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The success rate of oral implants is lower in type 2 diabetes mellitus (T2DM) patients than in nondiabetic subjects; functional
impairment of bone marrow-derived mesenchymal stem cells (BMSCs) is an important underlying cause. Many factors in the
blood can act on BMSCs to regulate their biological functions and influence implant osseointegration, but which factors play
important negative roles in T2DM patients is still unclear. This study is aimed at screening differentially expressed genes in the
blood from T2DM and nondiabetic patients, identifying which genes impact the osteogenic differentiation potential of alveolar
BMSCs in T2DM patients, exploring drug intervention regimens, and providing a basis for improving implant osseointegration.
Thus, a whole-blood gene expression microarray dataset (GSE26168) of T2DM patients and nondiabetic controls was analyzed.
Based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) results, differentially expressed genes
and signaling pathways related to BMSC osteogenic differentiation were screened, and major risk genes were extracted based on
the mean decrease Gini coefficient calculated using the random forest method. Bone morphogenetic protein-4 (BMP-4), with
significantly low expression in T2DM blood, was identified as the most significant factor affecting BMSC osteogenic
differentiation potential. Subsequently, metformin, a first-line clinical drug for T2DM treatment, was found to improve the
osteogenic differentiation potential of BMSCs from T2DM patients via the BMP-4/Smad/Runx2 signaling pathway. These
results demonstrate that low BMP-4 expression in the blood of T2DM patients significantly hinders the osteogenic function of
BMSCs and that metformin is effective in counteracting the negative impact of BMP-4 deficiency.

1. Introduction

With the continuous development of oral implantology,
implant restoration has become the preferred treatment
option for patients with dentition defects [1]. However, type
2 diabetes mellitus (T2DM) has long been considered a
relative contraindication for oral implant surgery [2, 3].
Although the risk of implant osseointegration failure in dia-
betic patients has decreased as implant surface treatment
techniques improved [4], the healing-stage success rate

and long-term survival rate of implants in diabetic patients
are still significantly lower than those in nondiabetic
patients [5]. Due to the complexity of the jawbone marrow
microenvironment in diabetic patients, it is still challenging
to clarify the causes and mechanisms of the aforementioned
phenomena.

Bone marrow-derived mesenchymal stem cells (BMSCs)
in jawbone marrow are adult stem cells that play important
roles in implant osseointegration [6]. When an implant is
placed into the jawbone, BMSCs begin to assemble around
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the surface of the implant. After the BMSCs adhere to the
implant surface, the osteogenic differentiation process is ini-
tiated, and new bone gradually forms with the assistance of
cells, blood, and related cytokines [7]. Previous studies have
shown that BMSC proliferation, migration, differentiation,
and mineralization in T2DM patients are significantly infe-
rior to those in nondiabetic patients [8]. The weakened oste-
ogenic differentiation potential of BMSCs in T2DM patients
might be an important reason for the failure of implant
osseointegration at the healing stage.

Sufficient blood supply is an indispensable factor in facil-
itating implant osseointegration [9]. The blood derived from
the capillary bed of the bone marrow cavity not only provides
the necessary cells and oxygen for bone tissue regeneration
but also carries a large number of active proteins and cyto-
kines [10]. Many proteins, including bone morphogenetic
proteins (BMPs), vascular endothelial growth factor (VEGF),
basic fibroblast growth factor (bFGF), and transforming
growth factor-β (TGF-β), can transport chemical signals to
BMSCs by binding to surface receptors, thereby playing an
important role in regulation of BMSC functions [11–14].
Among the BMP family, bone morphogenetic protein-4
(BMP-4) was recently shown to play a catalytic role in skele-
tal development and tooth formation [15, 16]. BMP-4 can
bind bone morphogenetic protein receptor 1 (BMPR1) and
further activate Smad signaling to affect the osteogenic
differentiation of stem cells [17]. Previous studies have found
that the blood of T2DM patients, in addition to alterations in
sugar concentration, shows significantly different gene
expression levels compared with the blood of nondiabetic
individuals [18]. However, it remains unclear which differen-
tially expressed genes in the blood significantly affect the
osteogenic differentiation of BMSCs and potentially interfere
with implant osseointegration in diabetic patients who
undergo oral implantation. Furthermore, finding an effective
and convenient way to improve the osteogenic differentiation
function of BMSCs in T2DM patients is meaningful for
decreasing the risk of implant osseointegration failure. The
commonly used blood glucose-controlling drug, metformin,
has been reported to improve bone metabolism and induce
osteoblastic cell differentiation [19]. However, the mecha-
nism of the effect of metformin on BMSCs still needs to be
elucidated.

