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Objective. To investigate the antibacterial effect of a novel antimicrobial peptide containing oral spray GERM CLEAN on
Streptococcus mutans (S. mutans) in vitro and further explore the related mechanisms at phenotypic and transcriptional levels.
Methods. /e disk diffusion method was used to preliminarily appraise the antimicrobial effect of GERM CLEAN. /e minimal
inhibitory concentration (MIC) of GREM CLEAN towards S. mutans was determined by the broth dilution method. S. mutans
virulence-related phenotypic assays including initial adhesive assay, pH drop, exopolysaccharides (EPS), and biofilm formation
measurements and quantitative real-time PCR (qRT-PCR) were further applied to detect the inhibitory mechanisms of GREM
CLEAN at 1/2MIC. Results. /e diameter (10.18± 1.744mm) of inhibition zones formed by GERM CLEAN preliminarily in-
dicated its inhibitory effect on the major cariogenic bacteria S. mutans. /e minimal inhibitory concentration of GERM CLEAN
on S. mutans was 100% mass fraction (the stock solution). /e study of the antibacterial mechanism showed that GERM CLEAN
had a certain inhibitory effect on the initial adhesion, acid production, extracellular polysaccharides (EPS) production, and biofilm
formation of S. mutans. GERM CLEAN disturbed S. mutans biofilm physiology mainly through destruction of biofilm ar-
chitecture and suppression of bacterial growth. /e results of qRT-PCR further confirmed that the expression levels of EPS and
lactic acid generation genes including gtfB, gtfC, gtfD, and ldh were significantly repressed by treating with GERM CLEAN, and
this was consistent with our phenotypic results. Conclusion. /e novel antimicrobial peptide containing oral spray GERMCLEAN
has an anti-Streptococcus mutans effect and the inhibitory property may be due to suppression of the virulence factors of S. mutans
including adhesive, acidogenicity, EPS, and biofilm formation.

1. Introduction

Dental caries is a prevalent chronic oral infectious diseasewhich
is featured with progressive destruction of dental hard tissue,
and as one of the most prevalent infectious diseases worldwide,
dental caries endangers human health throughout the life cycle
and nowadays we are even suffering an elevated risk for the
incidence of dental caries [1, 2]. Vast studies on the etiology of
caries reveal that multispecies microorganisms play an essential
role in the occurrence and development of tooth decay, among
which S. mutans is deemed as the main cariogenic bacteria
species [1, 3–8]. To thrive in the oral microbiota, S. mutans

managed to evolve with several cariogenic characteristics in-
cluding the ability to adhere to tooth surface, to survive in low
pH, and to produce acids and exopolysaccharides (EPS)
[1, 9, 10], while the conversion of diet-derived carbohydrates
into EPS can further induce the formation of biofilms [11]. In
recent years, using antimicrobial agents as an adjuvant for oral
mechanical therapy has received much attention and has been
widely used in clinical practice, but long-term use of antibiotics
will cause certain toxic and side effects, resulting in flora im-
balance and antibiotic resistance [12]. /us, it is important to
explore new drugs that inhibit common oral pathogenic
bacteria while not necessarily lead to medical tolerance.
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To date, antibacterial peptides (AMPs) have attracted
much attention as a promising alternative anti-infective for
caries treatment [13–17]. AMP is a kind of small molecular
polypeptide produced by the natural immune system, which
widely exists in plants, insects, and mammals and has a
broad-spectrum antimicrobial activity [18, 19]. AMPs have
an inhibitory effect on multiple species of bacteria, fungus,
and even viruses [20–24]. Moreover, AMPs are effective
against both planktonic bacteria and bacterial biofilms
[25–29]. Although the specific mechanism of AMPs varies
based on the amino acid composition and physicochemical
properties, positively charged residues contained in most of
the AMPs allow them to interact with the negatively charged
bacterial membranes [30–32] and then with membrane
depolarization, membrane damage, pore formation, cell
lysis, peptide internalization, and intracellular targets
damage [30, 31]. /ese specific antimicrobial mechanisms of
AMPs make them do not cause resistance easily. With the
above mentioned properties, AMPs show great potential for
clinical application, leading the research and medication of
AMPs to raise increasing attention in fields of bio-
pharmaceuticals [33]. However, most natural AMPs still
have many disadvantages in their clinical application, in-
cluding their large size, high cost and difficulty of pro-
duction, and varying effective concentration against saliva
dilution and degradation [34]. To improve these circum-
stances, taking natural AMPs as templates, many scholars
have successfully designed and created many synthetic
AMPs with promising antibacterial activity [35–37]. /ese
years, Chen et al. [38] designed ZXR-2, Sullivan et al. [27]
synthesized C16G2, and Zhang et al. [39] created DPS-PI,
which were all synthetic AMPs that showed apparent an-
tibacterial effect against the caries pathogenic bacteria, S.
mutans. When compared with natural AMPs, synthetic
AMPs can possess more efficient and broader-spectrum
antibacterial activity and are not easy to produce resistance
limitation, with lower cytotoxicity [34, 35, 40].

