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The retinal blood vessel analysis has been widely used in the diagnoses of diseases by ophthalmologists. According to the complex
morphological characteristics of the blood vessels in normal and abnormal images, an automatic method by using the random walk
algorithms based on the centerlines is proposed to segment retinal blood vessels. Hessian-based multiscale vascular enhancement
filtering is used to display the vessel structures in maximum intensity projection. Random walk algorithm provides a unique and
quality solution, which is robust to weak object boundaries. Seed groups in the random walk segmentation are labeled according
to the centerlines, which are extracted by using the divergence of the normalized gradient vector field and the morphological
method. Experiments of the proposed method are implemented on the publicly available STARE (the Structured Analysis of the
Retina) database. The results are compared to other existing retinal blood vessel segmentation methods with respect to the
accuracy, sensitivity, and specificity, and the proposed method is proved to be more sensitive in detecting the retinal blood
vessels in both normal and pathological areas.

1. Introduction

The network of blood vessels in the fundus is the only part of
the human body where the microcirculation can be observed
directly [1]. The morphological changes of the retinal blood
vessels are closely related to the characterization of certain
pathologies [2]. Since automated segmentation of fundus
images can provide the basis for automated assessment by
doctors, detecting blood vessels automatically from a retinal
image is of great research value.

There are a lot of previous works on extracting blood
vessels in retinal images, which can be classified into both
unsupervised and supervised methods [3–6]. Unsupervised
methods mainly include matched filter responses, mathemat-

ical morphology-based techniques, model-based locally
adaptive thresholding, and vessel tracking. In [2, 7, 8],
matched filters are used to enhance the vessel-like objects,
the kernel of which is usually the Gaussian-shaped function.
In paper [9], a Hessian-based vascular filtering method is
used to enhance the vessel structure. Zhang et al. in [10] pro-
posed new filters based on 3D rotating frames in so-called
orientation scores, which can handle typical difficult situa-
tions such as intersections, central arterial reflux, tight paral-
lelism, and tiny blood vessels. Mathematical morphology is
applied in paper [11], which is used to highlight vessels with
respect to their morphological properties, such as linearity,
connectivity, and width. Neto et al. [12] used a coarse-to-
fine approach to blood vessels in fundus images, which
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combines Gaussian smoothing, a morphological top-hat
operator, and vessel contrast enhancement. In model-based
locally adaptive thresholding method proposed by papers
[13, 14], a set of local information is tested to determine the
threshold of the probe region. Vessel tracking presented in
[15, 16] uses the profile model, guided by local information,
to follow the path which best matches a vessel and segment
it incrementally. Abdallah et al. in [17] applied adaptive
noise-reducing anisotropic diffusion filter and multiscale
line-tracking algorithm to the retinal vessel extraction pro-
cess. Supervised methods for retinal vessel segmentation
use vessel data to train a classifier to identify whether a pixel
is vessel or nonvessel, such as support vector machine-based
methods and neural network-based methods. A structured
output support vector machine is used in [18] to automati-
cally learn the parameters of a trained segmentation model
based on a fully connected CRF. A u-net architecture is pro-
posed in [19], which requires very few annotated images.
Soomro et al. [20] presented a method using deep conven-
tional neural networks along with hysteresis threshold
method for accurate detection of the narrowly low-contrast
vessels. Leopold et al. [21] proposed an efficient depthmethod
for automatic segmentation of fundusmorphology called Pix-
elBNN, which can be well implemented even in the case of
severe information loss. Although supervised methods can
provide better results, such methods require training with
manually labeled images and may not be available in all cases.