In the present study, bioinformatics analyses were per-
formed using microarray data of whole blood from T2DM
patients and nondiabetic controls to search for differentially
expressed genes that are closely related to BMSC osteogenic
differentiation, with the aim of providing markers for risk
assessment prior to implant surgery for T2DM patients.
These genes can also be used as intervention drug targets to
improve the biological functions of alveolar BMSCs, provid-
ing a theoretical basis for drug selection for diabetic patients
to control blood sugar and simultaneously promote implant
osseointegration. Based on the findings in bioinformatics
analyses, we planned to use recombinant human BMP-4 pro-
tein (rhBMP-4) and an inhibitor of downstream Smad to
confirm the effect of BMP-4 on the biological function of
BMSCs, as well as mechanism, in T2DM patients and to fur-
ther explore whether the commonly used drug metformin is

able to reverse the impairment of BMSC osteogenic function
caused by the lack of BMP-4 in T2DM patient blood via the
BMP/Smad pathway.

2. Materials and Methods

2.1. Dataset Source and Gene Set Enrichment Analysis. Gene
expression microarray datasets of whole blood from T2DM
patients and nondiabetic controls were downloaded from
the Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/gds/?term=), with the accession code
GSE26168 (type 2 diabetes mellitus: mRNA and miRNA pro-
filing). A total of 24,526 standardized genetic data from nine
T2DM patients (T2DM group, GSM532834-GSM532842)
and eight nondiabetic controls (CON group, GSM532819-
GSM532826) in the dataset were used for subsequent analy-
sis. Based on the original matrix data of the microarray, gene
set enrichment analysis (GSEA) was performed using GSEA
v2.2.2 software (Broad Institute, USA) to identify the differ-
ences in biological functions between the two groups of blood
samples. The analysis parameters were set to default values.

2.2. Identification of Differentially Expressed Genes. The
online analysis tool GEO2R in the GEO website was used
to screen differentially expressed genes in this study. The
screening criteria were as follows: (1) fold change in upreg-
ulation or downregulation greater than 2 and (2) p values <
0.05. Origin 2019 software (OriginLab, USA) was used to
construct volcano plots to intuitively represent gene expres-
sion differences in blood samples from the T2DM group
and the CON group. Heat maps and cluster heat maps of
differentially expressed genes in the two groups of blood
samples were plotted using MeV 4.9.0 software (J. Craig
Venter Institute, USA) to assess systematic differences in
gene expression.

2.3. Gene Ontology Annotation and Kyoto Encyclopedia of
Genes and Genomes Pathway Analysis. Gene Ontology
(GO) annotation was performed to facilitate an understand-
ing of the functions of differentially expressed genes, includ-
ing three subontologies: biological process (BP), cellular
component (CC), and molecular function (MF). Pathway
analysis of differentially expressed genes using the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database was
employed to determine which biological pathways play an
important role in the gene expression differences. The above
analysis was conducted using the online tool DAVID v6.8
(https://david.ncifcrf.gov/). Significant GO terms and KEGG
pathways were identified using Fisher’s exact test, and the
false discovery rate (FDR) was used to correct the p values.
Bubble diagrams were created using the R v3.6.1 tool
(https://www.r-project.org), and the pathway maps were
generated with the online KEGG tool (https://www.kegg.jp/).

2.4. Analysis of Protein-Protein Interactions. To further
investigate the functions of differentially expressed genes at
the protein level, protein-protein interactions (PPIs) were
analyzed using the online tool STRING v11.0 (https://
string-db.org/), and network diagrams were generated using
Cytoscape v3.7.1 software (National Resource for Network
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Biology, USA). The correlations among the differentially
expressed proteins in each KEGG pathway were analyzed
using the ClueGO v2.5.4 plug-in in Cytoscape v3.7.1 soft-
ware. Venn diagrams were created using Origin 2019 soft-
ware (OriginLab, USA) to reveal the number of overlapping
proteins shared by each KEGG pathway.

