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Background. Sepsis is a systemic inflammatory syndrome caused by infection with a high incidence and mortality. Although long
noncoding RNAs have been identified to be closely involved in many inflammatory diseases, little is known about the role of
lncRNAs in pediatric septic shock. Methods. We downloaded the mRNA profiles GSE13904 and GSE4607, of which GSE13904
includes 106 blood samples of pediatric patients with septic shock and 18 health control samples; GSE4607 includes 69 blood
samples of pediatric patients with septic shock and 15 health control samples. The differentially expressed lncRNAs were
identified through the limma R package; meanwhile, GO terms and KEGG pathway enrichment analysis was performed via the
clusterProfiler R package. The protein-protein interaction (PPI) network was constructed based on the STRING database using
the targets of differently expressed lncRNAs. The MCODE plug-in of Cytoscape was used to screen significant clustering
modules composed of key genes. Finally, stepwise regression analysis was performed to screen the optimal lncRNAs and
construct the logistic regression model, and the ROC curve was applied to evaluate the accuracy of the model. Results. A total of
13 lncRNAs which simultaneously exhibited significant differences in the septic shock group compared with the control group
from two sets were identified. According to the 18 targets of differentially expressed lncRNAs, we identified some inflammatory
and immune response-related pathways. In addition, several target mRNAs were predicted to be potentially involved in the
occurrence of septic shock. The logistic regression model constructed based on two optimal lncRNAs THAP9-AS1 and
TSPOAP1-AS1 could efficiently separate samples with septic shock from normal controls. Conclusion. In summary, a predictive
model based on the lncRNAs THAP9-AS1 and TSPOAP1-AS1 provided novel lightings on diagnostic research of septic shock.

1. Introduction

Sepsis is a systemic inflammatory response syndrome caused
by infection with an unacceptably high mortality and even
long-term morbidity for many of those who survive [1].
According to the overseas epidemiological investigation, the
case fatality rate of sepsis has exceeded that of myocardial
infarction and become the main cause of death of noncardiac
patients in intensive care units, and it is also the main cause
of morbidity and mortality of children in the world [2–4].
Early recognition and diagnosis of sepsis is required to
improve pediatric care and intervene before advanced organ
dysfunction, and consequently prevent pediatric mortality
and complications [5]. Considered the gold standard, blood
culture is impractical in clinical, limited due to its time-con-

suming, laborious, and delay in optimal treatment period [6].
Although many biomarkers in sepsis including lactate, proin-
flammatory cytokines, chemokines, C-reactive protein, and
procalcitonin have been identified [7], the diagnosis still lacks
specificity because of the complicated, dynamic changes dur-
ing severe sepsis and septic shock [8]. This study is aimed at
identifying efficient and accurate diagnostic signatures for
pediatric septic shock.

As the various cellular immune response to various types
of infection have distinctive features, the role of gene expres-
sion analysis was gradually recognized in septic patients.
Many researchers have identified molecular biomarkers of
sepsis and suggested novel targets for new sepsis therapies
[9, 10]. New diagnosis methods are still developed for sepsis,
including microRNAs and long noncoding RNAs (lncRNAs)
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[11]. lncRNAs are a group of noncoding RNAs larger than
200nt in length, which have been demonstrated that can par-
ticipate in a large number of biological processes [12].
Recently, increasing evidences indicated that the abnormal
expression of lncRNAs is closely associated with many
inflammatory disorder diseases [13–17]. Many studies also
demonstrated that lncRNAs play essential roles in sepsis.
The downregulation of lncRNA CCL2 inhibits the inflamma-
tion response of macrophages in sepsis [18]. lncRNA GAS5
can promote podocyte injury in sepsis by inhibiting the
expression of PTEN [19]. Silencing of lncRNA NEAT1 exerts
potent suppressive effects on immunity in sepsis by promoting
microRNA-125-dependent MCEMP1 downregulation [20].
However, studies about the potential application of lncRNA
in the diagnosis of pediatric septic shock are very lack.

In this study, we used the bioinformatics method to
screen the potential lncRNAs which might possibly lead to
pediatric septic shock and construct the classification model
to provide early diagnosis for pediatric septic shock. Further,
13 lncRNAs were identified as potentially related to the
occurrence of septic shock. The logistic regression model
constructed in this study could efficiently separate the sam-
ples with or without septic shock and exerted a certain prac-
tical value for the diagnosis of pediatric septic shock.

