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Background. The incidence of lung cancer is the highest of all cancers, and it has the highest death rate. Lung adenocarcinoma (LUAD)
is a major type of lung cancer. This study is aimed at identifying the prognostic value of immune-related long noncoding RNAs
(lncRNAs) in LUAD. Materials and Methods. Gene expression profiles and the corresponding clinicopathological features of
LUAD patients were obtained from The Cancer Genome Atlas (TCGA). The least absolute shrinkage and selection operator
(LASSO) Cox regression algorithm was performed on the prognostic immune-related lncRNAs to calculate the risk scores, and a
risk signature was constructed. Survival analysis was performed to assess the prognostic value of the risk signature. A nomogram
was also constructed based on the clinicopathological features and risk signature. Results. A total of 437 LUAD patients with gene
expression data and clinicopathological features were obtained in this study, which was considered the combination set. They were
randomly and equally divided into a training set and a validation set. Seven immune-related lncRNAs (AC092794.1, AL034397.3,
AC069023.1, AP000695.1, AC091057.1, HLA-DQB1-AS1, and HSPC324) were identified and used to construct a risk signature.
The patients were divided into the low- and high-risk groups based on the median risk score of -0.04074. Survival analysis
suggested that patients in the low-risk group had a longer overall survival (OS) than those in the high-risk group (p = 1:478e − 02).
A nomogram was built that could predict the 1-, 3-, and 5-year survival rates of LUAD patients (C-index of the nomogram was
0.755, and the AUCs for the 1-, 3-, and 5-year survivals were 0.826, 0.719, and 0.724, respectively). The validation and
combination sets confirmed these results. Conclusion. Our study identified seven novel immune-related lncRNAs and generated a
risk signature, as well as a nomogram, that could predict the prognosis of LUAD patients.

1. Introduction

Lung cancer has the highest incidence of all cancers and the
highest death rate. It is more common in women than men
(1). There are two main types of lung cancer, small cell lung
cancer (SCLC, 15% of the cases) and non-small-cell lung can-
cer (NSCLC, 85% of the cases), which mainly includes lung
adenocarcinoma (LUAD) and lung squamous cell carcinoma
(LUSC) (2). Over the past decade, the availability of predic-
tive biomarkers has led to a shift toward molecularly targeted

therapies for NSCLC, particularly LUAD, which benefit
many patients, especially patients with advanced or metasta-
tic NSCLC. Specific treatments depend on biomarker status,
such as the presence or absence of EGFR-activating muta-
tions and ALK/ROS1 translocations. However, not every
advanced patient has targetable mutations (3, 4).

The importance of the immune status in the tumor
microenvironment (TME) has been gradually recognized.
Dysfunction of the immune status in the TME is an impor-
tant feature of tumors. In the course of tumor development,
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the immune system plays a dynamic role in cancer immune
editing, which includes an elimination phase, an equilibrium
phase, and an escape phase (5). Currently, immune check-
point inhibitors, such as programmed death-1 (PD-1)/pro-
grammed death-ligand 1 (PD-L1), have become another
main treatment for advanced NCSLC, especially in patients
without targetable mutations (6). Therefore, it is necessary
to identify more immune-related factors to promote the
development of anticancer immunotherapy.

The human genome transcribes less than 2% of the
protein-coding genes, and 85% of it is composed of noncoding
RNAs, including long noncoding RNAs (lncRNAs) (7).
lncRNAs account for a large part of the human genome and
were once considered insignificant “noise” in the genome’s
repertoire of non-protein-coding transcripts (8). Recent
studies have revealed the roles of lncRNAs in many biological
processes, including transcriptional regulation and cell differ-
entiation (9, 10). Furthermore, lncRNAs play vital roles in

cancer immunity, such as antigen releasing and presentation,
immune activation, immune cell migration, infiltration into
cancer tissues, and cancer cell killing (5). However, the roles
of immune-related lncRNAs in LUAD are still unclear. This
study is aimed at exploring immune-related lncRNAs as bio-
markers, as well as their prognostic roles in LUAD, by the inte-
grated analyses of gene expression profiles.

