
Research Article
Spiculation Sign Recognition in a Pulmonary Nodule Based on
Spiking Neural P Systems

Shi Qiu ,1 Jingtao Sun,2 Tao Zhou ,3,4 Guilong Gao,5 Zhenan He,6 and Ting Liang 2,7

1Key Laboratory of Spectral Imaging Technology CAS, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy
of Sciences, Xi’an 710119, China
2Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
3School of Computer Science and Engineering, North Minzu University, Yinchuan 750021, China
4School of Science, Ningxia Medical University, Yinchuan 750004, China
5Key Laboratory of Ultra-Fast Photoelectric, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences Xi’an,
710119, China
6Shaanxi Institute of Medical Device Quality Supervision and Inspection, Xi’an 712046, China
7Department of Biomedical Engineering, the Key Laboratory of Biomedical Information Engineering of the Ministry of Education,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710061, China

Correspondence should be addressed to Tao Zhou; zhoutaonxmu@126.com and Ting Liang; liangting31500@126.com

Received 10 October 2020; Revised 4 December 2020; Accepted 11 December 2020; Published 24 December 2020

Academic Editor: Changming Sun

Copyright © 2020 Shi Qiu et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The spiculation sign is one of the main signs to distinguish benign and malignant pulmonary nodules. In order to effectively extract
the image feature of a pulmonary nodule for the spiculation sign distinguishment, a new spiculation sign recognition model is
proposed based on the doctors’ diagnosis process of pulmonary nodules. A maximum density projection model is established to
fuse the local three-dimensional information into the two-dimensional image. The complete boundary of a pulmonary nodule is
extracted by the improved Snake model, which can take full advantage of the parallel calculation of the Spike Neural P Systems
to build a new neural network structure. In this paper, our experiments show that the proposed algorithm can accurately extract
the boundary of a pulmonary nodule and effectively improve the recognition rate of the spiculation sign.

1. Introduction

A pulmonary nodule is an early pattern of lung cancer.
Malignant lesions might occur in some pulmonary nodules
and even threaten patients’ lives seriously [1]. The spicula-
tion sign is the feature of a pulmonary nodule. It is a radial
and unbranched strip shadow extending from the boundary
of a pulmonary nodule to the surrounding pulmonary
parenchyma [2]. Its detection may cost more time and energy
of doctors.

The diagnosis of benign and malignant pulmonary nod-
ules can be divided into imaging detection and “biopsy.”
The most accurate detection method is “biopsy,” but it can-
not predict the development trend of pulmonary nodules.
Imaging analysis is still the mainstream detection method

[3, 4]. It is also a main method to predict the development
trend of benign and malignant pulmonary nodules from
the perspective of imaging [5, 6]. “Biopsy” needs to sample
the suspected lung lesions for detection. In the detection pro-
cess, the instrument needs to be deep into the lung, which is
easy to cause discomfort to patients. The suspected area for
“biopsy” should be determined in advance. It needs to be
analyzed by modeling from the perspective of imaging, so it
is very important to start prepositioning from the perspective
of imaging. “Biopsy” is the gold standard for judging benign
and malignant pulmonary nodules. But the probability of
malignant pulmonary nodules is far less than that of malig-
nant. For this reason, not all pulmonary nodules must be
biopsied. Main imaging features of pulmonary nodules
include lobulation sign, spiculation sign, and cavity sign. It
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is necessary to identify the signs in biopsy of high probability
pulmonary nodules. According to the sign features of
pulmonary nodules, a single model cannot realize recogni-
tion accurately and effectively. Therefore, we need to analyze
the signs and establish the model one by one. “Biopsy” can
only detect the current benign and malignant pulmonary
nodules, but cannot predict the development of pulmonary
nodules. But the imaging is different, it can compare the
change rate of the same lesion point in different time periods,
predict the development area of pulmonary nodules in the
future, and further guide the diagnosis. Therefore, our
research is significant.