2. Materials and Methods

2.1. Data Collection. The two mRNA profiles GSE13904 [21]
and GSE4607 [22] were downloaded from the Gene Expres-
sion Omnibus (GEO,https://www.ncbi.nlm.nih.gov/geo/), of
which GSE13904 includes 106 blood samples of children
with septic shock and 18 control samples of healthy children;
GSE4607 includes 69 blood samples of children with septic
shock and 15 control samples of healthy children. The two
expression profiles were all detected by the Affymetrix
Human Genome U133 Plus 2.0 Array.

2.2. Differential Expression Analysis. The expression profiles
of lncRNA from the two data above were extracted, and the
probes with missing values were removed; then, standardiza-
tion was performed based on the robust multiarray (RMA)
method. Subsequently, the differential expression analysis
of lncRNA was performed by using the limma function pack-
age of the R language [23], with ∣log 2 ðfold change ðFCÞÞ ∣
>1 and p ≤ 0:05 as the significant threshold.

2.3. Functional Enrichment Analysis. Gene Ontology (GO)
analysis (including biological process, molecular function,
and cellular component) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analysis were
performed by using the clusterProfiler function package of
the R language [24], and p < 0:05 was considered as the
threshold.

2.4. Protein–Protein Interaction Networks. The STRING
database (https://string-db.org/, version 11.0) is a database
which is used to analyze and predict the functional connec-
tions and interactions of proteins [25]. Here, the STRING
database was applied and the interaction pairs of proteins
with confidence score ≥ 0:4 are retained. The PPI network

was visualized based on Cytoscape (https://cytoscape.org/,
version 3.7.2) [26]. Meanwhile, the key clustering modules
were screened based on the molecular complex detection
method (MCODE) plug-in of the Cytoscape software, with
MCODE score > 4 as the significant threshold.

2.5. The Construction of the Logistic Regression Model. The
glmnet function in R language [27] was used to construct
the multivariate logistic regression model with the expression
value of lncRNA as the continuous predictive variable and
the sample type as the categorical responsive value (septic
shock or not), and the receiver operating characteristics
(ROC) analysis was performed to evaluate the accuracy of
the model.

3. Results

3.1. Identification of Differentially Expressed lncRNAs. We
first extracted the lncRNA profiles from two databases and
standardized the expression profiles. The results showed that
there was no obvious change in the deviation of each sample
from two datasets (Figure S1A and B), suggesting it could be
used for subsequent analysis. To further confirm the
repeatability of the data within the group, principal
component analysis (PCA) was analyzed based on the
expression value of lncRNAs, and the results indicated that
the case group (pediatric septic shock) and control group
(healthy children) could be efficiently separated (Figure S1C
and D), suggesting a better reproducibility of data in the group.

Then, differential expression analysis was performed; for
GSE13904, 13 differentially expressed lncRNAs (5 upregu-
lated and 8 downregulated) were identified in the case group
compared with the control group (Figure 1(a)), and the
expression of 13 lncRNAs all had significant different expres-
sions between the two groups (Figure 1(b)). For GSE4607, a
total of 15 differentially expressed lncRNAs (5 upregulated
and 10 downregulated) were identified in the case group
compared with the control group (Figure 1(c)), and the
expression of the 15 lncRNAs all had significantly different
expressions between the two groups (Figure 1(d)). In addi-
tion, there were 13 lncRNAs (LINC00954, PAXIP1-AS1,
RARA-AS1, TSPOAP1-AS1, CHRM3-AS2, LINC01215,
THAP9-AS1, TRG-AS1, MIR646HG, NFE4, A2M-AS1,
CARD8-AS1, and MIAT) which simultaneously exhibited
significant differences in the case group compared with the
control group from two sets (Figure 1(e)), indicating that
these 13 lncRNAs might be key lncRNAs that led to septic
shock in children.