2. Materials and Methods

2.1. Data Collection. We downloaded gene expression pro-
files and the corresponding clinicopathological features of
the LUAD patients from The Cancer Genome Atlas (TCGA)
(https://portal.gdc.cancer.gov/). We excluded samples from
patients with survivals of ≤30 days because these patients
might have died from nonneoplastic causes (11). The clinico-
pathological features included survival time, survival status,
age, gender, and Union for International Cancer Control
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Figure 1: Flowchart of our study. Gene expression profiles were downloaded from The Cancer Genome Atlas (TCGA) database. Immune-
related genes were extracted from the Molecular Signatures Database. Immune-related lncRNAs were identified according to Pearson’s
correlation. The training set was used to identify immune-related prognostic lncRNAs and establish a risk signature based on the
immune-related prognostic lncRNAs. The prognosis analysis was validated by the validation set and the combination set, respectively. A
nomogram was constructed by including the immune-related lncRNA signature and other prognosis-related clinical features in the
training set and confirmed by the validation set and the combination set, respectively. Functional enrichment analyses based on the
training set were utilized to explore immune-related functions. ROC: receiver operating characteristic.
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(UICC) stage (TNM stage). To increase the reliability of our
research, we randomly and equally divided the entire dataset
into a training set and a validation set and the whole dataset
was considered a combination set.

2.2. Identification of Immune-Related lncRNAs. We
extracted lncRNA expression data from the mRNA expres-
sion data according to the GENCODE project (http://www
.gencodegenes.org) (12, 13). Based on the keywords
IMMUNE_RESPONSE (Immune response M19817) and
IMMUNE_SYSTEM_PROCESS (Immune system process
M13664), immune-related genes were obtained from the
Molecular Signatures Database (http://www.broadinstitute
.org/gsea/msigdb/index.jsp) (14, 15). Next, Pearson’s corre-
lation analysis was performed between immune-related
genes and lncRNA expression levels in samples to identify
immune-related lncRNAs according to the correlation
coefficients and p values (∣correlation coefficient∣ > 0:6 and
p < 0:001). To determine the prognostic value of immune-
related lncRNAs, we conducted univariate Cox regression
analysis on the immune-related lncRNAs in the training set
by using the “survival” package in R (v3.6.1), and the hazard
ratios (HRs) with 95% confidence intervals (CIs) were exam-
ined. p < 0:05 indicated that immune-related lncRNAs were
correlated with overall survival (OS) and considered prog-
nostic immune-related lncRNAs. Immune-related lncRNAs
with HRs > 1 were considered to be risk factors, whereas
HRs < 1 were considered protective factors.

2.3. Construction of the Risk Signature. A risk signature was
constructed by performing the least absolute shrinkage and
selection operator (LASSO) Cox regression algorithm on
the prognostic immune-related lncRNAs using the “glmnet”
and “survival” packages in R. The risk score for the signature
was calculated using the following formula (16–18):

Risk score = 〠
n

i=1
coef i × xi, ð1Þ

where coef i is the coefficient and xi is the expression of each
prognostic immune-related lncRNA in each sample. The
LUAD patients were divided into high-risk and low-risk
groups based on the median risk score. Samples with risk
scores no higher than the median risk score were assigned
to the low-risk group; otherwise, they were assigned to the
high-risk group. We next used the “survival” and “survmi-
ner” packages to construct a Kaplan–Meier survival curve
to reveal the OS of the high-risk and low-risk groups. Log-
rank p < 0:05 indicated a difference. We used the area under
the curve (AUC) in the receiver operating characteristic
(ROC) built by the “survivalROC” package to investigate
the time-dependent prognostic value of the risk signature.
Principal component analysis (PCA) was performed by the
“limma”package to study the expression patterns in the differ-
ent groups. What is more, we performed Estimation of STro-
mal and Immune cells in MAlignant Tumor tissues using
Expression data (ESTIMATE) analysis by using “estimate”
package to compare the immune scores between the high-
risk and low-risk groups to prove the difference in immunity.

2.4. Independence of the Risk Signature and
Clinicopathological Features in the Prognostic Value. To
investigate whether the risk signature and clinicopathological
features were independent prognostic factors, we performed
univariate and multivariate Cox regression analyses for each
variable. Variables with p < 0:05 in both analyses indicated
that they were independent prognostic factors.

2.5. Gene Set Enrichment Analysis. To reveal the potential
function of the high-risk and low-risk groups, we performed
Gene Set Enrichment Analysis (GSEA). p < 0:05 and a false
discovery rate (FDR) of q < 0:25 indicated significant func-
tional enrichment.