Unfortunately, because of the complex morphological
properties of the blood vessels and the impacts of uneven
illumination, as well as the appearance of pathological areas
in the retinal images, none of the existing methods can
achieve the most satisfying performance in all aspects so
far. In this paper, an automated segmentation method
using random walks based on centerline extraction is pro-
posed, which belongs to the first category. Centerlines are
used to assure the location of the vessel, which are extracted
by using the combination of the multiscale Hessian-based
tubular filters and the divergence value of normalized gra-

dient vector field. And random walks are applied to the seg-
mentation of the fundus images. Most details of the vessels
in the low-contrast areas can be detected in healthy and
pathological areas.

2. Materials and Methods

The framework of the proposed method mainly includes four
steps as shown in Figure 1. Firstly, the original images are
converted to grayscale images, and the FOV mask is
extracted. Secondly, blood vessel-like objects are enhanced
by using the Hessian-based multiscale vessel enhancement
filter [22]. Thirdly, centerlines of the vessels are obtained
based on the divergence value of the normalized gradient
vector field (GVF) and bottom-hat operators with different
scales in different orientations. Finally, the seed groups are
automatically located, and the random walk algorithm is
used to segment the blood vessels.

2.1. Image Acquisition and Preparation. Experiments in our
work are implemented on images from the publicly available
retinal image database, STARE. The digitized slides were
captured by a TopCon TRV-50 fundus camera at 35° field
of view. Each slide was digitized to produce a 605×700
pixel image, 24 bits per pixel (standard RGB) [2, 8]. The
results of the proposed method are also compared with
several other existing approaches and the hand-labeled
vessel networks provided by two experts which are avail-
able in the STARE database.

The green channel has better performance in the contrast
between vessels and the retinal background; therefore, we use
the green channel of the RGB retinal image as the input
image, denoted as Ig. The green channel of im0001 in the
STARE database is used as an example, as shown in
Figure 2(a). Since the STARE datasets do not provide the
FOV-mask images, we use the algorithm proposed by Soares
et al. [23] to generate the FOV mask of each retina images, as
shown in Figure 2(b).

ROI of the green channel of the
original image

Multiscale-oriented Gaussian
filtering

Multiscale bottom hats
transform with directional linear

structure elements

Skeleton of vessels:
morphological thinning after the

OTSU thresholding 

Candidate centerlines:
thresholding of the divergence
value of the normalized GVF

Hessian-based tubular
filtered images

Centerlines

Segmentation: random walks
based on the centerlines

Figure 1: The framework of the proposed method.
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2.2. Vessel Enhancement Filtering. Frangi et al. [22] designed
a multiscale vessel enhancement filter based on the eigen-
values of the Hessian matrix. As Hessian matrix can be math-
ematically decomposed into the isotropic part �H and the
anisotropic part ~H~, the shape and orientation information
of Hessian matrix can be mathematically analyzed as diffu-
sion tensors [24], which is applied in the novel filter proposed
in [25] as follows.

Firstly, since a blood vessel usually appears darker than
the background in the captured images and, thus, has a con-
cave shape, the green channel of the retinal image can be
smoothed by the matched Gaussian filter with standard devi-
ation σ, the result of which is denoted as g. σ also represents
different scales in the kernel.

For a certain scale σ, the Hessian matrix for a pixel at
(x, y) is given by

H x, yð Þ =
gxx gxy

gyx gyy

" #
, ð1Þ

where gxx , gyx, gxy , and gyy denote second derivative of Ig,
respectively.

Secondly, the following combination of the eigenvalues of
the Hessian matrix is used to define a vesselness function,
which is given by [25]:

ν σð Þ =
0, λ1 > 0,

1‐e− s2/2c2ð Þ� �
e− FAH−1j j, λ1 ≤ 0,

8<
: ð2Þ

where s =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1

2 + λ2
2

p
, λ1 and λ2 are the eigenvalues of the

Hessian matrix, λ1 < λ2. And FAH =
ffiffiffi
2

p
norm ð~HÞ/norm

ðHÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1 − λ2Þ2/ðλ12 + λ2

2Þ
q

, which is used to describe

the fractional anisotropy of the image. c is a free parameter,
which is set to 0.2. When jλ1j ≈ 0 and jλ1j<<jλ2j, the value
of FAH increases gradually from 0 to 1, the anisotropy of the
Hessian matrix increases, and the target contour changes
gradually from circular to linear. If FAH = 1, this point has
the highest probability of belonging to a blood vessel.

