Þ = 〠
R

i=−R
〠
R

j=−R
W × i + R + 1, j + R + 1ð ÞLS u + i, v + jð Þ2,

ð6Þ

where S ∈ ðA, BÞ, A and B are the source images, and W is a
ð2R + 1Þ × ð2R + 1Þ weighting matrix with radius R. The
value of each element in W is set to 22R−r, where r is the
distance of its four-neighborhood to the center.

It is known to us all that NSST decomposition has
some limitations because of some factors, for example,
computational efficiency. As a result, to improve the abil-
ity of WLEs in detail extraction, the weighted sum of
WSEMLs is defined as

WSEMLs u, vð Þ = 〠
R

i=−R
〠
R

j=−R
W i + R + 1, j + R + 1ð Þ

× EMLs u + i, v + jð Þ,
ð7Þ

where EMLs is as follows:

EMLs u, vð Þ = 2S u, vð Þ − S u − 1, vð Þ − S u + 1, vð Þj j
+ 2S u, vð Þ − S u, v − 1ð Þ − S u, v + 1ð Þj j
+ 1ffiffiffi

2
p 2S u, vð Þ − S u − 1, v − 1ð Þ − S u + 1, v + 1ð Þj j

+ 1ffiffiffi
2

p 2S u, vð Þ − S u − 1, v + 1ð Þ − S u + 1, v − 1ð Þj j:

ð8Þ

The multiplication of WLE and WSEML is defined as the
final activity level measure, and the first components of the
low-frequency coefficients are defined as {LA1, LB1}. The fusion
of this part is calculated according to

The other part of low-frequency coefficient fusion strategy
uses the CNN-based weight map to achieve the final coeffi-
cients. Feed the source images A and B to the branches of
the convolutional network and obtain the saliency map WS.
Then, we calculate the spatial frequency of WL

S which is the
low-frequency component ofWS that can be taken fromNSST
as the weight of fusion strategy. The process formula is shown
in equation (10). The part coefficients are defined as {LA2, LB2},
and the calculation of the fusion process is as follows:

WSF,L
S = SF WL

S

� �
,

SF WL
S

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RF2 + CF2

p
,

RF =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
mn

〠
M−1

i=1
〠
N−1

j=1
WL

S i, jð Þ −WL
S i, j + 1ð Þ� �2vuut ,

CF =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
mn

〠
M−1

i=1
〠
N−1

j=1
WL

S i, jð Þ −WL
S i + 1, jð Þ� �2vuut ,

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð10Þ

LF2 = LA2 ×WSF,L
S + LB2 × 1 −WSF,L

S

� �
: ð11Þ

3.2. High-Frequency Coefficient Fusion Strategy. At present,
researches on high-frequency coefficient fusion strategies are
in-depth, including various methods such as regional energy,
Pulse-Coupled Neural Network (PCNN), and sparse fusion
[26]; however, these strategies have some drawbacks in extrac-
tion of detail information. It is known to us that CNN has
absolute advantages to extract detail information from the
source image. Therefore, this section regards the weight map
WS extracted from the source images by CNN as the key for
high-frequency coefficient fusion. The high-frequency coeffi-
cients of the source image fA, Bg are defined as {Hl,k

A , H
l,k
B }.

The schematic diagram of high-frequency coefficient fusion
strategy is shown in Figure 4. The calculation of the high-
frequency fusion is as follows:

Hl,k
F =WH,k

S ×Hl,k
A + 1 −WH,k

S

� �
×Hl,k

B : ð12Þ

3.3. Detailed Fusion Scheme and Analysis. In this fusion
scheme, we just only consider the fusion of two source images.
The detailed fusion scheme is described in the following steps.
In order to effectively analyze the results, we analyzed intro-
ducing the same decomposition method which means we only
use the NSST-based method but different fusion strategy

LF1 u, vð Þ =
LA1 u, vð Þ, if WLEA u, vð Þ ×WSEMLA u, vð Þ ≥WLEB u, vð Þ ×WSEMLB u, vð Þ,
LB1 u, vð Þ, otherwise:

