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Stem cell-based therapy has been considered as a promising option in the treatment of ischemic heart disease. Although stem cell
administration resulted in the temporary improvement of myocardial contractility in the majority of studies, the formation of new
cardiomyocytes within the injured myocardium has not been conclusively demonstrated. Consequently, the focus of research in the
field has since shifted to stem cell-derived paracrine factors, including cytokines, growth factors, mRNA, andmiRNA. Notably, both
mRNA andmiRNA can enter into the extracellular space either in soluble form or packed intomembrane vesicles. Stem cell-derived
paracrine factors have been shown to suppress inflammation and apoptosis, stimulate angiogenesis, and amplify the proliferation and
differentiation of resident cardiac stem cells (CSCs). Such features have led to exosomes being considered as potential drug candidates
affording myocardial regeneration. The search for chemical signals capable of stimulating cardiomyogenesis is ongoing despite
continuous debates regarding the ability of mature cardiomyocytes to divide or dedifferentiate, transdifferentiation of other cells
into cardiomyocytes, and the ability of CSCs to differentiate into cardiomyocytes. Future research is aimed at identifying novel
cell candidates capable of differentiating into cardiomyocytes. The observation that CSCs can undergo intracellular development
with the formation of “cell-in-cell structure” and subsequent release of transitory amplifying cells with the capacity to differentiate
into cardiomyocytes may provide clues for stimulating regenerative cardiomyogenesis.

1. Introduction

The idea of extending the lifetime of the human heart has
been fuelled by a series of major advances in transplantation
and drug therapies. Nevertheless, myocardial infarction is
characterized by the irreversible loss of cardiomyocytes
because of their ischemic necrosis. Therefore, the need to
re-establish the structural and functional features of native
heart tissue represents a major challenge for the field of
cardiac tissue engineering.

Over the past decade, stem cell (SC) transplantation has
become a promising therapeutic strategy for treating acute
and chronic myocardial ischemia. Both preclinical and
clinical studies involving ES cells [1], induced pluripotent
stem cells (iPSCs) [2], bone marrow cells (BMCs) [3, 4],
mesenchymal stem cells (MSCs) [5], skeletal myoblasts
(SMs) [6, 7], endothelial precursor cells (EPCs) [8], and
cardiac stem cells (CSCs) [9, 10] showed significant albeit
very moderate improvement in LV function following SC-
based therapy. The ideal cell type for the treatment of heart
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disease should (i) improve heart function; (ii) create func-
tional cardiac muscle and vasculature, integrated into the
host tissue; (iii) be amenable to delivery by minimally
invasive clinical methods; (iv) be available “off the shelf”
as a standardized reagent; (v) be tolerated by the immune
system; (vi) be safe oncologically; and (vii) circumvent
societal ethical concerns.

Understanding how multipotent progenitors generate
specific immature heart-cell lineages and form different
heart-tissue components serves as a biotemplate for SC
engineering to target cardiovascular regeneration. Accord-
ingly, by utilising a primitive cell-fate map for the generation
of such progenitors, the possibility also exists of regenerating
the heart by transplanting specific progenitors derived from
human SCs into patients with or at risk for cardiovascular
disease. Towards this end, a clinically useful tissue-
engineered graft needs to be designed to perform multiple
different tasks including (i) reestablishment of the normal
structure and function of injured myocardium across differ-
ent size scales; (ii) functional integration with the host tissue;
and (iii) remodelling in response to, e.g., environmental
factors, growth, and aging. A “perfect” graft would balance
these requirements to provide robust functionality on a
long-term basis along with the capacity for vascularization.

In this review, our primary focus is on bioinspired
strategies along with the knowledge gained to date regarding
the challenges that remain to be addressed for engineered
heart regeneration to become a clinical reality, within the
framework of preventive and treatment strategies rooted in
personalized and precision healthcare-based and transla-
tional resources. However, this field still lacks sufficiently
conclusive results to support full-scale implementation of
such approaches, as exemplified by the poor survival and
long-term engraftment of transplanted cells. To address these
issues, new strategies are being subjected to intense evalua-
tion with regard to such applications, with the results
suggesting that these strategies may improve the efficiency
of next-generation SC-based therapies.