2.6. Building and Validation of a Nomogram. A nomogram is
a statistical model of prognosis presented as a simple graph
(19, 20). In the nomogram, each sample is assigned a point
for each of its variables and the resulting total score predicts
1-, 3-, and 5-year survival rates (21). We used independent
prognostic factors to build a nomogram using the “rms”
package. A calibration plot (by a bootstrap method with
500 resamples) was used to validate the nomogram and con-
cordance index (C-index), and time-dependent ROC curves
were used to evaluate the discrimination of the nomogram.

2.7. Statistical Analysis.We used the chi-squared test and Fish-
er’s exact test or Student’s t-test to investigate differences in age,
gender, TNM stage, and survival status between the high-risk
and low-risk groups. p < 0:05 indicated significant difference.

3. Results

3.1. Data Acquisition. A total of 437 LUAD patients with
gene expression data and survival time (>30 days), survival
status, age, gender, and TNM stage information were
obtained from TCGA. Figure 1 shows a flowchart of the
steps involved in the study. Three hundred thirty-two
immune-related genes were included from the Molecular
Signatures Database. Based on ∣correlation coefficient∣ > 0:6
and p < 0:001, 429 immune-related lncRNAs were identified.

Table 1: Clinicopathological features of lung adenocarcinoma
patients in the training set and validation set.

Characteristics
Training set
(n = 219)

Validation set
(n = 218) p value

Age 0.364

≤65 102 111

>65 117 107

Gender 0.468

Male 102 94

Female 117 124

Survival status 0.892

Alive 144 142

Dead 75 76

TNM stage 0.36

I+II 169 160

III+IV 50 58
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Figure 2: Continued.
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Four hundred thirty-seven patients were considered to be a
combination set, which was randomly and equally divided
into a training set (219 patients) and a validation set (218
patients) (Table 1). There were no differences in clinicopath-
ological features between the two sets.

3.2. Construction of the Risk Signature. Univariate Cox
regression analysis of the immune-related lncRNAs in
the training set showed that seven immune-related
lncRNAs (AC092794.1, AL034397.3, AC069023.1, AP000695.1,
AC091057.1, HLA-DQB1-AS1, and HSPC324) had the most

significant prognostic value. AC092794.1, AP000695.1, and
AC091057.1 were risk factors, and AL034397.3, AC069023.1,
HLA-DQB1-AS1, and HSPC324 were protective factors. In
the LASSO Cox regression algorithm, all of them were identi-
fied to construct the risk signature (Figures 2(a) and 2(b)).
The coefficients are shown in Table 2. The risk score of each
sample was calculated by the sum of the coefficients of
each lncRNA multiplied by the corresponding expression
in each sample. Based on the median risk score of
-0.04074, the training set was divided into low-risk and
high-risk groups (Figure 2(c)). Patients in the low-risk
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Figure 2: (a, b) The figures of LASSO coefficient distribution and partial likelihood deviation of the LASSO coefficient distribution of the
training set. (c–e) Risk plots of the three sets. In each set, the risk score distribution, patients’ survival status, and gene expression in the
low- and high-risk groups were displayed. LASSO: least absolute shrinkage and selection operator.

Table 2: Seven prognostic immune-related lncRNAs identified from Pearson’s correlation analysis and univariate Cox regression analysis.

Gene symbol Ensembl ID Coefficient
Univariate Cox regression analysis

HR 95% CI lower 95% CI higher p value

AC092794.1 ENSG00000274987.1 0.091612549 1.119 1.004 1.248 0.042

AL034397.3 ENSG00000274536.7 -0.215357523 0.653 0.454 0.939 0.021

AC069023.1 ENSG00000235637.1 -0.131327244 0.016 0.000 0.824 0.040

AP000695.1 ENSG00000230479.1 0.277874381 1.413 1.116 1.789 0.004

AC091057.1 ENSG00000187951.11 0.350748081 1.523 1.054 2.201 0.025

HLA-DQB1-AS1 ENSG00000223534.1 -0.037782602 0.925 0.863 0.991 0.027

HSPC324 ENSG00000228401.4 -0.288418544 0.483 0.260 0.899 0.022
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group had a longer OS than patients in the high-risk
group (p = 1:478e − 02, Figure 3(a)). AUCs in the training
set for 1-, 3-, and 5-year OSs were 0.736, 0.650, and
0.634, respectively (Figure 4(a)), indicating that the risk
signature could predict the 1-year survival rates for the
LUAD patients better than the 3- and 5-year OS rates.
PCA of the low-risk and high-risk groups showed that they