3.2. Functional and Pathway Enrichment Analysis. To
explore the metabolic pathways closely involved in the occur-
rence of septic shock in children, the target genes of 13
lncRNAs were predicted by using starBase (http://starbase
.sysu.edu.cn/,version 2.0) [28]. The results showed that a
total of 18 target genes including FUS, IGF2BP1, PUM2,
EIF4A3, DGCR8, LIN28B, LIN28A, CAPRIN1, FUS-mutant,
TAF15, U2AF2, TIA1, TIAL1, HNRNPC, UPF1, IGF2BP3,
PTBT1, and TARDBP were predicted. Then, functional and
pathway enrichment analysis was performed, and the results
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Figure 1: Continued.
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suggested that there were 98 significantly enriched biological
process (BP) terms including the regulation of mRNA or
RNA stability, RNA silencing, mRNA catabolic process and
cytokine biosynthetic process (p < 0:05), 17 significantly
enriched cellular component (CC) terms including cytoplas-
mic stress/ribonucleoprotein/ribonucleoprotein granule
(p < 0:05), and 30 significantly enriched molecular function
(MF) terms including mRNA 3’-UTR/5’-UTR binding,
translation regulator activity, and catalytic activity on RNA
(p < 0:05), as well as 24 significantly enriched KEGG
pathways including Epstein-Barr virus infection, primary
immunodeficiency, and T cell receptor signaling pathway
(p < 0:05). The full list of significantly enriched GO terms
and KEGG pathways is shown in Table S1. Meanwhile, the
top 10 most significantly enriched BP, CC, and MF terms
are shown in Figures 2(a)-2(c), and the top 10 most
significantly enriched KEGG pathways are shown in
Figure 2(d). Besides, enrichment analysis of these 18 target
genes was also performed by STRING based on Reactome
Pathways, UniProt, and InterPro databases. The
significantly enriched Reactome Pathways has 9 entries, as
shown in Table 1. As shown in Table S1, there were 20
significantly enriched UniPort items and 16 significantly
enriched InterPro items.

3.3. The Construction of PPI Network. Next, the PPI network
was constructed based on the 18 target genes; then, the inter-
action pairs of proteins of which confidence score ≥ 0:4 were
selected and visualized using the Cytoscape software
(Figure 3). We found that there were 17 interactional genes
with the maximum node degree of FUS at 12, and the mini-
mum node degree is 1. Meanwhile, the two significant clus-
tering modules with MCODE score > 4 were identified
based on the MCODE plug-in: cluster 1 included FUS,
PTBT1, UPF1, HNRNPC, U2AF2, TIAL1, EIF4A3, and

TARDBP, and cluster 2 includes IGF2BP1, TIA1, and
CAPRIN1. The results suggested that these 11 genes might
be key factors which were close to the occurrence of septic
shock in children.

3.4. The Construction of Logistic Regression Model. Finally,
the logistic regression model was constructed based on the
13 lncRNAs which were all had significant difference in the
case group compared with control group in the two data sets.
We randomly selected 82 samples as the training set from
GSE13904 to construct logistic regression model with expres-
sion value of 13 lncRNAs as the continuous type prediction
variable and the sample type (septic shock or not) as the cat-
egorical response variable. Meanwhile, the remaining sam-
ples of GSE13904 were used as the testing set, and the
samples of GSE4607 were used as an independent validation
set to verify the effect of the model.

In order to construct the model with strong interpreta-
tion with as few lncRNAs as possible, stepwise regression
analysis was performed and screened two optimal lncRNAs
THAP9-AS1 and TSPOAP1-AS1. Then, the final logistic
regression model was constructed based on THAP9-AS1
and TSPOAP1-AS1 (Figure 4(a)), and the detailed parame-
ters of the model are shown in Table 2, of
whichodds ratio ðORÞ > 1suggested that the expression of
lncRNA was positively correlated with the occurrence of sep-
tic shock andOR < 1indicating a negative correlation. The
results indicated that the expression of THAP9-AS1 and
TSPOAP1-AS1 were all negatively correlated with the occur-
rence of septic shock, suggesting that the low level of
THAP9-AS1 and TSPOAP1-AS1 was more likely to lead to
septic shock. Meanwhile, there was a sample that might have
little impact on the accuracy of the model (GSM350142,
COOKdistance > 0:5). The accuracy of the model was evalu-
ated by the ROC curve (Figure 4(b)) and showed that the area

13

2GSE4607

GSE13904

(e)

Figure 1: The identification of differentially expressed lncRNAs. (a) The volcano plot of differentially expressed lncRNAs between the case
group and the control group in GSE13904. The horizontal axis is Log2 FC, and the vertical axis is -log10 (FDR). The red points represent the
upregulated lncRNAs, the blue points represent the downregulated lncRNAs, and the black points indicate no significant difference. (b) The
heat map of differentially expressed lncRNAs between the case group and the control group in GSE13904.
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under curve (AUC) value in the training set and testing set of
GSE13904 was 0.9859 and 0.951, respectively. Moreover, the
AUC value of the validation set in GSE4607 was 0.9913.
These results showed that the logistic regression model con-
structed based on THAP9-AS1 and TSPOAP1-AS1 could
efficiently distinguish samples with or without septic shock,
suggesting it might be potentially applied to the diagnosis
for pediatric septic shock.