The lack of convincing clinical evidence to support the
efficacy of CSC-based therapy of ischemic heart disease has
questioned the initial hypothesis that new CMs are derived
from CSCs and has led to the suggestion that myocardial
renewal and regeneration in adult mammals are provided
by dedifferentiation and subsequent division of mature
CMs [11]. Although some researchers continue to discuss
the contribution of resident CSCs to adult cardiomyogenesis
[12, 13], the major part of scientific community has become
increasingly skeptical regarding the involvement of CSCs in
the generation of new CMs [14–17]. Moreover, the long-
lasting debate on this issue, along with the lack of positive
results, has resulted in the suspension of clinical trials on
the use of c-kit+ CSCs and even denial of the very existence
of c-kit+ CSCs in adult mammals [18].

In this review, we highlight the emerging approaches to
afford regeneration of heart muscle via the phenomenon of
intracellular development of CSCs accompanied by forma-
tion of cell-in-cell structures (CICSs) and the subsequent
release of transitory amplifying cells (TACs) capable of
differentiating into mature CMs. Such approaches open up

new perspectives for promoting SC-induced cardiogenesis
as a paradigm for regenerative medicine in the near future.

2. Cardiac Stem Cells (CSCs)

Comprehensive success has been accomplished in identifying
several populations of resident CSCs (c-kit+, Sca-1+, Isl-1+,
side-population (SP), cardiospheres, ALDH+ cells) in mam-
malian hearts and their availability in mature myocardium
[10, 19]. Nevertheless, their successful use in myocardial
regeneration procedures remains poor [2, 20]. Moreover,
none of the SC types (including CSCs) satisfy the require-
ments needed for the treatment of cardiovascular diseases,
such as improving heart function through myocardial cell
regeneration without immune rejection or higher tumour
formation risk [21]. Alternatively, the utilisation of several
factors can improve the stability of transplanted CSCs in the
unfavourable situation in the infarction zone. Coadministra-
tion of CSCs with MSCs [22] or the precultivation of c-kit+

CSCs, CD90+/CD105+ MSCs, and CD133+ endothelial pro-
genitor cells, which led to adhesion and cluster formation
[23], enhanced cell engraftment, the reduction of inflamma-
tion, and prevention of heart failure in animal experiments.
Another novel approach was the fusion of CSCs and MSCs
for hybrid cell generation, which decreased the infarction
zone, unlike the simple mixture of these cell types [24].

In order to further improve the myocardial regeneration
process, CSC preconditioning with growth factors, hypoxic
shock, or proliferation and differentiation stimulants has also
been applied. CSC genetic modification, which is used to
improve specific features among SCs, represents another
attempted advanced therapeutic method [25]. However,
despite temporary signs of improvement with regard to cell
survival, no significant heart regeneration was observed in
any case.

2.1. Mechanism(s) of SC-Mediated Cardioreparative Effects.
Numerous laboratory and clinical studies have shown that
after performing cell therapy for congestive heart failure,
improvement in left ventricular function occurred [26, 27].
In turn, absence of significant evidence of association of
positive effects from SC usage and new CM formation in
the damaged area allowed the positive impact of exogenous
SCs injected into the damaged myocardium to be attributed
to their influence on the myocardium as catalysed by
humoral factors (i.e., the paracrine effect) [28, 29]. This
finding reduced interest towards cell therapy applications
against heart diseases and turned the research direction
towards the study of SC secretion factors as a potential alter-
native to SC therapy in mediating cardiac regeneration [30].
The host of factors synthetized within SCs and released into
the extracellular milieu is usually referred to as the SC secre-
tome. To date, MSC secretome analysis has identified >200
unique proteins [31]; notably, SC secretome components
are not only confined to proteins but also include mRNA
and miRNAs [32].