The main signs of pulmonary nodules are lobulation sign,
spiculation sign, cavity sign, and calcification. The spicula-
tion sign has the highest deterioration rate, and it is difficult
to distinguish the lobulated sign. Therefore, our research is
based on the spiculation sign in this paper. Pulmonary
nodules present a limited number of pixels in the image,
and pulmonary nodules are volume data with three-
dimensional structure. As a result, CT cannot accurately
locate the signs of pulmonary nodules and make accurate
judgment. Aiming at this problem, a density projection
algorithm is proposed to integrate local 3D information into
two-dimensional images for accurate diagnosis.

With the development of computer imaging technology,
computer-aided diagnosis becomes possible for doctors and
also has been successfully applied into the detection of pul-
monary nodules: Qiu et al. [2] establishes a model to detect
solitary pulmonary nodules. Gavrielides et al. [7] built a
three-dimensional model to analyze the volume of pulmo-
nary nodules. El-Baz et al. [8] judges the malignant degree
of pulmonary nodules through analyzing morphological
characteristics of pulmonary nodules. Brandman and Ko
[9] establish a complete process including the detection of
pulmonary nodules and the distinguishment and manage-
ment of signs. Chen et al. [10] establish a neural network
and a regression model to distinguish pulmonary nodules.
Huang et al. [11] introduce the practical application of mem-
brane calculation and achieves good results. Fan et al. [12]
analyze the sign of pulmonary nodules from a mathematical
and statistical perspective. Vinay et al. [13] construct an
optimal classifier to distinguish the spiculation sign from a
three-dimensional perspective. Dhara et al. [14] quantify
the speculation sign on the basis of a three-dimensional
model. Han et al. [15] focus on boundary characteristics to
analyze the benign and malignant pulmonary nodules. Wang
et al. [16] establish an image enhancement model to highlight
pulmonary nodules. Choi and Choi [17] use a fixed threshold
to segment pulmonary nodules. Rubin [18] sets seed points
for local growth of pulmonary nodules. Shen et al. [19] estab-
lish a bidirectional coding system to improve the efficiency of
the proposed algorithm. Qiang et al. [20] apply the active
contour model for the segmentation of pulmonary nodules.
Messay et al. [21] realize the segmentation of pulmonary
nodules through analyzing the characteristics of CT pixel
distribution from the linear regression perspective. Zhang
et al. [22] analyze the spiking neural P systems based on
the principle and puts forward a fast solution algorithm.
Kumar et al. [23] classify pulmonary nodules by depth fea-

tures. Bartholmai et al. [24] analyze the characteristics of
pulmonary nodules with a computer. Firmino et al. [25]
analyze the malignant degree of pulmonary nodules from
the sign perspective. Dhara et al. [26] establish a gradient
model to extract pulmonary nodules. Gonçalves et al. [27]
establish the Hessian matrix to segment pulmonary nod-
ules. Wang et al. [28] establish a data-driven model to
focus on the pulmonary nodule area. Soliman et al. [29]
establish the Adaptive Appearance-Guided Shape Model
to simulate the distribution of pulmonary nodules. Froz
et al. [30] classify pulmonary nodules with the support
vector machine. Hoogi et al. [31] improve the level set
algorithm for the pulmonary nodule segmentation. Wang
et al. [32] apply the spiking neural P systems to realize
the target tracking and path planning. Shakir et al. [33]
establish a three-dimensional level set algorithm based on
the two-dimensional segmentation. Qiu et al. [34] classify
pulmonary nodules based on the geometric theory. Xie
et al. [35] fuse multiple features to distinguish pulmonary
nodules. Wang et al. [36] propose a set of complete data
training algorithm to classify pulmonary nodules. Pang
et al. [37] Automatic lung segmentation based on texture
and deep features of hrct images with interstitial lung dis-
ease. Rong et al. [38] improve the spike neural P systems
and improve the diagnosis accuracy. Cao et al. [39] used
two-stage convolutional neural networks for nodule detec-
tion. Xu et al. [40] used multiresolution CT screening
images to detect nodules.