could be separated based on the seven immune-related
lncRNAs (Figure 5(a)). That is to say, immune-related
lncRNAs were used to separate the LUAD patients into two
sections, indicating that the immune status of the LUAD
patients in the low-risk group was distinguishable from that
in the high-risk group. ESTIMATE analysis showed that the
immune scores in the low-risk group ranged from 135.4115
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Figure 3: Kaplan–Meier curves of the risk signature in three sets. (a) Training set. (b) Validation set. (c) Combination set.
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Figure 4: ROC curves of 1-, 3-, and 5-year overall survivals of the risk signature in three sets. (a) Training set. (b) Validation set. (c)
Combination set. ROC: receiver operating characteristic.
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to 3241.226, and those in the high-risk group ranged from
-766.567 to 3002.727. The immune scores in the low-risk
group were significantly higher than those in the high-risk
group (Figure 6(a), p < 0:001), suggesting that the tumor cells
in the low-risk group had more immune cell infiltration than
those in the high-risk group.

3.3. Validation of the Risk Signature. To verify the accuracy of
the risk signature model built by the training set, the seven
coefficients were applied to the validation set and the combi-
nation set to confirm the risk score of each sample in them.
Then, the same analyses used for the training set were used
for the validation set and the combination set (Figures 2(d)
and 2(e)). Both sets showed results similar to those of the
training set. Patients in the low-risk group had longer OS

rates than those in the high-risk group (p = 2:085e − 02 in
the validation set and p = 4:846e − 04 in the combination
set, Figures 3(b) and 3(c)). The ROC curves showed that
the AUCs for the 1-, 3-, and 5-year OS rates in the valida-
tion set were 0.705, 0.687, and 0.593, respectively, and in
the combination set, they were 0.719, 0.664, and 0.614,
respectively (Figures 4(b) and 4(c)), indicating that the risk
signature in both sets could predict the 1-year survival rate
for LUAD patients better than the 3- and 5-year OS rates.
PCA of both sets showed that the low-risk and high-risk
groups were divided into two clusters (Figures 5(b) and
5(c)). ESTIMATE analysis showed that, in the validation
set, the immune scores in the low-risk group ranged from
-403.82 to 3107.108 and in the high-risk group ranged from
-936.191 to 2619.29; in the combination set, the immune

−5  0  5 10 15 20
−6

−4

−2

0

2

4

−4
−2

0
2

4
6

8
10

PC1

PC
2

PC
3

Low risk
High risk

Training set

(a)

Low risk
High risk

−6 −4 −2  0  2  4  6  8
−10

 −8

 −6

 −4

 −2

0

2

4

−8
−6

−4
−2

0
2

PC1

PC
2

PC
3

Validation set

(b)

Low risk
High risk

−5  0  5 10 15 20 25
−15

−10

 −5

0

5

−10

−5

0

5

10

PC1

PC
2PC

3

Combination set

(c)

Figure 5: Principal component analysis (PCA) based on the seven immune-related lncRNAs showed that the low-risk group and high-risk
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scores in the low-risk group ranged from -403.82 to
3241.226 and in the high-risk group ranged from -936.191
to 3002.727. In both of the two sets, the immune scores
in the low-risk group were significantly higher than those
in the high-risk group (Figures 6(b) and 6(c), p < 0:001).
These results demonstrated the accuracy and reliability of
the risk signature model.

3.4. Independent Prognostic Factors. To identify the indepen-
dent prognostic factors, univariate and multivariate Cox
regression analyses were performed in the training set.
Age, gender, TNM stage, and risk signature were included.
In multivariate Cox analysis, clinicopathological features
that were not significant in univariate Cox analysis were
excluded. The results indicated that the risk signature
and TNM stage were independent prognostic factors. Fur-
thermore, the same results were obtained for the valida-
tion set and the combination set, which verified the
accuracy of the training set results (Table 3).

3.5. Clinicopathological Features in the Low-Risk and High-
Risk Groups. Correlation between the clinicopathological fea-
tures and the risk signature was studied to reveal the distribu-
tion of clinicopathological features in the low-risk and high-
risk groups (Table 4). In the training set, the survival status
was correlated with the risk signature (p = 0:041) and the

patients in the high-risk group had a poor prognosis. In the
validation set, patients with a lower TNM stage were more
prevalent in the low-risk group (p = 0:008). The combination
set had the same results as the training set and the validation
set (TNM stage: p = 0:005, survival status: p = 0:004). In addi-
tion, males in the combination set were more likely to be in
the high-risk group (p = 0:024).