In recent years, many natural and synthetic AMPs have
been confirmed to be inhibitory against cariogenic bacteria,
defensins, Histatin 5, Human Lactoferrin [28], KSL [26],
L-K6 [41], and C16G2 [42] included. And an increasing
number of novel AMPs with kinds of properties are being
discovered or synthesized.

GERMCLEAN is a new synthetic polypeptide. According
to the manufacturer’s instructions, it can effectively kill the
pathogenic bacteria leading to oral mucositis, periodontitis,
etc. As a novel drug product, there is no report on the an-
tibacterial activity of GERMCLEAN on S. mutans. /e aim of
this study was to explore effects and the related mechanisms
of GERM CLEAN on the major cariogenic bacteria, S.
mutans, in the state of plankton and biofilm, so as to provide
new perspective for the treatment of caries, as well as the
experimental basis for further clinical promotion of this novel
biological product.

2. Materials and Methods

2.1. Bacterial Strains and Growth Conditions. All chemicals
and assay kits were purchased from Sigma-Aldrich (St.

Louis, MO) unless otherwise stated. S. mutans UA159 was
kindly donated by Dr. Justin Merrit from the University of
Oklahoma Health Sciences Center and grown in brain–heart
infusion broth (BHI; Oxiod, Basingstoke, UK) anaerobically
(in an atmosphere consisting of 85% N2, 10% H2, and 5%
CO2) at 37°C [43]. Overnight cultures of UA159 were diluted
20-fold in fresh BHI and grown to OD600nm � 0.5 to generate
mid-exponential phase bacteria. Mid-exponential phase
bacteria cultures were further 20-fold diluted for S. mutans
initial adhesion and biofilm formation using BHI medium
supplemented with 1% (wt./vol) sucrose (BHIS).

2.2. 0e Filter Paper Disk Agar Diffusion Method. /e an-
tibacterial activity of GERM CLEAN (Shanxin, Chengdu,
Sichuan, China) on S. mutans was preliminarily tested using
the filter paper disc agar diffusion method introduced
elsewhere withminormodification [44–47]. Briefly, 100 μl of
mid-exponential phase UA159 suspension was spread on
fresh nutrient BHI agar medium plates and dried at room
temperature for 5min. /e 5mm sterile filter paper disks
were impregnated with GERM CLEAN (the stock solution)
for 5 s and then were applied to the surface of above BHI
bacterial culture plates. Plates were then incubated for 24 h at
37°C. /e antibacterial activity was evaluated by measuring
the diameter of the inhibition zone.

/e experiments were repeated three times independently.

2.3. Minimal Inhibitory Concentration (MIC) Determination.
/e broth microdilution method according to the previous
introduction [44, 48–50] with some modifications was ap-
plied to determine the MIC value of GERMCLEAN towards
S. mutans. Two-fold serial dilutions with BHI of GERM
CLEAN were prepared in 96-well microtiter plates and the
final mass fractions of the tested liquor were from 100% to
0.78%. First, 200 μl of GERM CLEAN with a 100% mass
fraction was added to the initial well. Next, 100 μL of the BHI
medium was added to other wells. /en, 100 μl of 100%
GERM CLEAN from the first well was added to the second
well. After mixing, 100 μl of this mixture was embedded into
the following well. Similarly, the dilution procedure was
continued to the 8th well. 10 μL of the 1/20th mid-expo-
nential phase bacterial suspension with a standard con-
centration of 0.5 (OD600nm) was added to each well. /e BHI
medium was used as a negative control. /e 96-well
microtiter plate was then incubated for 24 h at 37°C under
the anaerobic conditions mentioned above. /e MIC was
defined as the lowest concentration of GERM CLEAN with
no visible bacteria existing and the well looked clear and
transparent.

/e experiments were repeated three times independently.