Because the size of blood vessels varies, the similarity
function νðσÞ containing different values of σ is still used to
multiscale enhance the image, and the maximum response
νmaxðσÞ in this series of results is used as the final tubular fea-
ture value. The highest response provided by the filter at dif-
ferent scales is considered as the final output of the vesselness
enhancement. Figure 3 shows the enhanced result of the
input image.

2.3. Vessel Segmentation. In [26], random walk algorithm was
first proposed for image segmentation. Labeled seeds in this
step are planted automatically based on the location of cen-
terlines of the vessels. And the centerlines are extracted based
on the enhanced images and the normalized vector field.

2.3.1. Locating the Centerlines. A method proposed in [27]
uses the normalized gradient vector field to locate the center-
lines. If a pixel is in an expanding vector field, the divergence
will be positive. The illustration of the normalized gradient
vector field inside the selected local region of vessels has been
shown in Figure 4. Thus, the vessels can be detected by
checking whether the divergence is positive.

In order to detect the centerlines of the blood vessels in
the retinal image, a horizontal and vertical edge detector is

(a) (b)

Figure 2: An example of input images and FOV masks: (a) the input image of im0001; (b) the FOV mask of im0001.

Figure 3: The enhanced result of the input image.
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applied to g, the smoothed image by using the Gaussian filter,
to obtain the gradient vector field F, where

F =
∂g x, y, σ2� �

∂x
i +

∂g x, y, σ2
� �
∂y

j: ð3Þ

Then, a set of rotation matrixes with different angles θ are
applied to the gradient vector field, the divergence value of
which can be computed as follows:

DF =
∂2g x, y, σ2� �

∂x2
cos θ +

∂2g x, y, σ2
� �
∂y2

sin θ: ð4Þ

For the normalized gradient vector field, which is calcu-
lated as NF = F/jFj, the divergence value can be calculated
by the same procedure above and denoted as NGðθ, σ2Þ.
For each pair (θ, σ2), a pixel is considered in the candidate
of centerlines if it satisfies NGðθ, σ2Þ > φ (φ is a user-
defined parameter), and those eight-connected regions are
discarded if they are less than a certain pixels δ.

In order to retain more vascular details, φ is set to a
lower value of 0.45. Since the larger the value of δ, the
more artifacts are removed, δ is set to 50. According to
these parameter settings, the final candidate centerlines,
Ccan, are obtained by combining all the 200 centerline

results for each pair (θ, σ2). Figure 5 shows the final can-
didate centerlines and with different parameters. Ccan con-
tains most of the centerlines of the vessels, with a good
performance on the smoothness and connectivity. How-
ever, this algorithm cannot separate the centerlines from
its neighbor centerlines if they are too close to each other.

Based on the observation above, we extract the skeleton
of the vessel as the correction to the candidate centerlines
as follows:

Step 1. A sum of bottom-hat operators with different orienta-
tions and scales on the green channel of the retinal images is

(a) (b)

Figure 4: Illustration of the normalized gradient vector field in part regions of the vessels: (a) the selected region in the input image; (b) the
normalized gradient vector field in the selected region.

(a) (b) (c) (d)

Figure 5: Detected candidate centerlines: the extracted centerlines with (a) θ = ð1/8Þ ∗ π, σ = 1:4; (b) θ = ð3/8Þ ∗ π, σ = 2:4; (c) θ = ð4/8Þ ∗ π,
σ = 4:6; (d) the combination of all the detected candidate centerlines.