(
ð9Þ
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choices to fuse the images. As shown in Figure 5, the results by
the simple weighted averaging or maximum value-based strat-
egies do not consider the relationship between pixels, resulting
in the overall brightness and contrast of the image which
are slightly worse. By contrast, the results obtained by the
proposed method in this paper retain more abundant infor-
mation and the details are clear. The contour information
in the low-frequency image is retained completely through
our low-frequency strategy, while the contrast and bright-
ness information are retained by the high-frequency strat-
egy. In addition, we found that through the feature
screening of CNNs, the important features of the original
images were basically retained, such as bone structure in
CT images and soft tissue vessels in MRI images. Therefore,
it is reasonable to believe that the proposed low- and high-
frequency fusion strategies are more effective than the aver-
age and maximum strategies.

Step 1. Decompose the source images fA, Bg by using NSST
to attain their low-frequency coefficients {LA1, LB1} and
{LA2, LB2} and the high-frequency coefficients {Hl,k

A , Hl,k
B } at

each K scale and l direction.

Step 2. Feed the source images to CNN to acquire the weight
map WS. Decompose the weight map by NSST to low- and
high-frequency coefficients {WL

S , W
H,k
S }.

Step 3. Fuse low-frequency coefficients by the algorithm in
Section 3.1 and receive the fusion coefficient {LF1, LF2}.

Step 4. Use the method in Section 3.2 to fuse the high-
frequency coefficients and obtain the high-frequency fusion
coefficients Hl,k

F .

Step 5. Perform inverse NSST on {LF1, LF2, H
l,k
F } to recon-

struct the final image F.

4. Experiments

4.1. Experimental Settings. The simulation experiments were
carried out by MATLAB2018a software on PC with Intel i7
7700 3.6GHz, 24GB RAM. Several experiments have been
performed to analyze the effects of the proposed method.
All of the images are 256 × 256 grayscale images. Each pair
of the source images has been accurately registered which

High-freq
fusionNSST

HF
l, k

HA
l, k

HB
l, k

WS
H, k

Figure 4: The schematic diagram of high-frequency coefficient fusion strategy.

Input A Input B Proposed Average Max

Figure 5: NSST-based fusion strategy compared.
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could be collected from http://www.med.harvard.edu/
AANLIB/. The source images are presented in Figure 6.

4.2. Comparison Methods. We compared our method with
seven representative methods: LP method [27], DTCWT
[28], curvelet transform (CVT) method [29], sparse repre-
sentation with CVT (SR-CVT) method [18], NSCT-PCNN-
based [30], NSST-SR [31], and NSST-PAPCNN [11]. Among
them, LP and DTCWT methods are the classical algorithms.
In particular, the LP method has superior performance in
medical image fusion. NSST-SR and NSST-PAPCNN are
both outstanding MST-based fusion strategies. What is more,
NSST-PAPCNN was just recently initiated within one year.
Other contrast methods are often considered the contrast
goals in the past few years. To show the difference between
the experimental results intuitively, we mark the obvious dif-
ference area on a red rectangle. So, the contrast of the results
of comparison methods is observed easily. The detailed result
analysis is carried out in Section 4.4.

4.3. Quantitative Comparison. The subjective evaluation only
involves the qualitative evaluation made by human, which
takes human as the observer to make subjective qualitative
evaluation on the advantages and disadvantages of the image.
The selection of observers is generally considered to be
untrained “amateurs” or trained “experts.” This method is
based on statistical significance. In order to ensure that the
subjective evaluation of the image is statistically significant,
enough observers should participate in the evaluation.
Because of this, human judgment is highly subjective and
cannot guarantee the judgment. Objective evaluation is usu-
ally evaluated by testing the performance of multiple factors
that affect image quality and calculating the consistency
between quantized image quality and human subjective
observation. It is another performance evaluation of fusion
results besides subjective visual index. The combination of
both evaluations makes the judgment of result more accurate.
Usually, multiple objective metrics are applied to evaluate the
performance of the fusion results comprehensively. Six
widely recognized objective fusion metrics are presented as

follows in brief. Those objective quantitative evaluation met-
rics include mutual information (MI) [32], mean structural
similarity (MSSIM) [33], standard deviation (SD) [34], edge
intensity (EI) [35], average gradient (AG) [36], and nonlinear
correlation information entropy (Qncie) [37].