2.4. Growth Curve Assay. We diluted the S. mutans of mid-
exponential phase with BHI broth to obtain the starting
optical density at 600 nm of 0.05. /en, we added GERM
CLEAN into the 96-well microtiter plate filled with S.
mutans culture to a final concentration of 1/2MIC. BHI
medium acted as a negative control. /e growth of 200 μl
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cultures in a 96-well microtiter plate was measured. /e 96-
well microtiter plate was incubated at 37°C anaerobically 24 h
and optical density at 600 nm was determined using a
microplate spectrophotometer (Multiskan GO; /ermo Sci-
entific, Waltham, MA) every hour throughout 24 h of
incubation.

/e experiment was repeated three times independently.

2.5. Initial Adhesive Assay. /e initial adhesive assay was
performed in 48-well microtiter plates. Mid-exponential
S. mutans was diluted with BHIS as described above. /en,
we added GERM CLEAN into the 48-well microtiter
plates filled with S. mutans culture to final concentrations of
1/2MIC. BHIS medium acted as a negative control. /e
microtiter plates were incubated anaerobically at 37°C for
1 h, 2 h, and 4 h, respectively. After incubation, we removed
the suspension and washed the wells twice with PBS to
obtain the adherent cells and then added 500 μl sterile BHIS
broth to resuspend the adherent cells. Amount of adherent
bacteria was determined by measuring optical density at
600 nm and the difference of OD600nm between treated and
control groups was compared. To further evaluate the effect
of GERM CLEAN at the concentration of 1/2MIC on the
adherence of S. mutans, we calculated the antiadherence
percentage.

/e experiment was repeated three times independently.
/e initial adherence [51, 52]: OD600nm of assay group

compared with OD600nm of control group.
Antiadherence percentage [49, 53]� (OD600nm of con-

trol group−OD600nm of assay group)/OD600nm of control
group× 100%.

2.6. Biofilm Formation Assay. /e effect of GERM CLEAN
on S. mutans biofilm formation was explored using a
quantitative crystal violet assay described elsewhere [54, 55]
with somemodifications. Briefly, mid-exponential S. mutans
was diluted with BHIS broth as described above. /en, we
added GERM CLEAN into the 96-well microtiter plate filled
with S. mutans culture to final concentrations of 1/2MIC.
BHIS medium acted as a negative control. After anaerobic
incubation (24 h, 37°C), culture supernatants, and plank-
tonic cells were removed, and the biofilm in each well was
washed with PBS to remove the remaining unattached cells.
/e biofilms were then fixed with methanol for 15min and
stained with 0.1% (wt./vol) crystal violet for 15min, se-
quentially. After staining, the biofilm was rinsed twice with
distilled water to remove excess CV, and then the dye bound
to the cells was resolubilized with 33% (vol/vol) glacial acetic
acid for 20–30min at room temperature. Biofilm formation
was then quantified by measuring the optical density of the
suspension at 600 nm by a microplate reader (Gene, Hong
Kong, China).

/e experiment was repeated three times independently.

2.7. Water-Insoluble EPS Measurement. /e anthrone
method [43, 56] was used to examine the effect of GERM
CLEAN on production of water-insoluble EPS by S. mutans

with some modifications. Briefly, biofilms were collected by
sonication/vortexing in PBS buffer./en, the precipitate was
obtained by centrifugation (4000 rpm, 10min, 4°C), washed
twice with sterile water, and resuspended in 1ml of 0.4M
NaOH. Water-insoluble polysaccharides were extracted
under agitation for 2 h at 37°C. After centrifugation
(4000 rpm, 10min, 4°C), we added three volumes of 0.2%
anthrone-sulfuric acid reagent to each supernatant sample at
95°C for 6min. /e OD625nm was monitored with a
microplate reader.

/e experiment was repeated three times independently.

2.8. Scanning Electron Microscope (SEM) Examination.
/e biofilms were produced in a 24-well plate with sterilized
glass slides at the bottom of wells. /e biofilms were formed
as described above. /e specimens were rinsed with PBS
three times and then fixed with 2.5% glutaraldehyde over-
night at 4°C. Following initial fixation, the specimens were
washed with PBS and then serial dehydrated with ethanol
(30%, 50%, 70%, 80%, 85%, 90%, 95%, and 100%) for 30min
each time; finally, the biofilms were dried and observed at
magnifications of 5,000x and 20,000x by SEM imaging (FEI,
Hillsboro, USA).