2.5. Risk Gene Extraction Based on Random Forest Analysis.
The random forest (RF) method is an integrated classifier
composed of many decision trees, and each tree depends on
the values of a random vector sampled independently [20].
In this study, differentially expressed genes were subjected
to RF analysis using the R v3.6.1 tool (https://www.r-project
.org) and ranked based on the mean decrease Gini (MDG)
coefficient. MDG was used to quantify the contribution of
the difference in the expression of each gene to the overall
difference between the two groups [21], and comparison of
MDGs provided a basis for extraction of the major risk genes.

2.6. Clinical Specimen Collection and Primary BMSC Culture.
In this study, human alveolar BMSCs were isolated from
wasted bone debris from the implant sockets of patients
who underwent oral implantation. An informed consent
form for the study was signed by each patient before surgery.
The study was approved by the Ethics Committee of Beijing
Stomatological Hospital, Capital Medical University (ethics
approval: CMUSH-IRB-KJ-PJ-2017-01), and was performed
in accordance with the ethical standards laid down in the
1964 Declaration of Helsinki and its later amendments.

The primary BMSC culture method used in this study
was similar to that described in our previous study [22]. Dur-
ing oral implant surgery, the implant sockets were prepared
using a low-speed drilling technique (50 rpm, without irriga-
tion), and the bone debris was then collected from the drill
and placed in sterile tubes containing 0.5ml phosphate-
buffered saline (PBS) (HyClone, USA). An electronic balance
(Sartorius, Germany) was used to weigh the tubes before and
after the addition of the bone debris to enable quantification.
After centrifugation, the bone debris was transferred into a
60mm Petri dish (Corning, USA) with 5ml of mesenchymal
stem cell medium (MSCM) (ScienCell, USA) and placed in a
37°C and 5% CO2 incubator for 7 d. Thereafter, the medium
was replaced every 3 d.

2.7. Flow Cytometric Analysis. Cells were cultured in 60mm
Petri dishes (Corning, USA) at a density of 106 cells/dish
overnight and then fixed with 80% methanol. Primary anti-
CD34, anti-CD44, anti-CD45, and anti-CD146 rabbit mono-
clonal antibodies (Abcam, UK) were incubated with the cells
at a concentration of 1μg/106 cells for 30min. The samples
were next incubated using a goat anti-rabbit fluorescent sec-
ondary antibody (ABclonal, China) at a concentration of
1μg/106 cells for 1 h and assessed using FACSCalibur flow
cytometry (BD Biosciences, USA).

2.8. Enzyme-Linked Immunosorbent Assay. After the bone
debris samples of T2DM and nondiabetic patients were cen-
trifuged, the supernatant in the centrifuge tube was collected.
The bone morphogenetic protein-4 (BMP-4) content in the
bone debris matrix was determined using an enzyme-linked

immunosorbent assay (ELISA) kit (R&D Systems, USA)
according to the manufacturer’s protocol and was quantified
per 100mg of wet bone tissue for comparison.

2.9. Alkaline Phosphatase Assay and Alizarin Red S Staining.
BMSCs were induced and cultured in osteogenic medium
according to a StemPro Osteogenesis Differentiation Kit
(Invitrogen, USA). Recombinant human BMP-4 protein
(rhBMP-4) (R&D Systems, USA), a Smad inhibitor (LDN-
193189) (Selleck, USA), and metformin (TargetMol, USA)
were separately added to 0.5ml medium in 24-well dishes
(Corning, USA), and the final concentrations of each sub-
stance in the medium were as follows: rhBMP-4 (+: 10 ng/ml;
++: 50 ng/ml), LDN-193189 (+: 0.1μM; ++: 0.5μM), and
metformin (+: 30μM; ++: 100μM). After 10 d of induction,
cells were fixed in 70% ethanol for 1 h and stained using an
ALP staining kit (Beyotime, China) according to the manu-
facturer’s protocol. Intracellular ALP activity assays of
BMSCs were performed at 3, 5, and 7d of induction using
an ALP Activity Assay Kit (Nanjing Jiancheng Bioengineer-
ing Institute, China) according to the manufacturer’s proto-
col and were standardized based on protein concentration.
After induction for 21 d, cells were fixed in 70% ethanol
and stained with 2% alizarin red S staining solution (Sigma-
Aldrich, USA) for 5min. Then, 1ml of isopropanol was
added into each well to dissolve the red perylenequinone
derivatives in the calcium nodules, and the optical density
(OD) values were measured at a wavelength of 550nm.