Begin
Ibot ⟵ BottomhatTransf ormðIg, SeÞ
Ibinary ⟵OTSUðIbotÞ
Cskel ⟵MorphologicalThinningðIbinaryÞ
Cinter ⟵ Cskel ∩ Ccan
ðCskel , CcanÞ = RegionJudgementðCskel , Ccan, CinterÞ
C⟵ Cskel ∪ Ccan
Centerline = LengthFilteredðC, LÞ
End

Pseudocode 1
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used to enhance the vessels. Equation (5) represents the
bottom-hat operator:

Ibot = υ•Seð Þ − υ, ð5Þ

where υ is the input image, Se are linear structuring elements
for closing (•). Because the direction of blood vessel distribu-
tion is different and the diameter of the tube is different, this
paper uses multiscale and multidirectional linear structural
elements. The scale ranges from 2 to 12 pixels, and the step
size is 2 pixels. The direction is in the range from 0 to π,
and the step size is π/8. We transformed Ibot into binary
image Ibinary by the OTSU method [28]. And then, morpho-
logical thinning is employed to Ibinary to obtain the skeleton
of the vascular tree, Cskel.

Step 2. The intersection of Cskel and Ccan is first calculated as
Cinter. And Cskel and Ccan are then separated into four-
connected regions. Only those regions that have more than
40% intersection with Cinter are saved, and the isolate short
branches are removed by the length filter [13] threshold of
which is denoted as L.

The pseudocode of the correction strategy of centerlines
is given in Pseudocode 1:

The results of bottom-hat transforming and binary image
transforming are shown in Figures 6(a) and 6(b). The final
true centerlines are shown in Figure 6(c).

2.3.2. Random Walker Segmentation. In this step, the
enhanced image obtained from the Hessian-based tubular fil-
tering is used as the guide image for the random walker. The
input image is considered a weighted graph with nodes and
edges. And an 8-connected lattice is employed as the neigh-
borhood structure. The weight of each edge expresses the
similarity of intensity between the adjacent pixels i and j.
Here, wij is computed as follows:

wij = e−β
ffiffiffiffiffiffiffiffiffiffiffiffiffi
υi−υ jð Þ2

p
, ð6Þ

where υ indicates the highest response of the Hessian-based
tubular filtered image at the pixel. β is a free parameter,
which is usually set as 90.

The solution to the minimization of the following
energy function is considered to be the desired random
walker probabilities:

E uð Þ = 1
2
〠
Lj j

i=1
〠
Lj j

j=1
wij ui − uj

� �2, ð7Þ

where ui = 1 if pixel i is in a vessel and ui = 0 if i is a
background pixel. L is the Laplacian matrix of the edge-
to-edge combination [26]. The two nodes on the edge eij
are pixels i and j, respectively.

(a) (b) (c)

Figure 6: Centerline generation of the input image: (a) the result of bottom-hat transforming; (b) binary image transformed by the OTSU
method; (c) the extracted centerlines.

Figure 7: The seeds group in part of image.

Begin
Rmid ⟵ ðRmax + RminÞ/2

R⟵ Rmid/2
DenseArea⟵AreaJudgementðCenterline, RÞ
If Centerlineði, jÞ ∈DenseArea

Distance⟵ R + 1
Else

Distance⟵ Rmax + 1
End If
Background Seeds⟵ SetSeedsðλ1, λ2,DistanceÞ
End

Pseudocode 2
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The labeled pixels, foreground seeds and back ground
seeds, are generated automatically based on the centerlines
and the orientation information in our method. The illustra-
tion of the seeds location in a certain selected region is shown
in Figure 7. The labeled pixels marked with the symbol of “+”
in the darker areas are the foreground seeds, otherwise the
background seeds marked with “∘.”.