4. Discussion

Septic shock is one of the main causes of mortality even in
children [29]. The treatment of severe sepsis and septic shock
is described by the Surviving Sepsis Campaign including
early recognition, microbial source control, rapid and appro-
priate treatment with antimicrobial agents, and goal-directed
haemodynamic, ventilator, and metabolic therapies [30].
When sepsis is not treated correctly and quickly, all organs
can be affected, and each developing organ failure increases
the risk of mortality [31]. Therefore, the identification of effi-

cient diagnostic makers for the prevention and treatment of
septic shock is still urgent. It has been reported that lncRNAs
have been identified as predictive biomarkers for the diagno-
sis, severity, and prognosis of patients with sepsis [32, 33].
However, the diagnostic value of lncRNAs in pediatric septic
shock has been not reported. In the present study, we identi-
fied 13 potentially risk lncRNAs (LINC00954, PAXIP1-AS1,
RARA-AS1, TSPOAP1-AS1, CHRM3-AS2, LINC01215,
THAP9-AS1, TRG-AS1, MIR646HG, NFE4, A2M-AS1,
CARD8-AS1, and MIAT) which might lead to septic shock.

Annane et al. have reviewed that pathogens trigger
sequential intracellular events in immune cells, epithelium,
endothelium, and the neuroendocrine system through their
microbial-associated molecular patterns and proinflamma-
tory mediators which contribute to the eradication of invad-
ing microorganisms are produced, and anti-inflammatory
mediators control this response [34]. The inflammatory
response leads to damage to host tissue, and the anti-
inflammatory response causes leucocyte reprogramming
and changes in immune status [35]. Hence, to determine
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Figure 2: The enrichment of GO terms and KEGG pathways based on 13 lncRNAs. (a)-(c) The top 10 most significantly enriched BP (a), CC
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which functions or pathways were involved in the occurrence
of septic shock, the potential targets of lncRNAs were pre-
dicted based on the starBase. The GO and pathway enrich-
ment analysis was performed by using the 18 targets and
indicated that multiple immune-related functions or path-

ways such as cytokine biosynthetic/metabolic process, pri-
mary immunodeficiency, antigen processing/presentation,
and Epstein-Barr virus infection were significantly enriched.
These results confirmed that the immune damage induced
by infection was the major cause of septic shock.

Within cells, proteins function through protein-protein
interactions (PPI), which is essential for almost all biochem-
ical activities to achieve specific tasks in life [36]. PPI also
endows a single protein with multiple functions [37], and
investigations on PPI methodologies and applications to dis-
closing mechanisms of biological processes draw increasing
attention [38, 39]. Therefore, the PPI network was con-
structed based on the 18 targets, and the key clustering mod-
ules were screened based on the MCODE plug-in of the
Cytoscape software. The results further suggested that the
11 genes including FUS, PTBT1, UPF1, HNRNPC, U2AF2,
TIAL1, EIF4A3, TARDBP, IGF2BP1, TIA1, and CAPRIN1
might be key risk factors involved in the occurrence of septic
shock.

In order to construct the logistic regression model with
strong interpretation with as few lncRNAs as possible, step-
wise regression analysis was performed and screened two
optimal lncRNAs THAP9-AS1 and TSPOAP1-AS1. Mean-
while, the expressions of THAP9-AS1 and TSPOAP1-AS1
were all negatively correlated with the occurrence of septic
shock, suggesting that low levels of THAP9-AS1 and
TSPOAP1-AS1 were more likely to lead to septic shock.
Although the effect of the two lncRNAs in sepsis remains
unclear, their roles have been well studied in various human
diseases. THAP9-AS1, induced by Helicobacter pylori, can
promote cell growth and migration of gastric cancer [40].
THAP9-AS1 can also promote pancreatic ductal adenocarci-
noma growth and lead to a poor clinical outcome via spong-
ing miR-484 and interacting with YAP [41]. TSPOAP1-AS1
negatively modulated the (influenza A virus) IAV-induced
Ifnb1 transcription, interferon-sensitive response element
(ISRE) activation, and downstream interferon-stimulated
gene expression, which suggested that TSPOAP1-AS1 could
be efficiently utilized by viruses to support its replication
[42]. In addition, TSPOAP1-AS1 was identified as bio-
markers for pancreatic cancer based on the weighted gene

Table 1: The enriched terms of reactome pathways.