3.6. Functional Enrichment Analysis. Gene Set Enrichment
Analysis (GSEA) between the low-risk and high-risk groups
based on the training set revealed some important pathways
involved not only in the occurrence and development of can-
cer but also in immune-related cancer processes. The poten-
tial Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways in the high-risk group were mainly enriched in
base excision repair, cell cycle, mismatch repair, nucleotide
excision repair, and the p53 signaling pathway. The potential
functions in the low-risk group were mainly enriched in
ATP-binding cassette (ABC) transporters, the JAK-STAT
signaling pathway, and the mTOR signaling pathway. The
Gene Ontology (GO) analyses revealed that a large number
of immune-related processes were enriched in the low-risk
group compared to the high-risk group. In addition, the
immune response (p = 0:02, FDR = 0:02) and immune sys-
tem process (p = 0:016, FDR = 0:016) pathways were
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Figure 6: The immune scores in the low-risk group were significantly higher than those in the high-risk group in the training, validation, and
combination sets. (a) Training set. (b) Validation set. (c) Combination set.
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enriched in the low-risk group (Figure 7, Table 5). These
results indicate that the high-risk group was more likely to
be associated with the malignancy of LUAD and the low-
risk group was more likely to be associated with the
immune-related processes of LUAD.

3.7. Construction and Validation of a Nomogram. A nomo-
gram was built for the training set based on the TNM stage

and risk score (Figure 8(c)). The C-index of the nomogram
was 0.755, and the AUCs for the 1-, 3-, and 5-year survivals
were 0.826, 0.719, and 0.724, respectively (Figure 8(b)). In
the validation set and the combination set, the C-indexes
were 0.703 and 0.728, respectively. The 1-, 3-, and 5-year
AUCs were 0.758, 0.741, and 0.668, respectively, in the vali-
dation set (Figure 8(c)) and 0.785, 0.732, and 0.708, respec-
tively, in the combination set (Figure 8(d)). The calibration

Table 3: Univariate and multivariate Cox analyses of the risk signature and clinicopathological features for the independent prognostic value
in lung adenocarcinoma patients.

Variables
Univariate Cox regression analysis

HR 95% CI lower 95% CI higher p value

Training set

Age 1.015 0.991 1.039 0.224

Gender 0.959 0.609 1.511 0.857

TNM stage 1.625 1.331 1.984 <0.001
Risk signature 2.841 1.895 4.258 <0.001

Validation set

Age 1.004 0.981 1.028 0.712

Gender 1.213 0.771 1.908 0.405

TNM stage 1.734 1.395 2.155 <0.001
Risk signature 1.765 1.217 2.561 0.003

Combination set

Age 1.010 0.993 1.027 0.244

Gender 1.054 0.765 1.452 0.748

TNM stage 1.689 1.460 1.955 <0.001
Risk signature 2.215 1.706 2.876 <0.001

Variables
Multivariate Cox regression analysis

HR 95% CI lower 95% CI higher p value

Training set
TNM stage 1.870 1.160 3.015 0.01

Risk signature 2.540 1.653 3.904 <0.001

Validation set
TNM stage 2.664 1.622 4.376 <0.001

Risk signature 1.539 1.075 2.204 0.019

Combination set
TNM stage 2.274 1.611 3.210 <0.001

Risk signature 1.922 1.469 2.515 <0.001
HR: hazards ratio; CI: confidence interval.

Table 4: Correlation of the clinicopathological features of lung adenocarcinoma patients and risk signature in this study.

Characteristics
Training set (n = 219) Validation set (n = 218) Combination set (n = 437)

Low risk
(n = 110)

High risk
(n = 109) p value

Low risk
(n = 109)

High risk
(n = 109) p value

Low risk
(n = 219)

High risk
(n = 218) p value

Age 0.312 1 0.668

≤65 47 55 56 55 104 109

>65 63 54 53 54 115 109

Gender 0.120 0.132 0.024

Male 45 57 41 53 86 110

Female 65 52 68 56 133 108

Survival status 0.041 0.065 0.004

Alive 80 64 78 64 158 128

Dead 30 45 31 45 61 90

TNM stage 0.137 0.008 0.005

I+II 90 79 94 66 183 157

III+IV 20 30 15 43 36 61
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plots for the 1-, 3-, and 5-year survivals indicated good agree-
ment between the actual observations and the predictions,
not only in the training set but also in the validation and
combination sets (Figure 9). These results indicated that the
prediction performance of the nomogram was good.