Each pixel on the centerlines of a vessel is considered a
foreground seed. The background seeds are planted as the
following two steps:

Step 1. Areas which contain more details in the retinal image
are selected. As the radius of vessels in the retinal image
ranges from Rmin to Rmax pixels, we consider the vessels as
thinner vessels, the width of which are smaller than the mid-
dle value, Rmid pixels, otherwise, larger vessels. Firstly, the
centerlines are dilated by the structuring element with a
radius of Rmid pixels. Secondly, for each pixel on the center-
lines, if the number of the eight-connected regions of the
dilated result is more than 1 in the neighborhood window
with the radius of 2 ∗ Rmid pixels, we consider the pixel is in
the dense area, which contains more details. Otherwise, it is
in the sparse area.

Step 2. For each foreground seed, the candidate background
seeds are located several pixels away from it in the vertical
direction, the distance of which is one pixel larger than the
maximum radius of all the vessels in dense and sparse areas,
respectively. The corresponding eigenvectors of λ1 and λ2
can be used to denote the horizontal and the vertical orienta-
tion of a vessel, respectively.

The pseudocode of the location strategy of background
seeds is given in Pseudocode 2:

Since the width of the blood vessel ranges from 2 to 12
pixels, the Rmin value is 2, and the Rmax value is 12. The prob-
ability image associated with the random walker algorithm is
shown in Figure 8(a). The maximum of the probabilities of
the random walker is considered the final result of the seg-
mentation, as shown in Figure 8(b).

3. Results and Discussion

In this work, experiments were implemented on the publicly
available retinal image database, STARE. The blood vessel

segmentation work includes 20 hand-labeled images pro-
vided by two experts in the database, 10 of which are patho-
logical. We use MATLAB to implement our method on a
computer with 3.2GHz CPU and 4.00GB RAM.

The parameter setting of the proposed algorithm in this
paper is given as follows: in Equation (3), the smooth param-
eter σ = 0:2 ∗m (m = 1, 2,⋯25) and the rotation parameter
θ = n ∗ ðπ/8Þ (n = 0, 1, 2,⋯8). The thresholding parameter
φ = 0:45, δ = 50. And the maximum and the minimum values
of the width of all the vessels, Rmin and Rmax, are considered 2
and 12, respectively [29]. And the linear structuring elements
used in Equation (5) are 1 pixel wide, the length of which
ranges from 2 to 12 pixels with interval 2, approximately
the range of the diameter of the vessels in retinal images.
And we also rotated the operator at every π/8.

3.1. Qualitative Verification Compared by the Manual
Results. We have compared the results of our algorithm with
several other existing approaches [2, 8, 18, 19, 30–32]. And
the performance of our proposed method was tested in the
region of interest (ROI) determined by the FOV mask of
the retina. Since the results provided by the first expert, Hoo-
ver, are usually considered ground truth, the input images
and the comparison of the segmentation between the manual
work and the proposed method are given in Figure 9.

It can be seen that the main network of the vessels has
been segmented in the images. And many details of the
branches have also been detected.

Filters based on the eigenvalues of Hessian matrix, a
square matrix of second-order partial derivatives of a scalar
field, are widely applied as an efficient step in enhancing ves-
sel structures. The random walk algorithm provides a unique
and quality solution, which is robust to weak object bound-
aries. The labeled pixels, foreground and background seeds,
are automatically planted based on the centerlines by using
the information of local morphological properties, which
are used as the prior knowledge in the random walk segmen-
tation. In the proposed method, in order to improve the
accuracy of the path chosen by the random walker, the ves-
sels are also enhanced by using the multiscale tubular filters
based on the Hessian matrix.

However, due to the low contrast between the vessels and
the background tissue objects, methods only based on the
vesselness filters tend to classify all the tubular tissues as ves-
sels and thus would achieve high sensitivity but low

(a) (b)

Figure 8: Segmentation of random walks: (a) the probability image; (b) the final segmentation results.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 9: Comparison of segmentation results: (a) green channel of original images; (b) the hand-labeled ground truth segmentations labeled
by Hoover; (c) the hand-labeled ground truth segmentations labeled by Valentina Kouznetsova; (d) results of the u-net [19] method; (e)
results of the FC-CRF [18] method; (f) results of our method.
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specificity. And the pathological areas in the fundus images
make the work of blood vessel segmentation more difficult.
In our method, the divergence value of normalized gradient
field is used as the threshold to help reduce the misclassifica-
tion of the nonvessel objects and increase the sensitivity of
the segmentation.