Term Description Count Genes p value

HSA-8953854 Metabolism of RNA 8
FUS, IGF2BP3, EIF4A3, IGF2BP1,
U2AF2, PTBP1, HNRNPC, UPF1

1.78e-06

HSA-72163 mRNA splicing—major pathway 5 FUS, EIF4A3, U2AF2, PTBP1, HNR, NPC 1.14e-05

HSA-6803529 FGFR2 alternative splicing 3 PTBP1, TIAL1, TIA1 2.35e-05

HSA-428359
Insulin-like growth factor-2 mRNA

binding proteins (IGF2BPs/IMPs/VICKZs) bind RNA
2 IGF2BP3, IGF2BP1 7.08e-05

HSA-72187 mRNA 3’-end processing 2 EIF4A3, U2AF2 0.0076

HSA-109688 Cleavage of growing transcript in the termination region 2 EIF4A3, U2AF2 0.0091

HSA-159236
Transport of mature mRNA derived
from an intron-containing transcript

2 EIF4A3, U2AF2 0.0091

HSA-73856 RNA polymerase II transcription termination 2 EIF4A3, U2AF2 0.0091

HSA-975957
Nonsense-mediated decay (NMD) enhanced by

the exon junction complex (EJC)
2 EIF4A3, UPF1 0.0185
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Figure 3: The construction of the PPI network. Each dot represents
a node. The more lines connected with the dot, the greater the
degree of the node, and the more important the lncRNA in the
network. The size of the nodes is used to visually reflect the degree
size, and the thicker the line, the stronger the interaction between
the two nodes. The unique shapes and colors represent different
modules, with the purple triangle for cluster 1 and the orange
parallelogram for cluster 2.
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coexpression network analysis (WGCNA) [43]. Finally, the
logistic regression model was constructed using the optimal
lncRNAs THAP9-AS1 and TSPOAP1-AS1 and could effi-
ciently separate samples with or without septic shock. More-
over, the AUC value of the ROC curve further determined
that the logistic regression model might potentially be
applied to the diagnosis of pediatric septic shock.

5. Conclusion

In a word, our study identified 13 lncRNAs which were
potentially involved in the occurrence of septic shock in chil-
dren. The logistic regression model was constructed based on
the optimal lncRNAs THAP9-AS1 and TSPOAP1-AS1 and
could efficiently distinguish the samples with or without sep-
tic shock, which provided potentially diagnostic signatures
for septic shock. In addition, THAP9-AS1 and TSPOAP1-
AS1 had been proved to be involved in the immune response
to regular various diseases; thus, they are likely to regulate
disease progression by participating in the immune reaction
of septic shock. In future research, THAP9-AS1 and

TSPOAP1-AS1 could be verified in the diagnosis and inter-
vention of pediatric septic shock.
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Supplementary Materials

Fig. S1 The standardization of lncRNA profiles and PCA anal-
ysis. (A) The boxplot of expression of lncRNA after standardi-
zation in GSE13904 data set. (B) The boxplot of expression of
lncRNA after standardization in the GSE4607 data set. The hor-
izontal axis represents the sample, and the vertical axis repre-
sents the relative expression of lncRNA. (C) The PCA analysis
of lncRNA in the GSE13904 data set. (D) The PCA analysis
of lncRNA in the GSE4607 data set. The points with different
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Figure 4: The construction of logistic regression diagnostic model. (a) The logistic regression diagnostic model. The red dashed line
represents the COOK distance. Generally, points with COOKdistance > 0:5 may affect the accuracy of the model. (b) The ROC curve of
the logistic regression diagnostic model. The AUC value is the area under the curve and can intuitively evaluate the quality of the model;
the larger the AUC value, the better the model.

Table 2: Model interpretation of logistic regression model.

Gene β SE OR 95% OR p

THAP9-AS1 -1.045 0.6907 0.3517 0.0686-1.1381 0.1303

TSPOAP1-AS1 -2.7969 1.2138 0.061 0.0029-0.4402 0.0212
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colors represent samples from different groups, and the closer
the distance between the two points, the more similar the
expression of lncRNA in the samples. (Supplementary
Materials)
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