Currently, the main problems of the computer-aided
diagnosis of pulmonary nodules can be summarized as
follows: (1) the two-dimensional and three-dimensional
features of pulmonary nodules are difficult to be balanced
during the modeling process. (2) The accurate segmentation
of pulmonary nodules cannot be realized with gray values
and without boundary features. (3) An effective distinguish-
ing mechanism cannot be established after obtaining features
of pulmonary nodules.

Therefore, in this paper, a spiculation sign recognition
algorithm is proposed after studying the doctors’ diagnosis
process of pulmonary nodules. (1) A maximum intensity
projection model is established to fuse the three-
dimensional information into the two-dimensional image
to reduce the missed rate of spiculation signs. (2) The accu-
rate extraction of pulmonary nodules can be realized by the
improved Snake model to strengthen the boundary effect.
(3) A neural network framework based on the Spike Neural
P Systems is constructed through focusing on boundary
features of pulmonary nodules.

2. Algorithm

The spiculation sign recognition process of pulmonary nod-
ules is simulated by the computer, as shown in Figure 1. (1)
The maximum intensity projection algorithm is constructed
to fully display the features of pulmonary nodules. (2) The
boundary of pulmonary nodules is focused by the improved
Snake algorithm. (3) The Spiking Neural P Systems is
optimized to realize the sign recognition.
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2.1. Projection Algorithm. The spiculation sign is the main
feature to distinguish benign pulmonary nodules frommalig-
nant ones. It is defined as a radial and unbranched stripe
shadow extending from the boundary of a pulmonary nodule
to the surrounding pulmonary parenchyma. According to
the local highlight of a pulmonary nodule, its section struc-
ture is extracted layer by layer to construct a model from
the perspective of local three-dimensional information.

The maximum gray value along the ray direction of
continuous multiframes is used by MIP as the gray value of
the corresponding point on the projection image [41],

MIP x, yð Þ =max I0 x, yð Þ⋯ IN x, yð Þð Þ, ð1Þ

where MIPðx, yÞ is the gray value at the point ðx, yÞ on the
MIP image. N is the number of projection layers. Ikðx, yÞ is
the gray value at the point ðx, yÞ on the k-th image in the
original CT sequence images. MIP images contain local
three-dimensional features, which can restore the local
three-dimensional information of pulmonary nodules, as
shown in Figure 2.

2.2. The Segmentation Algorithm of Pulmonary Nodule. A
pulmonary nodule is displayed in the highlighted area and
occupies a limited number of pixels in CT images.

A benign pulmonary nodule has features of small area,
high luminance, and smooth boundary; however, a malig-
nant pulmonary nodule has features of large area, high
luminance, and blurred boundary. Complete segmentation
is the premise of the pulmonary nodule distinguishment.

2.2.1. The Snake Model. The Snake model algorithm can per-
form the target segmentation from the perspective of internal
energy and external energy [42]. It has the following advan-
tages: image data, initial estimation, target contour, and
knowledge-based constraints are unified in one process. It
can automatically converge to the state of minimum energy
after proper initialization. Minimizing the energy from
coarse to fine in scale space can greatly expand the capture
area and reduce the complexity. Meanwhile, the Snake model
algorithm also has its disadvantages: It is sensitive to the ini-
tial position, and Snake needs to be placed near the image
features depending on other mechanisms. It may converge
to the local extremum or even diverge because of the noncon-
vexity of the Snake model. Dong et al. [43] introduce the deep
learning theory to constrain the Snake algorithm to segment
targets. Rajinikanth et al. [44] achieve the three-dimensional
target segmentation based on the Snake algorithm and the
Otsu algorithm. Ma et al. [45] fuse the local phase position,
and the Snake algorithm alleviates the problem of conver-
gence to the local extremum.