2.10. Western Blotting. Cells were lysed in radioimmunopre-
cipitation assay (RIPA) buffer with 1 : 100 phenylmethylsul-
fonyl fluoride (PMSF) and 1 : 100 protease inhibitor cocktail
(PIC) (Sigma-Aldrich, USA). Protein concentrations were
determined using a Bicinchoninic Acid (BCA) Protein Quan-
titation Kit (Beyotime, China). Protein samples were sepa-
rated using a premade 15% sodium dodecyl sulfate (SDS)
polyacrylamide gel (Bio-Rad, USA) and transferred to poly-
vinylidene fluoride (PVDF) membranes (Bio-Rad, USA)
using a semidry transfer unit (Bio-Rad, USA). The mem-
branes were blocked in 5% nonfat dry milk (Bio-Rad, USA)
for 1 h. Primary antibodies were diluted to the recommended
concentration in accordance with the manufacturer’s
instructions and then incubated with the membranes at 4°C
overnight. Subsequently, the membranes were incubated
with horseradish peroxidase-labeled anti-rabbit secondary
antibody (ABclonal, China) for 1 h. Then, the membranes
were immersed in electrochemiluminescence (ECL) solution
(Bio-Rad, USA) for 3min and imaged using a ChemiDoc MP
Imaging System (Bio-Rad, USA). The primary antibodies
included rabbit monoclonal anti-p-Smad1/5/8, anti-Smad1,
and anti-Runx2 (Cell Signaling Technology, USA) and rabbit
monoclonal anti-β-actin (ABclonal, China).

2.11. Statistical Analysis. SPSS 23.0 software was used for sta-
tistical analyses. All the data were acquired from at least three
independent experiments. The data are expressed as the
mean ± standard deviation (SD). Student’s t-test or one-way
analysis of variance (ANOVA) was used to determine
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statistical significance. The level of significance was defined
by two p values (∗p < 0:05 and ∗∗p < 0:01).

3. Results

3.1. Differentially Expressed Genes and Gene Set Enrichment
in the Blood Samples from T2DM Patients and Nondiabetic
Controls. Heat map and volcano plots showed the genes dif-
ferentially expressed with a fold change greater than 2
(p < 0:05) in blood samples from the T2DM group and the
CON group (Figures 1(a) and 1(b)). A cluster heat map
showed gene expression profiles with a fold change greater
than 10 (p < 0:05) in the two groups (Figure 1(c)). In total,
2613 mRNAs were differentially expressed. Among them,
1032 mRNAs were upregulated, and 1581 mRNAs were
downregulated in the T2DM group. In particular, 88 mRNAs
were upregulated by more than 10-fold, and 117 mRNAs
were downregulated by more than 10-fold.

GSEA was conducted for the matrix data of all 24,526
genes in the T2DM and CON groups. The results showed
that glycogen metabolic process, glucose metabolic process,
cellular carbohydrate metabolic process, fatty acid transport,
and lipid catabolic process were significantly downregulated
in the T2DM group, and fatty acid biosynthetic process was
stronger in the T2DM group than in the CON group
(Figure 1(d)). The above results are consistent with the clin-
ical features and pathological manifestations of T2DM.

3.2. Functional Analysis of Differentially Expressed Genes.
GO analysis of differentially expressed genes helped identify
the differences in blood functions between T2DM patients
and nondiabetic individuals. The results showed enrich-
ment of downregulated (Figures 2(a)–2(c)) and upregulated
(Figures 2(d)–2(f)) differentially expressed genes in three
subontologies: BP, CC, and MF. To explore the possible
influences of abnormally expressed factors in the blood of
T2DM patients on the osteogenic differentiation potential
of BMSCs, we focused on the terms associated with this
type of biological function. In the BP enrichment results
of downregulated genes in T2DM patients, the fold enrich-
ment of the term “positive regulation of osteoblast differen-
tiation” was 2.49 (11 genes, p = 0:01). Follow-up analysis
focused on the functions and effects of these 11 genes.