2.9. Confocal Laser Scanning Microscope (CLSM)
Examination. /e biofilm specimens were formed on sterile
glass coverslips put at the bottom of 24-well microtiter plates
as described above. /e specimens were rinsed with PBS
three times and CLSM imaging was used for observation of
the live/dead staining of S. mutans biofilms. Briefly, biofilms
were stained using the LIVE/DEAD1 BacLight™ Bacterial
Viability Kit (L-7012, Molecular Probes™, Invitrogen,
Carlsbad, CA, USA) containing two component dyes (SYTO
9 and propidium iodide) following the manufacturer’s in-
struction. /e labeled biofilms were imaged with a confocal
laser scanning microscope (DMIRE2, Leica, Wetzlar, Ger-
many) equipped with a 60× oil immersion objective lens.
/e image channels were set according to the manufacturer.
/e excitation maxima for these dyes were 480/500 nm for
the live cell stain SYTO 9 and 490/635 nm for the dead cell
stain propidium iodide. Each biofilm was scanned at five
randomly selected positions.

2.10. Glycolytic Rate Assay. /e effect of GERM CLEAN on
S. mutans glycolysis was measured by pH drop assay as
described elsewhere with some modifications [54, 57, 58].
Briefly, S. mutans was harvested at mid-logarithmic phase
(10,000 g, 10min, 4°C), washed twice with salt solution
(50mM KCl + 1mM MgCl2, PH� 7.2), and resuspended in
the same salt solution containing GERM CLEAN at the
concentration of 1/2MIC. Samples resuspended in BHIS
served as a negative control. Glucose was added to obtain a
final concentration of 1% (wt./vol) to trigger glycolysis, and
the decrease in pH of the bacterial suspensions was evaluated
over a period of 75min using a glass electrode (/ermo
Scientific, Waltham, MA).

/e experiment was repeated three times independently.
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2.11. Quantitative Real-Time PCR (qRT-PCR). QRT-PCR
was used to examine the effect of GERM CLEAN on ex-
pression levels of S. mutans virulence trait related genes
including gtfB, gtfC, gtfD, and ldh, and gyrA was used as the
internal control for quantification [56, 59–61]. Mid-expo-
nential phase S. mutans was 20-fold diluted in BHI broth,
and then the bacteria culture was grown in the BHI broth
with 1/2MIC level of GERM CLEAN, while BHI broth with
no GERM CLEAN acted as a control.

/e RNA isolation and purification procedures were
conducted according to Xu et al.’s protocol [62]. RNA
reverse transcription was performed with a PrimeScript™
RT reagent kit (Takara Biotechnology, Japan) to synthesize
first-strand cDNAs. Specific primers for target genes were
designed according to other studies [43, 56, 61] and listed in
Table 1. Each qRT-PCR reaction mixture contained SYBR®Premix Ex Taq™ II (RR820A; Takara Bio), cDNA samples
(1 μl), and forward and reverse gene-specific primers
(10 μM/l, 0.5 μl each). /e qPCR was performed on the
CFX96 Real-Time System (C1000™ /ermal Cycler; Bio-
Rad, Hercules, CA) applying the thermal cycling conditions
described in Ming-Yun et al.’s protocol [63]. Relative ex-
pression fold changes of tested genes were calculated using
the 2−ΔΔCt method, and expression level of gyrA rRNA gene
was used to normalize the expression level of different
genes.

/e experiments were repeated three times independently.

2.12. Statistical Analysis. Differences between the experi-
mental group and the untreated control group were com-
pared using the t-test after a homogeneity test of variance
with Levene’s test except for evaluations of the inhibition
zone and antiadherence percentage, where the Wilcoxon
Signed Ranks Test was used for the former and the Student-
Newman-Keuls Test was used for the latter after the
aforementioned homogeneity test. Statistical analysis was
performed using SPSS software (Version 20.0; IBM Corp,
Armonk, USA) at a significance level of 0.05, and then all of
our figures were obtained using the Graphpad Prism7
software (version 7.00 for Windows; GraphPad Prism, Inc,
La Jolla, USA) according to the analysis results.

3. Results

3.1. Growth Inhibition Zone Diameter Determination. /e
filter paper disks saturated with the stock GERM CLEAN
solution could form inhibition zones on the bacterial culture
plates, and diameters of the inhibition zones were
10.18± 1.744mm (>7mm, p< 0.05), which preliminarily
indicated the antibacterial effect of GERM CLEAN on S.
mutans.

3.2. Minimal Inhibitory Concentration (MIC) Determination.
After 24 h incubation, the MIC value of GERM CLEAN
against S. mutans obtained by the broth microdilution
method was 100% mass fraction, which was the stock
solution.