When the Snake model achieves the balance of internal
energy and external energy, the optimal segmentation effect
is obtained. The energy functional is defined as:

E =
ð1
0
Ein C sð Þ½ � +f Eout C sð Þ½ �gds,

C sð Þ = x sð Þ, y sð Þð Þs ∈ 0, 1½ �,

8><
>: ð2Þ

where CðsÞ is a contour curve and Ein½CðsÞ� is an internal
energy function. Ein½CðsÞ� is only related to the curve itself,
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Figure 1: Flow chart of the spiculation sign recognition algorithm.
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so that the curve keeps continuity and smoothness during
deformation. Eout½CðsÞ� is an external energy function, and
Eout½CðsÞ� is only related to the image itself, which can drive
the curve to move towards the target boundary continuously.

Ein C sð Þ½ � = 1
2 α C′ sð Þ�� ��2 + β C″ sð Þ�� ��2h i

, ð3Þ

where α is the elastic energy weight coefficient and β is the
rigid energy weight. The minimization of variational princi-
ple CðsÞ should satisfy the Euler equation:

αC″ − βC″″−∇Eout = 0: ð4Þ

The GVF model [46] introduces the gradient vector flow
Vðx, yÞ = ðuðx, yÞ, vðx, yÞÞ to replace the external force of the
Snake model, then the energy functional of the external force
field is

εGVF = min ∬ w u2x + u2y + v2x + v2y
� �nn

+ ∇fj j2 V−∇fj j2�dxdy�,
ð5Þ

wherew is the weight coefficient to control the smoothness of
the external force field. f ðx, yÞ is an image boundary map-
ping function. When the curve is far from the target contour,
the first term plays a major role. On the contrary, the second
term plays a major role in expanding the search scope. By
solving

w∇2u − u − f xð Þ f 2x + f 2y
� �

= 0,

w∇2v − v − f xð Þ f 2x + f 2y
� �

= 0,

8><
>: ð6Þ

where the GVF field is obtained, where▽2 is a Laplacian
operator. The Laplace operator produces an isotropic
smoothing effect on the external force field and cannot
protect the boundary.

2.2.2. The Improved Model. As the traditional Snake algo-
rithm is easy to converge to the local extreme and cannot
protect boundary, we have analyzed the Laplace operator:

The Laplace operator can be decomposed into normal and
tangent components, and the normal direction component
can promote the contour line to converge to the deep concave
part. Thus, w ∣ JvP ∣ term is added to make the curve con-
verge to the small deep concave boundary. The improved
function is as follows:

ε =min ∬ m x, yð Þ ∇Vj j2�n
+h x, yð Þ w JvPj j2 + V−∇fj j2� ��

dxdy
�
,

ð7Þ

where w, gðx, yÞ, and hðx, yÞ are weighting functions and Jv
is the Jacobian matrix of external force field. In order to
enhance the corresponding boundary, we construct

P =

−
Ixyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I2xx + I2xy
q , Ixxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I2xx + I2xy
q

−
Iyyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I2yx + I2yy
q ,

Iyxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2yx + I2yy

q

2
6666664

3
7777775
, ð8Þ

to increase the accuracy of corner positioning.
In Eq. (7), j▽V j2 has a strong smoothing effect on the

boundary. To reduce boundary weakening, j▽V j2 is replaced
by

G = 1 + ∇Vj j2� �q ∇fj jð Þ/2q ∇fj jð Þ = 1 + 1
1 + ∇fj j : ð9Þ

In the smoothing area, ∣▽f ∣→ 0, qð∣▽f ∣ Þ→ 2, the
external force field has an isotropic diffusion effect. At the
boundary, ∣▽f ∣→∞, qð∣▽f ∣ Þ→ 1, G→ ∣▽V ∣ , the exter-
nal force field only diffuses along the boundary direction to
prevent boundary leakage and improve the antinoise perfor-
mance. The energy function is

ε =min ∬ m x, yð ÞGf
n

+h x, yð Þ w JvPj j2 + V−∇fj j2� ��
dxdy

�
,

ð10Þ
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Figure 2: MIP effect image.
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which corresponds to the Euler equations ZðuÞ = 0 and Z
ðvÞ = 0.