It has been shown that intravenous infusion of human
MSCs reduces infarct size in mice via the anti-inflammatory
protein TSG6;moreover, TSG6 alonewas sufficient to provide
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a therapeutic effect [33]. This suggests that the therapeutic
effects of MSCs may depend largely on their capacity to regu-
late inflammation and tissue homeostasis via an array of
immunosuppressive factors, cytokines, growth factors, and
differentiation factors [34]. These include IL-6, TGF-β, pros-
taglandin E2, HGF, EGF, FGF, PDGF, VEGF, IGF, stromal
cell-derived factor 1, and, as discussed in more detail below,
the tryptophan-catabolic enzyme IDO and NO, a product of
iNOS. Cumulatively, these secreted factors may inhibit
inflammatory responses, promote endothelial and fibroblast
activities, and facilitate the proliferation and differentiation
of progenitor cells in tissues in situ [35].

2.2. Role of the SC Secretome. SC secretome components can
be secreted from the cell in different ways. Some utilise the
classical secretory pathway involving a signal sequence that
mediates individual protein secretion at the molecular level.
Others are released through the process of exocytosis. Finally,
many bioactive molecules are packed into membrane vesicles
termed exosomes. At present, exosomes are considered as a
potential alternative to stem cell therapy in mediating cardiac
regeneration [30]. For example, mouse embryonic SC-
derived exosomes exploit the regenerative power of ES cells
without requiring their transplantation [36]. Exosomes of
cardiosphere-derived cells (CDCs) inhibit the apoptosis and
promote the proliferation of CMs, along with enhancing
angiogenesis. Inhibition of exosome production blocks these
regenerative processes. It has been shown that CDC exo-
somes contain a certain miRNA repertoire, with particular
enrichment of miR-146a. Moreover, isolated administration
of a miR-146a mimic reproduces some but not all of the
benefits of CDC exosomes [37].

miRNA sequencing indicated that MSC-derived
exosomes and MSCs themselves utilise similar mechanisms
to enhance cardiac repair. In addition, it revealed that
MSC-derived exosomes alone could be used to promote
cardiac repair of the injured myocardium as a cardioprotec-
tive approach, along with the therapeutic potential of cardiac
regeneration strategies [38–40]. The study of SC-derived
exosomes has revealed that they contain growth factors,
miRNA, and additional cytoprotective factors that aid in
repairing and regenerating the damaged tissue. These exo-
somes exert antiapoptotic, antifibrotic, and proangiogenic
function as well as enhancing cardiac differentiation, all of
which are keys to repairing damaged tissue [41]. The provi-
sion of cell-free components, such as exosomes enriched in
proteins, mRNAs, and miRNAs characteristic of parental
SCs, therefore represents a potential approach for treating
cardiovascular diseases [42]. Although the mechanisms by
which exosomes improve cardiac function remain to be
determined, these results support the concept that they con-
stitute the main mediators of SC paracrine effects [32, 43]
and that a paracrine mechanism is sufficient to elicit func-
tional recovery in cell-based therapies for post-infarction-
related chronic heart failure [44, 45].

To understand the biological role of extracellular vesicles
(EVs), such as exosomes and microvesicles, and their
involvement in myocardial regeneration, it is important to
recognise that cardiac EV production increases in stress con-

ditions, such as hypoxia, inflammation, or injury. In hypoxic
conditions, cardiac EVs contain angiogenic and prosurvival
factors. In acute myocardial infarction (AMI), damaged
CMs produce EVs with increased content of angiogenic,
anti-apoptotic, mitogenic, and growth factors [46]. These
properties of exosomes support their likely utility as both
biomarkers of cardiac damage and possible regulators of
myocardium regeneration [46].