3.3. Growth Curve Assay. We evaluated the effect of GERM
CLEAN at 1/2MIC level on the basic viability of S. mutans by
growth curve. As shown in Figure 1, the growth curves of
GERM CLEAN-treated and GERM CLEAN-untreated
S. mutans exhibited significant differences. It was observed
that S. mutans treated with GERM CLEAN at 1/2MIC
exhibited an extended lag phase. S. mutans of control group
entered the logarithmic phase after 3 h and showed rapid
growth till 10 h with a higher-end OD600nm of 0.8. However,
when treated with GERM CLEAN at 1/2MIC, S. mutans
grew a little more slowly with the lag phase extending to 4 h
and lower final OD600nm of 0.55. GERM CLEAN obviously
decrease the number of final bacterial concentration, but it
did not dramatically delay the progress of bacteria to log-
arithmic growth.

3.4. GERMCLEAN Inhibits the Initial Adherence of S. mutans
In Vitro. /e inhibition capacity of GERM CLEAN at 1/
2MIC on S. mutans biofilm formation was analyzed by
calculating the antiadhesion percentage. As shown in
Figure 2(a), GERM CLEAN reduced S. mutans adhesion
(p< 0.05) after 1 h, 2 h, and 4 h of inoculating for biofilm
formation. Figure 2(b) showed that GERM CLEAN effec-
tively reduced the adherence of S. mutans in a time-de-
pendent manner. Specifically, during the first 4 h after
inoculation, the anti-adherence percentage increased along
with the time from 6.0% at 1 h to 15.2% at 2 h and ended up
with 34.1% at 4 h.

3.5. GERM CLEAN Inhibits Water-Insoluble EPS Synthesis
andBiofilmFormation of S.mutans InVitro. GERM CLEAN
at 1/2MIC level impaired S. mutans biofilm formation and
disrupted the ability of S. mutans to synthesize water-in-
soluble EPS (Figure 3). Being treated with GERM CLEAN
reduced (p< 0.05) up to 56.24% of biofilm formation when
compared with the control group (Figure 3(a)). /e water-
insoluble EPS in the treated group decreased 51.76%
(p< 0.05) compared with the control group (Figure 3(b)).

3.6. Scanning Electron Microscopy Examination. SEM im-
aging depicted the impact of GERM CLEAN on S. mutans
glucan production and biofilm structure (Figure 4). /e
BHIS treated control group displayed smooth cell surface
with neither apparent cell lysis nor cellular debris, while it

Table 1: Specific primers of quantitative real-time PCR.

Primers Sequence References
gyrA-F 5′-ATTGTTGCTCGGGCTCTTCCAG-3′ [56, 61]
gyrA-R 5′-ATGCGGCTTGTCAGGAGTAACC-3′
gtfB-F 5′-CACTATCGGCGGTTACGAAT-3′ [43]
gtfB-R 5′-CAATTTGGAGCAAGTCAGCA-3′
gtfC-F 5′-GATGCTGCAAACTTCGAACA-3′ [43]
gtfC-R 5′-TATTGACGCTGCGTTTCTTG-3′
gtfD-F 5′-TTGACGGTGTTCGTGTTGAT-3′ [43]
gtfD-R 5′-AAAGCGATAGGCGCAGTTTA-3′
ldh-F 5′-AAAAACCAGGCGAAACTCGC-3′ [43]
ldh-R 5′-CTGAACGCGCATCAACATCA-3′
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showed evident aggregation of cells with the formation of chains
immersed into the EPS pool. In accordance with the results of
our initial adhesion, anthrone, and biofilm quantifying assays,
the GERMCLEAN-treated samples displayed rough, shrunken,
distorted, and collapsed cells and obvious membrane rupture
with significant dispersion of the cells, which also suggested the
reduced production of EPS. And the cells in the GERM
CLEAN-treated samples showed irregular shapes and obviously
various sizes, with the occurrence of polarity.