The iterative formula of numerical solution lðun+1i,j Þ,
lðvn+1i,j Þ is

l an+1i,j

� �
= 1 − Δt · h ∇fj jð Þani,j + Δt · g ∇fj jð Þ
�

� 1 + ∇aj j2� �q−2/2h
att + q − 2ð Þ ∇aj j2 1 + ∇aj j2� �q−4/2�

+ 1 + ∇aj j2� �q−2/2 + 1
�
unn

i
+ Δt

· w2h ∇fj jð Þ P2
11axx + P2

12ayy + 2P11P12
� �

+ ca

 �

,
ð11Þ

where cu = hðj∇f jÞf x, cv = hðj∇f jÞf y . Δt is the iteration step.
ðuni,j, vni,jÞ represents the field forces at coordinates ði, jÞ with
n iterations. Pulmonary nodules are extracted layer by layer
to obtain complete pulmonary nodules.

2.3. Neural Network System Based on Spiking Neural P
Systems. The SN P systems are a parallel computing model
derived from organisms [47]. Wang et al. [48] introduce
the fuzzy set theory on the basis of SN P systems, which
solves the problem of fault diagnosis to a certain extent.

The topological structure of SN P systems is composed of a
directed graph. Each neuron in the system is represented by
a node, and the synapse between two adjacent neurons in
the system is represented by edge. It is similar to the topolog-
ical structure of the artificial neural network. There are abun-
dant theoretical and applied researches in ANN, so the
learning rules in ANN can be introduced into SN P systems.

The neural network based on SN P systems can be
defined as

B = O, σ1,⋯, σm, syn, y, in, outð Þ,
σi = ni, Rið Þ,

ð12Þ

where O represents a set of pulses; σm represents the m-th
neuron in System B; ni ≥ 0 represents the number of original
pulses; Ri represents a set of all rules in neuron σi; The form
of excitation rule is E/ac → a, c ≥ 1; The rule of oblivion is
as → λ, s ≥ 1; y represents the learning function of system;
in and out represent the input and output neurons of the sys-
tem, respectively. Define the rule as E/ac → αkði,QjÞ, k ≥ 1,
c ≥ 1, 1 ≤ j ≤ ∣Ri ∣ . When the rule is called, all neurons in σi
and Qj establish the connection state.

OUT2

1 2 3

1 2 3 4 5
O

U
T1

1
2

3

1
2

3
4

5

123

12345
O

U
T3

1
2

3

1
2

3
4

5

Module 1

Module 2

Module 3

1
2
3

Neuron

3 neurons

3 neurons

5 neurons
OUT4

Figure 3: Network framework.

5BioMed Research International



Syn represents a synapse between σi and σ j; wijðtÞ repre-
sents the weight of synapse ði, jÞ. T = fwijðtÞ ∣ t = 1,2,3⋯ g
represents a set of weights on synapsesði, jÞ at different times.

According to the state of time t and wijðtÞ, the synaptic
weight set wijðt + 1Þ at time t + 1 can be obtained by y; pr
ðσiÞ and poðσiÞ represent the label set of presynaptic neu-
rons and postsynaptic neurons of σi, respectively.

If σi contains b pulses and ab ∈ LðEÞ, E/ac → αkði,QÞ is
used. If the rules in the system are excited, c pulses will be
consumed. Then, the next step will be performed according
to the value of α:

(i) For α = +, if 1 ≤ ∣Q − prðσiÞ ∣ ≤k, σi selects all neuron
tags in Q − prðσiÞ to create synapses. If ∣Q − prðσiÞ
∣ >k, σi randomly selects k neuron tags in Q − pr
ðσiÞ to create synapses. If Q − prðσiÞ =∅ or
prðσiÞ =∅, C pulses are consumed but synapses
are not established. In this case, the principle of
synaptic creation rules is similar to that of stan-
dard rules of oblivion