(1) MI measures the degree of the correlation between
the two sets of data. The larger the value of MI, the
richer the pixel grayscale and the more even the gray-
scale distribution. MI is defined as follows:

MI R, Fð Þ = 〠
L

u=1
〠
L

v=1
hR,F u, vð Þ log2

hR,F u, vð Þ
hR uð ÞhF vð Þ , ð13Þ

where L is the number of the gray level, hR,Fðu, vÞ is the gray
level histogram, besides, hRðuÞ and hFðvÞ are the edge histo-
gram of the image R and F, R is the input image such as A or
B, and MI of fused image can be represented by the following
formula:

MI A, B, Fð Þ =MI A, Fð Þ +MI B, Fð Þ, ð14Þ

in whichMIðA, B, FÞ shows the total amount of information

(2) SSIM is an effective measure of correlation of the
images, which is defined as the following formula:

SSIM u, vð Þ = 2μuμv + C1ð Þ 2σuv + C2ð Þ
μu

2 + μv
2 + C1ð Þ σu

2 + σv
2 + C2ð Þ , ð15Þ

where μu, σu, and σuv indicate the mean, standard deviation,
and crosscorrelation, respectively, and C1 and C2 are both
constant. The value of MSSIM is derived by calculating the
SSIM of images A and B with image F. The calculation equa-
tion of MSSIM is

Data-1 Data-2 Data-3

Data-4 Data-5 Data-6

Figure 6: Source images in the experiments.
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MSSIM = SSIM A, Fð Þ + SSIM B, Fð Þ
2 : ð16Þ

The larger the value of MSSIM, the more similar the
structure information is between the original images, which
means the quality of result is better

(3) SD is a measure of how widely a set of values is dis-
persed from the mean. The calculation of SD of the
final image is defined as follows:

SD =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
M ×N

〠
M

u=1
〠
N

v=1
F u, vð Þ − μð Þ2

s
, ð17Þ

where μ is the mean value and M ×N is the pixel of the
ultimate image. A large standard deviation represents a
large difference between most values and their mean.
When SD is used as an objective evaluation metric, the
larger the value of SD means that the contrast of the
image is greater

(4) EI is essentially the amplitude of edge point gradient.
The larger the value of EI, the richer the edge infor-
mation of the image. Take the gradient value of each
pixel of the final image Fðu, vÞ. The calculation of EI
is defined as the follows:

EI u, vð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∇xF u, vð Þ2+∇yF u, vð Þ2

q
, ð18Þ

where ∇xFðu, vÞ and ∇yFðu, vÞ are the first differences of
image F in the x and y directions of row u and column v.
The equation of ∇xFðu, vÞ and ∇yFðu, vÞ is

∇xF u, vð Þ = F u, vð Þ − F u − 1, vð Þ,
∇yF u, vð Þ = F u, vð Þ − F u, v − 1ð Þ

(
ð19Þ

(5) AG is the definition of the image which reflects the
ability of the image to compare details. The greater
the AG is, the more layers the image will have and
the clearer it will be. AG is defined as

AG = 1
M ×N

〠
M

u=1
〠
N

v=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂f /∂xð Þ2 + ∂f /∂yð Þ2

2

r
, ð20Þ

where ∂f /∂x and ∂f /∂y are the gradients in the horizontal
and vertical directions

Qncie is a new nonlinear correlation information entropy
for multivariable analysis which effectively judges the capac-
ity of retaining the nonlinear information of the image. Qncie
is represented by the following formula:

Qncie X, Yð Þ = 2 + 〠
b2

i=1

ni
N

logb
ni
N

� �
, ð21Þ

where N is the size of the dataset, ni is the number of samples
distributed in the ith rank grid, and b is set to

ffiffiffiffi
N

p
, ð1 ≤ i ≤

K , 1 ≤ j ≤ KÞ
The adopted metrics represent the quality of the image.

In order to achieve better results in all aspects of fusion effect,
the adopted six metrics all require larger values, but the max-
imum value of SSIM is 1. The quality metrics of the results of
the objective quantitative assessments are shown in Table 1.
In all fusion results, the best results are marked by bold.