3.7. Confocal Laser Scanning Microscopy (CLSM)
Examination. /e effect of GERM CLEAN at 1/2MIC
concentration on the biofilm architecture of S. mutans was
also analyzed by CLSM. As shown in Figure 5, GERM
CLEAN showed a clear antibacterial effect that was mainly
constituted of destruction of biofilms and reduction of living
cells. In the control group, S. mutans biofilms were compact
and most of the bacteria were viable. However, when treated
with GERM CLEAN, S. mutans formed unconsolidated

0.0

0.1

0.2

0.3

Time

Assay
Control

∗

In
iti

al
 ad

he
re

nc
e (

O
D

60
0n

m
)

1h 2h 4h

∗

∗

(a)

0

10

20

30

40

50

Time
1h 2h 4h

A
nt

i-a
dh

er
en

ce
 p

er
ce

nt
ag

e

∗

∗

∗

(b)

Figure 2:/e anti-adherence effect of 1/2MICGERMCLEAN on S. mutans. (a)/eOD600nm of adherent bacteria treated with 1/2MIC level
of GERM CLEAN or BHIS control; (b) the antiadherence percentage of the initial adherence stage (1 h, 2 h, and 4 h) calculated by
(OD600 nm of control group−OD600nm of assay group)/OD600 nm of control group. ∗p< 0.05.

Assay Control
0.0

0.5

1.0

1.5

2.0

2.5 ∗

Bi
ofi

lm
 fo

rm
at

io
n 

(O
D

60
0n

m
)

(a)

Assay Control
0.0

0.5

1.0

1.5

2.0

W
at

er
-in

so
lu

bl
e E

PS
 (O

D
62

5n
m

)

∗

(b)

Figure 3: Effect of 1/2MIC GERM CLEAN on biofilm formation and water-insoluble EPS of S. mutans. (a) Quantitative data of the biofilm
formation measured by crystal violet dye; (b) the water-insoluble EPS measured by the anthrone method. ∗p< 0.05.

0
0.0

0.2

0.4

0.6

0.8

1.0

Time (h)

Control
Assay

2 4 6 8 10 12 14 16 18 20 22 24

O
D

60
0n

m

Figure 1: Effect of GERM CLEAN at 1/2MIC on the growth curve of S. mutans.

BioMed Research International 5



biofilms with an apparent scattering of cells, where viable
cells were diminished, while cell deaths increased.

3.8. GERM CLEAN Inhibits the Acidogenicity of S. mutans In
Vitro. Results of the pH drop assay suggested that GERM
CLEAN at the concentration of 1/2MIC level repressed
S. mutans acidogenicity. As shown in Figure 6, the pH drop
recorded in the first 15min of incubation (known as initial
pH drop) was observed maximum in both control and the
GERM CLEAN-treated groups; in the control group, the pH
of the bacterial suspension decreased quickly from 7.2 to
5.94 and then slowly ended up with 4.65 after 90min of
incubation, whereas the pH value of GREM CLEAN-treated
group decreased quickly from 7.2 to 6.26 and slowly showed
a higher final pH of 5.96 (p< 0.05).

3.9.GERMCLEANInhibits ExpressionofVirulenceGenes of S.
mutans In Vitro. /e expression fold changes of ldh, gtfB,
gtfC, and gtfD in S. mutans treated with GERM CLEAN at 1/
2MIC level were shown in Figure 7. When compared with
gene expressions in the control group, all those of these
tested genes were downregulated after treating with GERM
CLEAN (p< 0.05), especially for that of the gtfB gene, whose

expression level was decreased by nearly 100-fold. And the
expression levels of gtfC, gtfD, and ldh were downregulated
by about 20-fold, 5-fold, and 2-fold, respectively, after
treated with GERM CLEAN at 1/2MIC level.

4. Discussion

In this study, we found that a newly marketed oral spray
GERM CLEAN impaired the growth, adherence, EPS syn-
thesis, biofilm formation, and acid production of S. mutans
through in vitro S. mutans virulence-related phenotypic assays.
Moreover, the qRT-PCR result explained that GERM CLEAN
impaired virulence of S. mutans through downregulating
expression of EPS- and acid-production related genes.

/e antibacterial activity of GERM CLEAN was pre-
liminarily verified through the antibacterial ring test, but the
diameter of inhibition zones formed by GERM CLEAN was
not very stable, which varied from 8.4mm to 12mm
according to our repeated tests, and we suspected that it might
be related to the variety of the peptide stability [64–69], and
this hypothesis needs further confirmation. /e MIC of
GERM CLEAN turned out to be 100% mass fraction, which
was unexpected, but on the other hand, this also indicated the
mild and biocompatible properties of GERM CLEAN.