(ii) For α = −, if ∣prðσiÞ ∣ ≤k, all synapses are deleted in
prðσiÞ. If ∣prðσiÞ ∣ >k, k neurons are selected in
prðσiÞ and the synaptic connection with each
selected neuron is deleted

(iii) For α = ∓, synapses are created at the time t and
deleted at the time t + 1. Conversely, for α = ±, syn-
apses are deleted at the time t and created at the time
t + 1. In this case, the use of rules is similar to that of
α = + and α = −. From time t to time t + 1, σi is

always in an open state, but σi uses other rules at
time t + 2

If σi has k pulses and ak ∈ LðEÞ, k ≥ c, the excited rule E/
ac → ap; d is used. When this rule is used, σi will delete c
pulses. At the same time, p pulses are sent to all neurons con-
nected to σi after d time intervals. When the excited rule is
used to the d-th time intervals, σi is in a closed state. Rules
and processing pulses can only be used by σi when the execu-
tion conditions are met. If σi uses the excitation rule E/ac
→ ap at t-th step, σi at t-th, t + 1 − th,⋯t + d − 1 − th step
is not executed. After t + d steps, σi is in the excited state.

If a neuron has s pulses, the rule of oblivion E’/as → λ, s
≥ 1 is used. When this rule is used, σi will consume s pulses.
No new pulse will be produced.

The state of System P at a certain time is expressed as
Cr = <k1/t1,⋯, km/tm > ,1 ≤ i ≤m, where ki represents the
number of pulses stored in neuron σi in this state; ti repre-
sents the time taken for σi to be reactivated. At the beginning
of System P calculation, all neurons meet the excitation rule
conditions. By rules, the state of the system is transferred.
C1 ⇒ C2 means that the system is transferred from state C1
to state C2. When all neurons in the system have been acti-
vated, the termination state means that there are no rules in
the neurons that can be activated again. If a system is able
to calculate till the termination state, then the calculation is
regarded as the one that can be terminated.

According to the state of time t and wijðtÞ, the synaptic
weight set wijðt + 1Þ is obtained at time t + 1. Theoretically,
if there is a transfer of Mt

t+1 from time t to time t + 1 in
the system, and the set of weights on the synapse is wijðtÞ.

Figure 4: Experimental data.
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Then, under the transfer ofMt
t+1, the set function of synaptic

weights at time t + 1 is wijðt + 1Þ = yðMt
t+1,wijðtÞÞ.

2.4. Network Connection. Based on the above analysis, the
boundary extraction image is combined with the neural
network system of SN P systems. The parallelism of SN P
systems and the flexibility of neural networks are taken full
advantage.

(1) Mark the boundary of a pulmonary nodule as 1,
which is regarded as a pulse signal. Nonboundary
areas are marked as 0

(2) Normalize the boundary image size of a pulmonary
nodule to 5 × 7

(3) The neurons are divided into three parts, as shown in
Figure 3. The flow direction of a pulse signal is from
Module 1 to Module 2 and then to Module 3. Three
neurons of Module 1 establish the neural connection
of Module 2 through the defined SN P systems rules,
and the weights of all synapses are 1. There is only
one excitation rule for the neurons of Module 2 and
Module 3, that is, if the neuron contains pulses, the
neuron is excited until the number of pulses in the
neuron changes to 0, and the calculation is termi-
nated. Module 2 has four layers, and each layer con-
tains three neurons. Module 3 has four layers, and
each layer contains five neurons. The neurons of
Module 2 and Module 3 are connected by synapses

3. Experiment and Result Analysis

All the experimental data are from the database of the Inter-
national Early Lung Cancer Action Project and the American
Association of Lung Imaging Databases, as shown in
Figure 4. 514 pulmonary nodules with spiculation signs and
501 pulmonary nodules without spiculation signs are labeled
by two professional doctors as the detection basis. The ratio
of training data and test data is 1 : 1.