4. Discussion

In the present study, we systematically collected data from
TCGA dataset and extracted immune-related lncRNAs.
Then, we identified seven prognostic immune-related
lncRNAs through univariate Cox regression analysis and used
them to derive a risk signature, which stratified LUAD patients
into high- and low-risk categories. Patients in the low-risk
group had longer OS than patients in the high-risk group.
The AUCs showed that the risk signature had a good predic-
tive value for 1-year survival, which was confirmed by the
validation set and the combination set. Finally, a nomogram
was built based on age, gender, TNM stage, and risk score,
and the prediction performance was good not only in the
training set but also in the validation and combination sets.

Seven immune-related lncRNAs played important roles
in our study, and a risk signature was constructed based on
them. The risk signature was strongly correlated with the
OS of LUAD patients and could also predict 1-year survival,
not only in the training set but also in the validation and
combination sets. The distribution of the TNM stage was dif-
ferent between the low- and high-risk groups in at least two
sets. There were more patients with higher TNM stages (III

+IV) in the high-risk group, which led to poor prognoses,
indicating that the risk signature and TNM stage were crucial
prognostic factors. Besides, univariate and multivariate Cox
regression analyses revealed that the TNM stage and risk sig-
nature were independent prognostic factors. The distribution
of gender was different only in the combination set, in which
the high-risk group had more male patients. The risk signa-
ture was a reliable prognostic model with potential clinical
significance. In clinical work, to predict the prognosis of
patients, we only need the expression of the seven immune-
related lncRNAs; then, risk scores can be calculated based
on the coefficients, determining whether the patients are clas-
sified as low or high risk to predict their prognoses. With the
development of gene sequencing technology, it will soon
become a reality. The seven immune-related lncRNAs were
novel biomarkers of LUAD and had important prognostic
significance. They may become new targets for immunother-
apy and lead to new therapeutic strategies. Unfortunately,
there have been no prior reports on them. However, this
opens up many avenues of study to pursue on this topic.

Furthermore, the risk signature was included in the con-
struction of a nomogram. Compared to the risk signature, a
nomogram can include more factors that impact the progno-
sis and can comprehensively evaluate the prognosis of
patients with more accurate results. However, a simple
nomogram only contains clinicopathological features. The
addition of the risk signature made it more reliable because
the prognosis prediction depended not only on the clinico-
pathological features but also on the expression of related

Table 5: Representative results of Gene Set Enrichment Analysis.