4.4. Experimental Results and Analysis. In this section, we
show the results of our fusion method and the comparison
experiments from Figures 7–12. What is more, we conduct
subjective and objective analyses according to the results
and the value of evaluation indicators.

Experimental results indicate that the designed fusion
method has excellent performance in both detail information
extraction and image energy retention. The results of differ-
ent fusion methods for “Data-1” image set are shown in
Figure 7. The CT and MRI images are shown in
Figures 7(a) and 7(b), respectively. And then, Figures 7(c)–
7(j) represent the results of the fusion methods such as LP,
DTCWT, CVT, SR-CVT, NSCT-PCNN, NSST-SR, NSST-
PAPCNN, and the proposed method.

Generally, the brain medical image fusion technology
requires high accuracy and stability. Unfortunately, the dif-
ferent fusion methods have slightly different performance
in contrast and detail preservation. To highlight the differ-
ences between the results of comparison methods, we mark
the experimental results with red rectangle. As shown in
Figures 7(f)–7(j), the color of the fused images is brighter
than the other three comparison results. The results using
NSCT-PCNN, NSST-SR, and NSST-PAPCNN shown in
Figures 7(g)–7(i) preserved more bone structures of the CT
image, but they missed soft tissues of the MRI image com-
pared with our method. We observe visually in Figure 7(j)
that either of the two red rectangles contains the most infor-
mation than others. The same is true for the results in
Figure 8. As shown in Figure 8, however, the result is differ-
ent from the first two. The results using LP and SR-CVT pre-
serve more details of the MRI image, but they do not hold
back the spatial resolution of the CT image. Besides, the
results of DTCWT and CVT both lose more contrast
information.

The result of “Data-4” is shown in Figure 10. The result of
the proposed method has almost a better visual effect than
others. The DTCWT, CVT, NSCT-PCNN, and NSST-SR
lose the details of the source images in Figures 11 and 12.
On the contrary, our method enhanced the contrast and keep
more bone structure information.

To summarize the experimental results in accordance
with Table 1, the DTCWT and CVT methods performed
poor due to low contrast and the data of the objective metrics
are lower than other results. The LPmethod looks unsatisfac-
tory as well, because it did not reserve the information of the
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Table 1: The objective criteria of the results.