3. Innate Heart Regeneration

The concept of innate heart regeneration is based on the
assumption that myocardium in principle is capable of
rebuilding damaged cardiac muscle. However, this capability
is highly variable and dependent on numerous as-yet-
unidentified factors [47, 48]. Current research is focused on
the identification of molecules that can stimulate cardiac
regeneration through several mechanisms, including (i)
induction of preexisting mature CM proliferation, (ii) cardiac
fibroblasts being reprogrammed into CMs through direct
transformation (in vitro), (iii) transdifferentiation of one of
the various CM types, and (iv) activation of endogenous
CSC differentiation into other myocardial cell types [49].
To date, the development of methods aiming towards the
“rejuvenation” of dysfunctional myocardial cells appears
quite promising in cardiology. In particular, miRNA is
proposed as a regulator of myocardial cell activity. Moreover,
some researchers have attempted to return mature CMs into
a proliferation state [50] whereas others have provided
evidence that miRNA can stimulate endogenous CSC differ-
entiation [51]. Specifically, miR-590 and miR-199a were
shown to induce DNA synthesis and cytokinesis in neonatal
CMs in both mice and rats [52]. These miRNAs effected
significant stimulation of heart regeneration and significantly
improved cardiac function following myocardial infarction
(MI) in mice. In comparison, miR-15 showed activity in mice
only at one week after birth, which correlates with the rapid
loss of myocardial regeneration ability. Notably, however,
miR-15 inhibition improved cardiac function in mice after
damage, thereby demonstrating its potential as a therapeutic
agent [53].

The use of unique combinations of cardiospecific
transcription factors, miRNAs, and/or chemical molecules
is currently being considered for transdifferentiation of fibro-
blasts into CMs [49].Moreover, it was established that trans-
differentiation using Gata4, Mef2c, and Tbx5 is direct and
does not yield multipotent cardiac precursors [54]. To
activate resident CSCs, the use of metabolic programming
has been suggested as this can change the metabolism of
CSCs in accordance with external factors that originate from
infarction or other cardiac pathologies [55].

Notably, studies of cardiomyogenesis-related stimuli are
being performed concomitant with ongoing debates regard-
ing the possibility of dedifferentiation and division of mature
CMs and the ability of resident CSCs to differentiate into
mature CMs in the adult damaged heart [47]. Although
initially both mature CMs and resident CSCs had been con-
sidered equally important as a source of new CMs [56, 57],
the critical analysis of data obtained by Porrello et al. [58]
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in neonatal mice together with the data of other authors in
adult zebrafish [59, 60] has raised questions regarding this
viewpoint. Further studies supported that new CMs are
exclusively produced by means of adult CM dedifferentiation
with subsequent proliferation [61–63].

Accordingly, recent studies explored the potential of
different approaches capable of stimulating cardiomyogen-
esis from mature CMs. For example, Ma et al. [64] performed
in-depth investigation of protein dynamics during heart
regeneration of zebrafish using mass spectrometry. In com-
parison, Tahara et al. [65] studied the potential effects of
paracrine signals of epicardial and endocardial cells on cardio-
myocyte proliferation in zebrafish, whereas Foglia and Poss
[61] along with Galdos et al. [66] attempted to approach the
problem using heart development as a model. These authors
compared two different biological principles of cardiomyo-
genesis: the lifelong ability to generate new CMs in zebrafish
and CM formation limited to 5 days after birth in mammals.
Nevertheless, despite the lack of a coherent scheme ofmyocar-
dial regeneration, these studies shed some light on the issue.
For example, it was established that a link exists between the
lack of telomerase activity and concomitant telomere
dysfunction, which serve as natural barriers to cardiomyocyte
proliferation and cardiac regeneration [67]. In addition, p53
signalling was inhibited during heart regeneration [64].
Furthermore, it was shown that the regeneration of damaged
myocardium is mediated only by CMs that are adjacent to
the injury area [63] whereas inflammation [68] and ROS
promote regeneration [69]. Therefore, these findings might
together suggest that prolonged hypoxia is able to contribute
to myocardial regeneration through the reprogramming of
adult mammalian [70] and zebrafish [71] CMs.