3.3. Screening of Key Genes That Regulate Osteoblast
Differentiation. The expression levels of the 11 genes that
could regulate osteoblast differentiation in the blood were
significantly higher in the CON group than in the T2DM
group. The fold change and p value are shown in
Figure 3(a). The RF analysis results showed that among the
11 genes, the MDG coefficient for BMP-4 was the highest
(19.09), followed by RUNX2 (17.58) and BMP-7 (15.75)
(Figure 3(b)). PPI analysis of BMP-4 showed that BMP-4
was closely associated with the Smad signaling proteins
(Figure 3(c)). The KEGG pathway map of the TGF-β signal-
ing pathway showed that BMP-4 can activate Smad1/5/8
phosphorylation by binding to the cell membrane receptors
BMPR1 and BMPR2, thereby promoting osteoblast differen-

tiation and other biological functions by activating IDs for
regulation of DNA transcription (Figure 3(d)).

3.4. Analysis of Biological Pathways of Differentially Expressed
Genes. Figure 4(a) shows the KEGG pathway analysis results
for differentially expressed genes in the blood from the
T2DM group compared with that from the CON group.
Among them, the focal adhesion pathway plays a critical role
in the process of BMSC adhesion to the surface of biomate-
rials. A total of 45 genes were enriched in the focal adhesion
pathway, with a fold enrichment of 1.72 (p < 0:01). In the
focal adhesion pathway, extracellular matrix proteins can
bind to integrins to activate the downstream Wnt signaling
pathway and regulate the osteogenic differentiation ability
of BMSCs (Figure 4(b)). The interaction analysis among dif-
ferentially expressed genes in these KEGG pathways showed
that the differentially expressed genes in the focal adhesion
pathway have associations with the Ras signaling pathway,
cAMP signaling pathway, Rap1 signaling pathway, and
adrenergic signaling in cardiomyocytes (Figure 4(c)). The
Venn diagram in Figure 4(d) shows the number of overlap-
ping genes in these five important pathways.

Collagen represents an important class of extracellular
matrix proteins and plays a key role in integrin binding and
regulation of focal adhesion-associated signaling pathways.
Among the 11 collagens associated with the focal adhesion
pathway in the differentially expressed genes, nine were sig-
nificantly downregulated in the T2DM group (Figure 4(e)),
which could negatively affect the adhesion process of BMSCs.
RF analysis showed that among the nine genes, COL5A1 had
the highest MDG coefficient (29.06), followed by COL9A1
(19.93) and COL2A1 (19.61) (Figure 4(f)).

3.5. BMP-4 Expression in the Matrix of Alveolar Bone Debris
from Patients Who Underwent Oral Implant Surgery. The
major components of the alveolar bone debris supernatant
samples after centrifugation represented diluted blood of dia-
betic and nondiabetic patients. Standardized ELISA results
showed that the BMP-4 concentration in the matrix superna-
tant of alveolar bone debris from T2DM patients was signif-
icantly lower than that from nondiabetic patients (p < 0:05)
(Figure 5(a)).

3.6. Identification of Human BMSCs. Based on flow cytomet-
ric analysis, the cells expressed CD44 (positivity rate 98.2%)
and CD146 (positivity rate 98.5%) but did not express
CD34 (positivity rate 2.16%) or CD45 (positivity rate
1.06%) (Figure S1a), indicating that the cells express the
surface markers of BMSCs. Alizarin red S staining results
showed positive calcium node staining after 21 d of
osteogenic induction (Figure S1b); this indicated that the
cells had osteogenic differentiation potential. These findings
confirmed that the cells obtained via the low-speed drilling
technique exhibited the characteristics of BMSCs.