Methods EI AG SD MI MSSIM Qncie

Data-1

Proposed 72.6935 7.1552 57.9205 3.2722 0.5546 0.8098

LP 38.2196 3.7774 30.0324 2.3271 0.6351 0.8054

DTCWT 34.8032 3.4850 23.2539 1.7309 0.6138 0.8039

CVT 35.2542 3.4934 23.0665 1.4831 0.5993 0.8033

NSST-PAPCNN 68.9727 6.6187 56.0234 2.4653 0.5333 0.8060

SR-CVT 68.6666 6.7490 54.4992 1.9097 0.5147 0.8044

NSCT-PCNN 66.2118 6.5201 56.4232 2.2337 0.5413 0.8051

NSST-SR 66.9752 6.6512 53.2715 2.0321 0.5318 0.8047

Data-2

Proposed 90.0733 10.3155 69.1393 4.2751 0.7368 0.8123

LP 83.5461 9.4929 56.4441 3.3646 0.7257 0.8085

DTCWT 81.8120 9.2944 53.6809 3.1898 0.7261 0.8079

CVT 82.3516 9.3915 53.6136 3.0625 0.7161 0.8075

NSST-PAPCNN 85.2049 9.8096 68.2061 3.8848 0.7320 0.8105

SR-CVT 88.1706 10.0621 68.8248 3.9093 0.7244 0.8107

NSCT-PCNN 88.2202 9.8461 68.1962 4.9920 0.7352 0.8166

NSST-SR 87.1627 9.6065 68.1307 4.9608 0.7268 0.8173

Data-3

Proposed 74.2671 7.7668 77.2744 3.3678 0.7619 0.8094

LP 72.4568 7.7204 68.6626 3.4543 0.7714 0.8097

DTCWT 68.2222 7.1759 65.1873 3.1822 0.7529 0.8083

CVT 69.9724 7.3461 64.9798 3.1067 0.7326 0.8083

NSST-PAPCNN 73.0212 7.6503 76.6886 3.3369 0.7662 0.8090

SR-CVT 67.8324 7.0882 65.8398 3.2342 0.7083 0.8087

NSCT-PCNN 69.0975 7.3278 75.0149 3.3345 0.7768 0.8090

NSST-SR 63.5011 6.8037 73.9537 3.3862 0.7576 0.8091

Data-4

Proposed 60.7610 6.1253 101.008 3.3421 0.6624 0.8091

LP 57.8694 6.0094 72.2220 3.0442 0.6828 0.8082

DTCWT 55.5715 5.6615 67.7378 2.8914 0.6693 0.8078

CVT 56.0089 5.6900 67.5603 2.8700 0.6629 0.8077

NSST-PAPCNN 53.0778 5.2554 98.0660 3.1384 0.6078 0.8085

SR-CVT 59.6227 6.0267 87.1325 3.0472 0.6613 0.8082

NSCT-PCNN 57.4714 5.7521 99.1359 3.2446 0.6269 0.8087

NSST-SR 54.7148 5.4708 97.6829 3.1859 0.5902 0.8086

Data-5

Proposed 145.3350 16.7255 86.9107 3.5295 0.6511 0.8089

LP 144.0967 17.0567 77.7485 3.3466 0.6274 0.8082

DTCWT 138.1179 16.0188 73.4541 3.1837 0.6284 0.8077

CVT 140.2991 16.2219 73.5315 3.1072 0.6262 0.8075

NSST-PAPCNN 143.2695 16.4285 86.2083 3.3442 0.6506 0.8075

SR-CVT 140.0068 16.1687 75.8551 3.0745 0.6235 0.8074

NSCT-PCNN 134.0507 15.0210 86.3881 3.2473 0.6473 0.8078

NSST-SR 123.5401 13.9535 84.4441 3.3016 0.6147 0.8080

Data-6

Proposed 80.0313 8.8360 73.7021 3.7677 0.7539 0.8101

LP 75.1681 8.5606 60.5508 3.2883 0.7368 0.8084

DTCWT 72.2479 8.0545 53.0983 2.9707 0.7118 0.8074

CVT 73.4273 8.1997 52.4865 2.8620 0.6932 0.8071

NSST-PAPCNN 66.7020 7.4670 68.3819 3.2053 0.7036 0.8079

SR-CVT 79.4541 8.7675 72.6698 3.6225 0.7352 0.8089

NSCT-PCNN 72.6950 8.0744 70.6174 3.3051 0.7346 0.8083

NSST-SR 64.9391 7.3415 66.7485 3.1110 0.6834 0.8076
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(a) CT (b) MRI (c) LP (d) DTCWT (e) CVT

(f) SR-CVT (g) NSCT-PCNN (h) NSST-SR (i) NSST-PAPCNN (j) Proposed

Figure 7: Fusion results of different methods in “Data-1”.

(a) CT (b) MRI (c) LP (d) DTCWT (e) CVT

(f) SR-CVT (g) NSCT-PCNN (h) NSST-SR (i) NSST-PAPCNN (j) Proposed

Figure 8: Fusion results of different methods in “Data-2”.

(a) CT (b) MRI (c) LP (d) DTCWT (e) CVT

(f) SR-CVT (g) NSCT-PCNN (h) NSST-SR (i) NSST-PAPCNN (j) Proposed

Figure 9: Fusion results of different methods in “Data-3”.
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(a) CT (b) MRI (c) LP (d) DTCWT (e) CVT

(f) SR-CVT (g) NSCT-PCNN (h) NSST-SR (i) NSST-PAPCNN (j) Proposed

Figure 10: Fusion results of different methods in “Data-4”.

(a) CT (b) MRI (c) LP (d) DTCWT (e) CVT

(f) SR-CVT (g) NSCT-PCNN (h) NSST-SR (i) NSST-PAPCNN (j) Proposed

Figure 11: Fusion results of different methods in “Data-5”.

(a) CT (b) MRI (c) LP (d) DTCWT (e) CVT

(f) SR-CVT (g) NSCT-PCNN (h) NSST-SR (i) NSST-PAPCNN (j) Proposed

Figure 12: Fusion results of different methods in “Data-6”.
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MRI image well. The texture and edge are not preserved fully
in the fused results of the NSCT-PCNN and SR-CVT.