In this regard, it is worth noting that hypoxia [72], ische-
mia [73], and infarction [74] all stimulate the appearance of
small cardiac-positive cells in the mammalian myocardium,
which can proliferate and differentiate leading to the forma-
tion of new CMs. When analysing these data, Kimura et al.
[72] and Nakada et al. [75] suggested that inflammation and
hypoxia promoted the division ofmature CMs despite the fact
that proliferating cells have an actual size of approximately
10–18μm, which is much smaller than that of mature CMs
(L > 50 μm). However, the issue of CM proliferation is also
controversial. In particular, it was established that systemic
hypoxemia could alleviate oxidative DNA damage, thereby
inducing CM proliferation in adult mammals [75, 76].
Conversely, Tong et al. [77] previously showed that hypoxia
causes a significant reduction in cardiomyocyte Ki-67
expression and BrdU incorporation in foetal rat hearts,
demonstrating the inhibitory effect of hypoxia on CM prolif-
eration in the developing heart.

3.1. Intracellular Development of CSCs. As the existing
concepts fail to provide clear understanding of the observed
phenomena, we suggested a new model based on the results
obtained in our laboratory. By studying the behaviour of
mammalian CSCs, we showed that the formation of new
CMs from resident CSCs occurs through colony formation
[78] and consequent to their intracellular development inside
the CMs, forming cell-in-cell structures (CICSs) [79]. Both

pathways of cardiomyogenesis were initially discovered in
newborn rat myocardium cell culture and were then con-
firmed by analysing freshly isolated (ex vivo) myocardial cell
suspensions from rats of varying ages, mature specific patho-
gen free (SPF) mice, a one-year-old bull, and a human [80].
In both cases, CSC proliferation terminated through the
formation of TACs inside either colonies or CICSs, respec-
tively. It was shown that intracellular development culmi-
nates in CICS breakage, which leads to the release of
approximately 200 TACs. Free TACs with L = 10 – 12μm
reserve their proliferative potential and differentiate into
mature CMs upon exiting the CICSs. The imitation of ische-
mia (e.g., via hypoxia or acidosis) in in vitro experiments led
to 5- to 10-fold increase in CICS amount and suppressed
colony cell development [80].

3.2. The Role of Hypoxia in Cardiomyogenesis and
Myocardial Regeneration. The comparison of our data with
those obtained by other groups shows that hypoxia exerts
dual effects on cardiomyogenesis. First, it prompts intracellu-
lar development of CSCs, which is evident from the increased
number of CICSs. Upon maturation and rupture, CICSs
release significant amounts of proliferating TACs [79, 80];
we presume that the same biological phenomenon was found
by other groups, showing the appearance of small dividing
cells after hypoxia, ischemia, and infarction [72–74]. In
addition, the data of Nakada et al. [75] showed that 2-week
hypoxemia (7% О2) imposed 1 week after MI has resulted
in a burst of myocardial cell proliferation. These data point
to an important conclusion that high myocardial regenera-
tive capacity observed in adult zebrafishes and newts, as well
as in mammalian embryos and newborn mammals, is
explained by the intensive proliferation of their CMs in the
hypoxic environment [71, 76].

It is known that hypoxia inhibits the proliferation of
cardiac cells necessary to ensure embryonic and neonatal
cardiomyogenesis [77]. Therefore, it might be speculated
that hypoxia could be used to promote myocardial regenera-
tion through the stimulation of intracellular development of
CSCs concomitant with CICS formation, although it might
be detrimental for the proliferation of TACs and their
cardiac differentiation at the moment of massive TAC
release from CICSs.