3.7. BMP-4/Smad/Runx2 Signaling Promotes Osteogenic
Differentiation of BMSCs from T2DM Patients. ALP and aliz-
arin red S staining showed that rhBMP-4 could increase ALP
expression and the degree of mineralization in BMSCs from
T2DM patients, and the effect of 50 ng/ml was more
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Figure 1: Continued.
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significant than the effect of 10ng/ml (Figure 5(b)).
According to the KEGG pathway map (Figure 3(d)), west-
ern blotting was used to detect changes induced in Smad
signaling by rhBMP-4. The results showed that rhBMP-4
increased the phosphorylation level of Smad1/5/8 and fur-
ther promoted Runx2 expression, and the Smad inhibitor
LDN-193189 significantly inhibited the above functions
of rhBMP-4 (Figure 5(c)). Furthermore, rhBMP-4 was
confirmed to regulate ALP expression and in vitro miner-
alization of BMSCs via the above signaling pathways
(Figure 5(d)).

3.8.Metformin Improves theReducedOsteogenicDifferentiation
Ability of BMSCs from T2DM Patients Caused by Insufficient
BMP-4 Combination. ELISA results showed that 30μMmet-
formin promoted BMP-4 secretion by BMSCs from T2DM
patients (p < 0:05), and the promoting effect of 100μM
metformin was more significant (p < 0:01) (Figure 6(a)).
Western blotting results showed that metformin increased
the Smad1/5/8 phosphorylation level and thus Runx2 expres-
sion in BMSCs and that the activation effect of 100μM met-
formin on the Smad signaling was similar to that of 50 ng/ml
rhBMP-4 (Figure 6(b)). ALP and alizarin red S staining
showed that metformin increased the osteogenic differentia-
tion potential of BMSCs from T2DM patients. The effect of
100μM metformin was more prominent than that of

30μM, leading to an increase in BMSC ALP expression and
in vitro mineralization to a similar extent as that induced
by 50ng/ml rhBMP-4 (Figure 6(c)). In summary, metformin
improved the osteogenic differentiation potential of BMSCs
from T2DM patients through the BMP-4/Smad/Runx2 sig-
naling pathway (Figure 6(d)).

4. Discussion

T2DM is a metabolic disease mainly characterized by hyper-
glycemia caused by islet dysfunction [23]. Clinically, the risk
of oral implant failure in patients with T2DM is significantly
higher than that in nondiabetic patients [2, 3, 5]. Abnormal
BMSC biological function is an important cause of poor
implant osseointegration [24]. Studies have shown that high
glucose induction can significantly reduce the biological
functions of human alveolar BMSCs, including proliferation,
migration, differentiation, and mineralization [25, 26]. How-
ever, the etiology and pathology of diabetes are extremely
complex, and hyperglycemia is only one of the pathological
manifestations of T2DM. Recent clinical studies have also
found that the stability of implants during the healing stage
in T2DM patients with good glycemic control was still lower
than that in nondiabetic patients [27], which indicated that in
addition to blood glucose, other important factors exist that
can seriously affect implant osseointegration in diabetic
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Figure 1: Gene expression differences in the blood from T2DM patients and nondiabetic controls and gene set enrichment analysis (GSEA).
(a, b) Heat map and volcano plots showing significantly differentially expressed genes with a greater than twofold change in the blood from
the two groups of patients. (c) Cluster heat map showing differentially expressed genes with a fold change greater than 10. (d) GSEA results
showing the differences in glucose and lipid metabolism in the blood from T2DM patients and nondiabetic controls.
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patients. Unfortunately, because these factors are still
undetermined, there is currently no ideal treatment method
to improve implant osseointegration in diabetic patients. In
addition, recent meta-analyses and cohort studies have
shown that T2DM is strongly associated with increased frac-
ture risk [28]; T2DM is also considered a potential cause of
secondary osteoporosis in the population [29]. The reduction
in the osteogenic differentiation potential of BMSCs in dia-
betic patients has been reported to play a key role in reducing
bone formation, impairing bone fracture healing, and
increasing the degree of osteoporosis [30, 31]. Furthermore,
osteoporosis is considered a potential risk factor for oral
implant failure [32]. Thus, effectively improving the biologi-
cal function of BMSCs is beneficial not only for oral implant

treatment but also for curing other osteogenic-related health
problems in T2DM patients.