3.1. Image Segmentation. The area overlap measure ðAOMÞ
is used to evaluate the segmentation effect.

AOM A, Bð Þ = S A ∩ Bð Þ
S A ∪ Bð Þ × 100%: ð13Þ

AOM is the overlap degree of area. A is the standard
image. B is the segmentation result image. S ð:Þ represents
the pixel number of the corresponding area. The larger the
AOM value, the better the segmentation effect.

Different algorithms are used to segment common pul-
monary nodules and pulmonary nodules with speculation
sign, as shown in Table 1. It illustrates that the segmentation
effect for common pulmonary nodules is better than that for
pulmonary nodules with spiculation sign. That is because
common pulmonary nodules have high gray value and high
density, and pulmonary nodules with spiculation sign have
high gray values including small protrusions. The fixed
threshold [17] algorithm achieves segmentation of pulmo-

nary nodules by selecting threshold artificially, and the result
is good. But the threshold setting is manual. The gradient
model [26] algorithm focuses on the boundary to extract
pulmonary nodules. AAGSM [29] used an initial shape of
pulmonary nodules to constrain segmentation of pulmonary
nodules. LS [31] algorithm establishes the iterative model to
achieve segmentation of pulmonary nodules. The Snake
[38] algorithm establishes internal force and external force
balance mechanism to extract pulmonary nodules. The
Esnake [40] algorithm introduces the Otsu algorithm to
improve Snake and achieves good results. On the basis of
the Snake algorithm, our algorithm protects boundary infor-
mation and suppresses falling into local minimum. It has a
strong segmentation effect for common pulmonary nodules
and pulmonary nodules with speculation sign.

3.2. The Speculation Discrimination Effect. The ROC curve is
introduced to measure the effect of all algorithms. The rec-
ognition results of the original pulmonary nodule image
by different algorithms are shown in Figure 5(a), and the
recognition results of different algorithms in MIP pulmo-
nary nodule images are shown in Figure 5(b). It can be
seen that the MIP algorithm can better reflect the bound-
ary features of pulmonary nodules and improve the distin-
guishing effect of spiculation sign. The fractal model (FM)
[34] uses the fractal operator to calculate the fractal degree
of pulmonary nodules to judge the signs of pulmonary
nodules. The nerve network model (NNM) [10] algorithm
introduces a learning mechanism to realize feature learn-
ing, which requires a large number of samples to train
parameters. 3DM [13] establishes a three-dimensional
pulmonary nodule model and analyzes the pulmonary
nodule signs from a spatial perspective, which can realize
the identification of pulmonary nodule signs, but the algo-
rithm has high complexity. The feature fusion model
(FFM) [35] extracts the gray value and boundary informa-
tion of pulmonary nodules to realize the identification of
pulmonary nodules. Our algorithm fuses the pulmonary
nodule information from three locations and proposes a
time series analysis algorithm, which achieves good results.
The proposed algorithm in this paper focuses on the
boundary of the pulmonary nodule spiculation sign and
integrates the SN P systems into the neural network. It
gives full play to the advantages of the SN P systems
and has a better effect.

Table 1: The effect comparison of algorithms.

Algorithm
AOM %

Common Spiculation

Fixed threshold [17] 94 92

Gradient model [26] 85 76

AAGSM [29] 86 79

LS [31] 89 83

Snake [38] 91 84

Esnake [40] 93 87

Ours 94 90
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4. Conclusion

In view of the recognition of pulmonary nodules with
computer, a complete recognition system of speculation sign
of pulmonary nodules is proposed from the doctors’ perspec-
tive. The MIP algorithm is proposed to restore the three-
dimensional local structure of pulmonary nodules. The
improved Snake algorithm can extract the boundary infor-
mation of pulmonary nodules completely. The neural
network system based on SNP systems can help doctors to
make accurate diagnosis with computer-aided. On the basis
of existing datasets, we will expand the amount of data. By
labeling the dataset, it is of great significance to integrate
the imaging features and pathological features of different
time periods into the model and carry out the research on
the prediction of benign and malignant development trend
of pulmonary nodules.
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