As shown in Figure 10, the centerline extraction can
achieve good performance in locating the vessels in both nor-
mal and pathological areas. Details of the vessels are detected

in the normal areas in the first column, and the pathological
tissues are not misclassified as the vessels in the second and
the third columns.

Compared with other methods, the method based on the
normalized gradient vector field is more obvious in the main
part than the other methods and has better performance.
According to the difference of the appearance between the
vessel pixels and the pathological tissues in the normal gradi-
ent vector field, pixels which appear brighter than the

(a)

(b)

(c)

(d)

(e)

Figure 10: Comparison of segmentation results on some selective regions in the pathological region: (a) the green channel of the original
images; (b) the centerlines extracted by the proposed method in selected regions; (c) segmentation of the u-net method; (d) segmentation
of the FC-CRF method; (e) segmentation of the propose method.
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neighbors are regarded as nonvessel pixels, which thus have
good performance in specificity but not in sensitivity.

Centerlines are extracted based on the combination of
the enhancing filters based on the Hessian matrix and the
normalized gradient vector field, which are used to locate
the vessels in the image. The candidate centerlines are
obtained by considering the divergence of the normalized
gradient vector field as the threshold, which can help to
avoid misclassifying the nonvessel tissues. The skeletons
of the tubular objects are extracted by the OTSU method,
which are used as the correction and supplement to the
candidate centerlines.

3.2. Quantitative Verification. In the retinal images, pixels
correctly segmented as vessels or nonvessels are marked as
true positives (TP) or true negatives (TN), respectively. Oth-
erwise, they are marked as false negatives (FN) or false posi-
tives (FP), respectively.

In order to evaluate the performance of our proposed
method, we computed the average value of accuracy (Acc),
specificity (Sp), and sensitivity (Se) of the 20 test images,
which are used as performance measures [2]. These metrics
are defined as follows:

Se = TP
TP + FN

 Sp =
TN

TN + FP
 Acc =

TP + TN
TP + FN + TN + FP

:

ð8Þ

In Table 1, we can see that the sensitivity of the proposed
method is much higher than the other compared methods on
the premise of almost equal specificity and accuracy, which
means the ability of our algorithm to detect the vessel pixels
is much better.

4. Conclusion

The segmentation work of retinal blood vessels is of great sig-
nificance in the diagnoses of diseases by ophthalmologists. In
our paper, based on the complex physical appearance and
structure of the vessels in normal and pathological retinal
images, we extract centerlines of vessels by using the combi-

nation of the multiscale enhancing filter based on Hessian
matrix and the divergence value of the normalized gradient
vector field, the local information of which are used to locate
the labeled seeds in the random walks for segmentation. In
our experiment, the results of the proposed method can
achieve better performance in detecting the true vessels in
both normal and pathological areas.

However, there is still room for further improvement in
our method. Using the proposed segmentation method to
process a fundus image with a size of 605 ∗ 700 pixels, the
average time is nearly 90 seconds, so the real-time perfor-
mance of the algorithm needs to be further improved. Only
the ratio of the intersection between the candidate centerlines
and the skeletons is considered, which may cause the loss of
some details. And the distance between each pair of the fore-
ground and background seeds is measured by parameters. If
more effective approaches to implement different features of
retinal blood vessels are considered in the algorithm, the per-
formance of the final segmentation results can be better. In
the future, we will combine the machine learning method
to locate the blood vessel centerline and seed points, to
reduce the setting of human parameters, and to improve
the robustness of the algorithm.
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