(a) (b)

(c) (d)

Figure 4: Scanning electron microscopy observation of S. mutans biofilm formed after 24 h of incubation. (a) and (c) were taken from the
untreated control group, while (b) and (d) represented the group treated with 1/2 MIC concentration of GERM CLEAN. (a) and (b) 5000x;
(c) and (d) partially magnified (20000x) from the red circles in (a) and (b), respectively.
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As a primary etiology of dental caries, S. mutans poses a
strong adhesive ability to attach to the tooth surface, which is
the decisive initial step in colonization, biofilm formation,
and caries development [70–72]. Water-insoluble EPS in the

matrix also plays a critical role in S. mutans carcinogenicity
[73, 74]. EPS can promote the aggregation of bacteria to
form a biofilm, thus displaying cariogenic properties
[4, 10, 72]. Biofilm is responsible for caries and EPS

(a) (b) (c)

(d) (e) (f )

Figure 5: CLSM images of S. mutans biofilm formed in the presence and absence of the sub-MIC (1/2MIC) level of GERMCLEAN after 24 h
of incubation. (a), (b), and (c) were from the treated group; (d), (e), and (f) were from the control group; (a) and (d) show the whole biofilm
images; live bacteria, stained green (b, e); dead cells, stained red (c, f ).
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consolidates it, which increases the resistance of antibacterial
reagents [75, 76]. Glucosyltransferases (Gtfs) secreted by
S. mutans are the key enzymes mediating glucan synthesis,
which impair the following adherence and biofilm forma-
tion. GtfB, GtfC, and GtfD are encoded by gtfb, gtfc, and gtfd
genes, respectively. GtfB makes primarily water-insoluble
glucans, GtfC appears to synthesize both soluble and in-
soluble glucans, with water-insoluble glucans predominat-
ing, and GtfD mainly makes water-soluble glucans [77–84].
Water-insoluble glucans synthesized by GtfB and GtfC form
the main scaffold of the EPS matrix and provide adhesive
sites for S. mutans to a tooth surface as well as to other
microbes [80–82]. Previous studies demonstrated that
suppressed expression of gtfBC genes in S. mutans could
ultimately inhibit the biofilm formation because of the re-
duction of EPS and adherent ability [79, 83, 85–87].
Nowadays, study groups developed an increasing number of
novel synthetic AMPs with confirmed antibacterial poten-
tial. Wang et al. [88] synthesized TVH19 and testified its
effect on inhibiting the biofilm formation and destroying the
biofilm structure of S. mutans. Min et al. [13] synthesized
CLP-4 and demonstrated that CLP-4 could kill S. mutans
cells, inhibit biofilm formation, and eradicate preformed
biofilms. Jannadi et al. [89] synthesized Pep19-2.5 and
Pep19-4LF and assessed that they inhibited S. mutans
growth and biofilm formation. Similarly, Zhang et al. [39]
designed DPS-PI, Liang et al. [90] designed LR-10, Da Silva
et al. [91] designed [W7]KR12-KAEK, and all of their an-
tibacterial activities were evaluated by assessing the inhi-
bition of S. mutans growth and biofilm biomass,
furthermore assessing the destruction to biofilm morphol-
ogy and the damage to the bacterial surface via scanning
electron microscopy. In this current study, GERM CLEAN
showed capabilities on reducing the initial adherence and
disrupting the biofilm formation of S. mutans. Results in the
anthrone experiment revealed that GERM CLEAN reduced
EPS synthesis, and downregulated EPS-production related
gene (gtfB, gtfC) expression levels further conformed the
inhibition effect of GERM CLEAN on the EPS-production
ability of S. mutans, which could mediate ineffective ad-
hesion and biofilm formation. According to the negative
effects of GERM CLEAN on S. mutans adhesion, biofilm
formation, and EPS production, we speculate that GERM
CLEAN could disrupt bacterial aggregation on the tooth
surface and thereby the biofilm formation, thus playing a
promising role in the prevention and treatment of caries./e
CLSM and SEM demonstrated GERM CLEAN disrupted
biofilm formation by reducing the composition of live
bacteria and distorting the biofilm structure. And we
speculated that it was connected with the decrease of EPS
synthesis, which was verified in the anthrone assay. And the
SEM showed that GERM CLEAN could cause apparent cell
lysis, cellular debris, pore formation, and obvious membrane
rupture, which indicated that the possible antibacterial
mechanism of our AMP may be the commonly accepted
electrostatic interactions.