3.3. New Perspectives for Stimulating Regenerative
Cardiomyogenesis. Despite recent skepticism about the role
of CSCs in myocardial self-renewal and regeneration in adult
mammals [14–16, 18], our data demonstrate that these
cells are strongly involved in cardiac regeneration. We
consider that the phenomenon of CSC-derived CICSs with
TAC formation might constitute a valuable scenario for
potential utilisation in preselecting approaches to construct
unique products exclusively focused on CICSs and TACs
while targeting a sensitive subset of myocardial cells to secure
a differentiation program to obtain a final pool of mature
CMs. Moreover, TACs are highly sensitised to respond to
the stimuli being preselected and targeted and exhibit
markedly increased proliferative activity in postischemia
and posthypoxia periods. Therefore, these cells would gain
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a unique ability to be induced towards cardiodifferentiation
and are consequently the promising candidates to be applied
to stimulate cardiomyogenesis in heart failure. The potential
approaches to stimulation of myocardial regeneration are
summarized in Figure 1, which is a compilation of previ-
ously published figures [12, 13] with some modifications
provided by us.

4. Conclusion

By comparing our results with others, we concluded that all
previously described small cells likely actually constitute
TACs that “go through cardiac school (education)” inside
mature CMs. It is important to highlight that intracellular
CSC development is associated not only with partial cardio-
myogenic differentiation of their progeny but also by the
decreased level of their stemness. This fact hampers the iden-
tification of daughter cells for TACs and also ignores that the
small size of TACs may lead to their erroneous interpretation
as proliferating CMs. In addition, free CSCs are almost non-
detectable in the adult mammalian myocardium, which
strongly contributed to the negation of their role in adult
cardiomyogenesis. However, the identification and in-depth
exploration of the phenomenon of intracellular CSC develop-
ment have encouraged us to claim that CSCs are not just inno-
cent bystanders but rather working tools in an adult heart,
which form TACs that afford myocardium renewal during
their lifespan. The results fromMalliaras et al. [74] confirmed
that upon myocardial damage, small cells (11:5 ± 3:7 μm),
which were named by the authors as “endogenous cardio-
blasts,” are activated, and their amount increases more than

10-fold following infarction. Moreover, they showed that
genetically labelled cardioblasts expressed heart transcription
factors and sarcomere proteins, exhibited spontaneous
contractions, and formed mature CMs (in vivo) following
injection into the recipient heart.

Therefore, we consider that the existence of CSC-derived
TACs has been conclusively demonstrated and should be
considered in models of cardiomyogenesis. The schemes
shown in Figure 1 illustrate two different approaches to
stimulation of cardiomyogenesis. The first approach deals
with the activation of endogenous CM progenitors (innate
myocardial regeneration), while the second approach is based
on myocardial delivery of exogenous CSCs or CICSs capable
of producing newCMs.We feel that the second strategymight
bemore effective in terms of the time needed for the formation
of new CMs, specifically with heart-targeted delivery of
CICSs. According to our hypothesis, new CMs could be more
readily produced fromTACs, representing the offspring of the
initial CSC, which underwent sequential proliferation and
partial differentiation inside CICS. An important factor is
the maturity of CICS. In Figure 1 (Strategy 1), CICSs are
presented in the form of three images corresponding to differ-
ent levels of maturity and readiness to opening (left to right),
from immature to ruptured CICS capable of releasing ofmore
than 200 TACs. From this viewpoint, the use of both imma-
ture CICSs and free CSCs will require more than 2 weeks for
production of TAC batch. In addition, exogenously adminis-
tered CSCswill not necessarily immediately start formation of
CICSs and colonies. Therefore, innate myocardial regenera-
tion strategy might prove to be more attractive for the clinical
use. It might be anticipated that the use of appropriate factors

Strategy 1: activation of resident CSCs, CSC colonies, and CICSs

C. Genetic interference
(gene transfer/microRNAs)

B. Noncardiac stem cells
(e.g., bone marrow)

A. Growth factors
and/or cytokines

Resident CSCs

Exogenous CSCs Exogenous CICSs
with TACs

Free TACs
Myocyte
differentiationResident CSCs

CSC colonies

(a) (b)
(c) (d)