By contrast, the NSST-SR and NSST-PAPCNN achieve
clear and high brightness results. But for all this, our perfor-
mance still makes a bonzer effort, in which energy preserva-
tion and detail extraction are to the maximum extent. Among
the six metrics, EI, SD, and AG commonly reflect the quality
of the result, and the other three metrics including MI,
MSSIM, and Qncie make more accurate judgment on image
distortion and detail information retention. The higher those
metrics above are, the better the quality of the achieved
results. As shown in Figures 12 and 13, it can be found from
the comprehensive analysis of the numerical values of the
objective evaluation metrics of the experiments that our
method achieves excellent performance effects on EI, SD, AG,
MI, MSSIM, and Qncie metrics, which indicates that the fusion
images are significantly better than other contrast methods in
terms of contrast, edge detail retention, and image quality.

In addition, when evaluating fusion methods in terms of
running time, we make a comparison as shown in Table 2. It
is important to note that medical imaging is extremely
expensive and the quality of the resulting images should be
prioritized during fusion. Since our method directly uses
the pretrained CNNs as the feature extractor, we avoid con-
sidering the training time of neural network in the time cal-
culation. It is obvious that the running time of the LP
method is the fastest than others, and our method spends
6.73 s, which is an acceptable commitment. As previously
mentioned, although the LP method runs for a short time,
its information retention ability is poor, so are the methods

such as DTCWT and CVT. Among the several comparison
methods which have obviously achieved excellent fusion
effect, the running time of the proposed method is obviously
shorter. In a word, compared with the various methods, the
proposed method performs better and spends reasonable
resources.

4.5. Extended Experiment. In order to prove the robustness of
our method, we added the experiments to fuse a pair of CT-
PET image and CT-SPET image. We also analyzed the per-
formance of the outcome both subjectively and objectively.
The results are as shown in Figures 14 and 15.

We mark the different regions by a red rectangle and
enlarge it as shown in Figure 14. Certainly, the result of the
proposed method preserves more detail information than
the NSST-PAPCNN method and the CNN method which
are both well-known fusion strategies and have extreme per-
formance. As shown in Figure 14, the contrast of the red and
yellow rectangles in different results is distinctly different.
Nonetheless, our method can have a pretty good visual effect
in both rectangles. Overall, our method is even ranked at the
first place for all the three metrics as shown in Figure 16.

5. Conclusions

This paper proposes a brain medical image fusion framework
in NSST domain. In this fusion method, the CNN is trained
to catch the initial weight from the source images. The NSST
is introduced to decompose the source images in the multi-
scale and direction, and the initial weight is also decomposed
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Figure 13: The average objective metrics of the results.

Table 2: The average running times of different methods (times/second).

Methods LP DTCWT CVT NSST-PAPCNN SR-CVT NSCT-PCNN NSST-SR Proposed

Time 0.03 0.43 1.98 7.68 2.54 18.73 15.36 6.73

12 BioMed Research International



by NSST into low- and high-frequency coefficients. The first
components of the low-frequency coefficients are fused by an
activity level measurement, the low2-frequency made up by

the strategy which is designed according to the low-
frequency component of the initial weight. The high-
frequency coefficients are recombined by the corresponding

(a) CT-SPET (b) NSST-PAPCNN

(c) CNN (d) Proposed

Figure 14: Fusion results of different methods of CT-PET image.

(a) CT-SPET (b) NSST-PAPCNN

(c) CNN (d) Proposed

Figure 15: Fusion results of different methods of CT-SPET image.
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Figure 16: The histogram of each performance metric of fusion results.

13BioMed Research International



high-frequency component of the weight. At last, the final
result is reconstructed by the inverse NSST. It is proved that
our method has excellent performance in both visual effects
and objective evaluation by several comparative experiments
which consist of different pairs of CT-MR, PET, and SPET
images. At the same time, it is indeed proved that the prob-
lem is that the weight got out by CNNs’ inapplicability on
the medical image fusion. Furthermore, we are preparing to
do more research about specific medical image and commit-
ting to enhance the operational efficiency of the entire inte-
gration framework.
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