Acid production is another noteworthy pathogenic
feature of S. mutans. Lactate dehydrogenase (LDH) encoded
by ldh gene is one of the most important enzymes in acid

production, which acts as a key virulence of S. mutans, and
ldh− deficient mutant of S. mutans had low acidogenicity and
reduced cariogenic potential [92–98]. In a previous study,
Wang [43] synthesized GH12 and performed glycolysis pH
drop assay and qRT-PCR to test its effect on acid production
of S. mutans. With similar methods in this research, our data
from the glycolysis pH drop assay suggested the impairment
effect of GERM CLEAN on acidogenicity of S. mutans and
this result was consistent with qRT-PCR data which showed
that GERM CLEAN could downregulate expression of acid-
production related gene ldh. GERM CLEAN clearly re-
pressed acid generation of S. mutans, implying its prevention
effect on S. mutans derived tooth erosion and demineral-
ization, which consequentially inhibits S. mutans carcino-
genicity. On the other hand, lower final pH value was related
to the ability of stronger acid tolerance [73] to some extent,
so the higher final PH value after being treated with GERM
CLEAN at 1/2MIC indicated the disruption of aciduric
potential, which further impaired the cariogenic ability of S.
mutans.

/e overall effect of GERM CLEAN is evidently anti-
cariogenic as shown by in vitro studies. All results concluded
that GERM CLEAN at 1/2MIC suppressed the cariogenic
pathways of S. mutans. But bacteriostasis on S. mutans of
GERM CLEAN in poor stability is worth further thinking,
and extraordinary comparison found that the antibacterial
effect of GERM CLEAN is poorer than clinical commonly
used chlorhexidine (CHX) which has a definite effect. CHX,
widely used as a mouthwash, is one of the most commonly
prescribed antiseptic agents in dentistry due to broad-
spectrum antimicrobial activity [99–101]. It adheres to tooth
and mucosal surfaces and presents a high residence time and
it is considered a gold standard for dental caries and peri-
odontitis control [99, 100, 102–106]. However, CHX has
some side effects which limit our common use, including
tooth discoloration, impaired sense of taste, mucosal des-
quamation, and irritation of host tissues [103, 107–109].
What’s more, CHX mouthwash needs to be gargled and its
use is restricted by our environment and location. To our
delight, GERMCLEAN, existing as an AMP spray which has
a clear antibacterial effect, is easy to be carried. Moreover, it
is mild, colorless, and tasteless, with good user experience,
which overcomes the CHX’s shortcomings to some degree.

So far, scholars have confirmed the antibacterial effect of
many natural and synthetic AMPs, including Bac8c,
Aedesin, decapeptide, XLAsp-P1, LL-37 and variant, Pep-7,
and HBD3- C15 [35, 87, 110–116], which provided us with
the study methods of this new AMP GERM CLEAN. What’s
more exciting, Wang et al. [43, 117] in our hospital suc-
cessfully synthesized three new AMPs (GH8, GH12, and
GH16) and further studied the bacteriostatic properties and
mechanisms. Although reports about GERN CLEAN at
home and abroad are limited before, these previous studies
on other AMPs provide a classic and mature experimental
scheme for the study of in vitro antibacterial effect and
mechanisms of this new AMP for us.

However, we need to take the limitations of such in vitro
assays into consideration./ere are more than 700 species of
bacteria residing on the teeth surfaces and oral soft tissues
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[102, 118]. Meanwhile, dental plaque is a multispecies
biofilm [75, 102, 119], which could cause a variety of oral
diseases including dental caries, pulpitis, gingivitis, and
periodontitis [102, 118, 120, 121]. /erefore, in our further
study, we need to examine the effect of GERM CLEAN on
plaque biofilm containing multiple species of bacteria. Be-
sides, considering the complicated bacteria-host interac-
tions, in vivo animal models may help us observe the effect of
GERM CLEAN more intuitively.

In conclusion, GERM CLEAN at 1/2MIC could reduce
the acidogenicity, EPS synthesis, adherent ability, and biofilm
formation of S. mutans through downregulating the ex-
pression levels of gtfb, gtfc, gtfd, and ldh genes. According to
themanufactures’ instruction, GERMCLEAN is an orally and
topically administrated anti-infectious agent, and based on
the finding of our present in vitro study, we assumed that this
spray could exert antibacterial effect on the main cariogenic
bacteria S. mutans, which suggested that this product might
be useful in terms of caries prevention and treatment, and it
should be especially recommended to apply this novel spray
to patients with a predicted high-risk of caries. However,
considering the diversity and complexity of human dental
plaque, further studies with animal and clinical patient trials
are still needed for figuring out the best fit indications and the
actual performance of GREM CLEAN in vivo.
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