CICSs of different maturity

Strategy 2: delivery of exogenous CSCs or CICSs with TACs

+++
+

Figure 1: Novel strategies for CSC-based myocardial repair. Schematic overviews of current strategies used to make use of CSCs for
myocardial repair are shown in a compilation of previously published figures [12, 13] with some modifications provided by us. Strategy 1
is based on activation of endogenous CSCs by various means, e.g., (a) growth factors, (b) noncardiac stem cells, or (c) gene therapy.
Strategy 1(a): upon activation, resident endogenous CSCs can proliferate and mature into newly formed cardiac myocytes (green cardiac
myocytes). Strategy 1(b) is based on activation of endogenous CSC colonies and CSC CICSs with formation of TACs. Strategy 2(c) is
based on the delivery of autologous CSCs that have been isolated from small myocardial biopsies and scaled up outside the patient to
sufficient numbers. Exogenous CSCs are also shown to be capable of activating the local endogenous CSC compartment. Strategy 2(d) is
based on the delivery of autologous CICSs that have been isolated from small myocardial biopsies and scaled up outside the patient to
sufficient numbers. In addition, exogenously delivered CSCs and CICSs are hypothesized to mature and differentiate into functional
cardiac myocytes (yellow cardiac myocytes) that are electromechanically coupled with the preexisting cardiac myocytes (orange cardiac
myocytes) [12]. Abbreviations: CSC: cardiac stem/progenitor cell; CICS: cell-in-cell structure; TACs: transitory amplifying cells.

5BioMed Research International



stimulating cardiomyogenesis based on resident CSCs via
colonies or CICS formation will result in a more rapid myo-
cardial regeneration.

Our data indicate that cardiomyogenic stimuli should be
focused on TACs, rather than on CSCs or mature CMs. It is
also clear that the proliferative activity of TACs is enhanced
following ischemia and hypoxia and that their cardiomyo-
genic differentiation ability renders them as top candidates
for therapeutic cardiomyogenesis in the ailing heart.

Nevertheless, extensive work is still required to generate
powerful off-the-shelf SC therapeutics as the data from
human studies are contradictory, overall showing modest to
no therapeutic SC effects [27, 81, 82]. To overcome this
discrepancy, a deeper understanding of heart disease and
endogenous reparative mechanisms along with their interac-
tions with SCs is urgently needed [83]. Towards this end,
there is growing evidence that patient characteristics, such
as individual disease state, comedications, and personalized
risk factors, critically influence the therapeutic outcome of
SC applications. This finding clearly demands the implemen-
tation of personalized cardiac SC therapies in which the
selection of SC source, modification, and application is
tailored to these individual characteristics [84]. Thus,
prospective research should focus on the development of
specific responder scores and the identification of prognostic
biomarkers to identify patient cohorts who would benefit
most from distinct SC treatments [85, 86]. In addition,
higher standardization of study design and the establish-
ment of a global open-access database for the registration
and publication of preclinical and clinical trials would
markedly improve the comparability and availability of
obtained data [86, 87]. Together with personalized cell-
based therapy (e.g., responders versus nonresponders), SCs
might thus be able to fulfil the expectations of novel curative
options for patients with and at risk for cardiac disease.

The heart is an extremely complex organ, and the
techniques influencing its regeneration depend on many
variables of nontrivial character. Physician scientists and
practitioners are working hand-in-hand with SC scientists,
biodesigners, and bioengineers and are likely to play a key
role in developing the new paradigms for heart regeneration
that appear imminent. In this review and discussion, we aim
to establish a “case study” for the field of regenerative medi-
cine using cardiovascular regeneration as a model suitable for
further utilisation. We expect that advanced modalities that
integrate cellular, bioengineering, and information (IT)
technologies via clinical studies and translational applica-
tions as new consolidated entities will enhance the efficacy
of cardiac cell therapy and further contribute to cardiac
regenerative medicine.
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