Previous studies have shown that many proteins and
cytokines in the blood can play key regulatory roles in the
biological functions of BMSCs [33]. For example, after
BMP family members bind to their receptors on the cell sur-
face, they can regulate osteogenic differentiation of BMSCs
via the TGF-β signaling pathway [11, 34]; after COL family
members bind integrins on the cell membrane, they can
regulate the adhesion function of BMSCs via reconstruction
of focal adhesions and cytoskeletons [7, 35]. For patients
who undergo oral implantation, an abnormal content of the
abovementioned cytokines in the blood will inevitably
affect multiple biological functions of BMSCs, resulting
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Figure 4: Analysis of biological pathways of differentially expressed genes in the blood of T2DM patients compared with nondiabetic
controls. (a) The fold enrichment, gene numbers, and p value in KEGG pathway analysis of differentially expressed genes. (b) Schematic
diagram of the focal adhesion signaling pathway showing that extracellular matrix proteins can regulate osteoblast differentiation by
binding to integrins, increasing FAK phosphorylation, and activating the downstream Wnt signaling pathway. (c) Interaction analysis of
differentially expressed genes in the differential KEGG pathways. (d) Venn diagram showing the number of overlapping genes among the
KEGG pathways. (e) Differential expression status of the focal adhesion pathway-related collagen genes among the differentially expressed
genes (the T2DM group compared with the CON group). (f) Random forest analysis of the aforementioned collagen genes.
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in unstable implant osseointegration during the healing
stage. In the present study, microarray data of blood samples
from T2DM patients and nondiabetic controls (dataset
GSE26168) were analyzed, the expression levels of many
genes in these two groups were found to be significantly
different, and the biological functions of a portion of the dif-
ferentially expressed genes were enriched in osteogenic differ-
entiation. Previous studies have also shown that osteogenic
differentiation of alveolar BMSCs is a key step in the implant
osseointegration process [6, 24]. Thus, we speculated that in
addition to the changes in blood glucose levels, differences
in the content of osteogenic differentiation-associated cyto-
kines in the blood may be an important reason for the lower
degree of implant osseointegration in T2DM patients than
that in nondiabetic patients. However, the reason for such dif-
ferences in the content of osteogenic differentiation-related
cytokines in the blood between T2DM patients and normal
controls is still unclear. These cytokines, such as the BMP
family, can be synthesized and secreted into the circulation

by various tissues and their cells, such as the bone marrow,
adipose tissue, kidney, and liver [36–38]. Insulin resistance
in T2DM and decreased insulin stimulation can impact
metabolism in these tissues [39–41], which may affect the
contents of the cytokines released by these tissues into the
blood. However, this hypothesis needs to be confirmed by
solid experimental research.

In this study, according to the comprehensive analysis
of GO annotation and RF results, we found that the differ-
ence in the BMP-4 expression level in the blood of T2DM
patients and nondiabetic controls may be a major risk fac-
tor for the difference in BMSC osteogenic differentiation
between these two groups. The expression level of BMP-4
in the T2DM group was significantly lower than that in
the CON group. Additionally, we examined the BMP-4
concentration in the matrix supernatant of alveolar bone
debris from the implant sockets of T2DM and nondiabetic
patients undergoing oral implant surgery, and the results
also confirmed a significantly lower BMP-4 concentration
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Figure 5: BMP-4/Smad/Runx2 signaling promotes the osteogenic differentiation of BMSCs from T2DM patients. (a) BMP-4 levels in the
matrix supernatant of alveolar bone debris from implant sockets of T2DM patients who underwent oral implantation were significantly
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in the T2DM group. BMP-4, an important secreted protein
in the TGF-β superfamily, is widely known for its active
functions in embryonic development and formation of the
heart and other organs [42]. In recent years, BMP-4 has been
considered a necessary regulatory factor of tooth develop-
ment and bone tissue formation [43]. Binding of BMP-4 to
the membrane receptor BMPR1 leads to phosphorylation of
the intracellular signal transduction protein Smad1/5/8.
p-Smad1/5/8 and Smad4 oligomerize to form a complex,
which is transported into the nucleus to act as a transcription

factor. Then, the expression of Runx2 and other osteogenic
factors can be stimulated [44, 45]. In this study, we also
found that rhBMP-4 had a significant promoting effect on
osteogenic differentiation of BMSCs from T2DM patients,
and this effect was achieved via the BMP-4/Smad/Runx2
axis. Therefore, the reduction in BMP-4 expression in the
blood and bone matrix of T2DM patients is bound to
affect the osteogenic differentiation potential of BMSCs and
likely interferes with implant osseointegration during the
healing stage.
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Metformin is currently a commonly used and highly
effective drug for the treatment of T2DM [46]. Metformin
can reduce blood glucose levels by increasing peripheral
glucose utilization, reducing intestinal absorption of glu-
cose, and inhibiting hepatic gluconeogenesis [47]. Clinical
studies have demonstrated that metformin has protective
effects on bone tissue and can decrease the fracture risk in
T2DM patients [48]. Metformin also has a potential effect
on promoting osteogenic differentiation of BMSCs and
preosteoblasts [49], and it enhances ALP expression and
the in vitro mineralization ability of osteoblasts [50]. In vivo
experiments have also shown that metformin can promote
fracture healing and induce new bone formation in rats
[51]. Studies on the mechanisms have reported that the
ability of metformin to impact osteogenic differentiation is
mainly caused via AMP-activated protein kinase (AMPK)
signaling [52], whereby phosphorylated AMPK regulates
expression of Runx2 to further promote osteogenic function
in preosteoblasts [53]. In addition, Runx2 has been widely
proven to be regulated by the BMP/Smad pathway in BMSCs
[54], but whether metformin promotes Smad signaling is
still unclear.

In the present study, we found that metformin could
stimulate BMP-4 secretion by BMSCs from T2DM patients.
Moreover, metformin was confirmed to activate the down-
stream target gene Runx2 via Smad signaling to enhance
the osteogenic differentiation ability of BMSCs, and the
results showed that 100μM metformin had a promoting
effect similar to that of rhBMP-4. Therefore, whether
through stimulation of BMP-4 secretion or direct promotion
of osteogenic differentiation via Smad/Runx2, metformin
could compensate for the negative impact of low blood
BMP-4 levels on the osteogenic potential of BMSCs in dia-
betic patients. These findings demonstrate another impor-
tant application value of metformin in T2DM patients who
undergo oral implantation: not only can the blood glucose
levels be controlled by metformin, but it also has potential
effect to improve implant osseointegration during the
healing stage by enhancing the osteogenic differentiation of
alveolar BMSCs.

In addition, based on the bioinformatics analysis results
in this study, we found that a portion of the specific extracel-
lular matrix (ECM) proteins in the blood, especially colla-
gens, may play important roles in the process of BMSC-
implant adhesion [9, 43]. Previous studies have shown that
BMSC adhesion onto an implant surface is the initial step
that precedes their subsequent functions [55]. After a bioma-
terial is implanted into the bone tissue, collagens in the blood
will rapidly adsorb onto the surface of the biomaterial. Then,
BMSCs recognize the tripeptide sequence Arg-Gly-Asp
(RGD) in collagens through integrins, which promotes cell
adherence onto the biomaterial surface and initiates subse-
quent cell spreading, proliferation, and osteogenic differenti-
ation [56, 57]. In the present study, KEGG pathway analysis
showed that the expression of focal adhesion signaling
pathway-related genes was significantly different in the blood
from T2DM patients and nondiabetic controls and that the
expression of most collagen mRNAs was low in the T2DM
group. The above results provide new ideas for future explo-

ration of how to improve implant osseointegration in dia-
betic patients who undergo oral implantation. Increasing
the adsorption of collagens by modifying the implant surface
or using molecular agents to improve the adhesion ability of
BMSCs in T2DM patients is an important direction for
future research.

5. Conclusions

In summary, significant differences exist in the gene expres-
sion levels in the blood from T2DM patients and nondiabetic
individuals. The low BMP-4 expression level in the blood
from T2DM patients can affect the osteogenic differentiation
potential of alveolar BMSCs. Metformin, a first-line clinical
drug for treatment of T2DM, can significantly improve the
osteogenic differentiation of BMSCs via the BMP-4/Smad/
Runx2 signaling pathway, thereby compensating for the neg-
ative impact of BMP-4 deficiency on the functions of BMSCs
from T2DM patients.
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