Group Name Size NES NOM p value FDR q value

High-risk group

KEGG_BASE_EXCISION_REPAIR 35 1.901 0.013 0.025

KEGG_CELL_CYCLE 124 2.381 <0.001 <0.001
KEGG_MISMATCH_REPAIR 23 2.091 <0.001 0.005

KEGG_NUCLEOTIDE_EXCISION_REPAIR 44 2.139 <0.001 0.003

KEGG_p53_SIGNALING_PATHWAY 68 1.787 0.006 0.045

Low-risk group

KEGG_ABC_TRANSPORTERS 44 -1.647 0.014 0.111

KEGG_JAK_STAT_SIGNALING_PATHWAY 155 -1.783 0.012 0.060

KEGG_mTOR_SIGNALING_PATHWAY 52 -1.528 0.020 0.160

GO_NEGATIVE_REGULATION_OF_IMMUNE_RESPONSE 140 -1.920 0.002 0.068

GO_NEGATIVE_REGULATION_OF_IMMUNE_EFFECTOR_PROCESS 118 -1.920 0.004 0.067

GO_REGULATION_OF_ADAPTIVE_IMMUNE_RESPONSE 160 -1.860 0.010 0.076

GO_NEGATIVE_REGULATION_OF_IMMUNE_SYSTEM_PROCESS 447 -1.850 0.002 0.075

GO_T_CELL_ACTIVATION_INVOLVED_IN_IMMUNE_RESPONSE 99 -1.840 0.013 0.072

GO_REGULATION_OF_TYPE_2_IMMUNE_RESPONSE 30 -1.780 0.004 0.084

GO_NEGATIVE_REGULATION_OF_PRODUCTION_OF_
MOLECULAR_MEDIATOR_OF_IMMUNE_RESPONSE

36 -1.760 0.008 0.089

GO_REGULATION_OF_T_HELPER_17_TYPE_IMMUNE_RESPONSE 19 -1.700 0.027 0.105

GO_LYMPHOCYTE_ACTIVATION_INVOLVED_IN_
IMMUNE_RESPONSE

175 -1.620 0.045 0.125

IMMUNE_RESPONSE 234 -1.836 0.020 0.020

IMMUNE_SYSTEM_PROCESS 331 -1.914 0.016 0.016

NES: normalized enrichment score; FDR: false discovery rate; KEGG: Kyoto Encyclopedia of Genes and Genomes; GO: Gene Ontology; ABC: ATP-binding
cassette; mTOR: mammalian target of rapamycin.
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genes, making the results more accurate. Our nomogram
showed that higher TNM stages and risk scores were corre-
lated with higher points, and a higher total score was signifi-
cantly correlated with worse prognoses. The validation and
combination sets confirmed the accuracy and reliability of
the nomogram.

The functional enrichment analysis suggested that our
risk signature was related not only to immune function but
also to the malignancy of LUAD. p53 plays a crucial role in
the cell cycle, apoptosis, and genomic stability (22, 23). Stud-
ies have reported that p53 mutations not only caused a loss of
anticancer function but also acquired the process of carcino-
genesis, which would lead to the migration, invasion, and
metastasis of early cancer (24, 25). High expression of
ATP-binding cassette (ABC) transporters could reduce the
concentration of cisplatin in tumor cells and lead to cisplatin
resistance in lung cancer (26, 27). Julian et al. reported that

the JAK-STAT signaling pathway was associated with the
progression of LUAD (28). In addition, JAK signaling was
involved in the formation of TME by regulating T cell, nat-
ural killer (NK), and dendritic cell function (29). Evidence
has demonstrated that the mammalian target of rapamycin
(mTOR) signaling pathway was associated with metastasis
and cisplatin resistance in lung adenocarcinoma (30, 31).
GO analyses also suggested that the low-risk group was
associated with immune-related processes, some of which
were negatively regulated, and the results of ESTIMATE
analysis showed that the tumor cells in the low-risk group
had more immune cell infiltration than those in the high-
risk group. These results indicate that our risk signature
was strongly correlated with the immune function and
malignancy of LUAD.

There were limitations to this study. (1) We tried to use
the datasets in the Gene Expression Omnibus (GEO)
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Figure 8: Building and validation of the nomogram predicting overall survival for lung adenocarcinoma patients in the training set. (a) The
nomogram built based on the TNM stage and risk signature. (b–d) ROC curves of the training set, validation set, and combination set. ROC:
receiver operating characteristic.
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database (https://www.ncbi.nlm.nih.gov/geo/) as the valida-
tion set, but due to the sequencing method, the number of
lncRNAs in the GEO datasets was so small that they could
not be used as the validation set. Therefore, we could only
randomly and equally divide TCGA dataset into the training
set and the validation set, which inevitably increased the bias
in the study. (2) Due to incomplete clinicopathological fea-
tures, fewer clinicopathological features, such as survival
time, survival status, age, gender, and TNM stage, could be
used. (3) The functions of the seven lncRNAs have not been
validated at present, so more experimental data are needed to
support our findings. (4) The number of corresponding adja-
cent LUAD or normal tissues and the number of LUAD tis-
sues are extremely unbalanced in TCGA, so differential
analysis of the seven lncRNAs between normal tissues and
tumor tissues is unavailable.

5. Conclusion

In conclusion, we identified seven immune-related lncRNAs
as potential biomarkers of LUAD. This was the first study to
generate a risk signature based on the immune-related
lncRNAs of LUAD. A nomogram was also built that included
the patient clinicopathological features and risk signature,
which could predict the 1-, 3-, and 5-year survival rates of
LUAD patients. Our study not only has important signifi-
cance in predicting the prognosis of LUAD but may also
guide future immunotherapy.

Data Availability

The datasets for this study can be found in the TCGA data-
base (https://portal.gdc.cancer.gov/) and Molecular Signa-
tures Database (http://www.gencodegenes.org).

Conflicts of Interest

The authors declare that they have no conflict of interest.

Authors’ Contributions

Donghui Jin designed the study, analyzed the data, and wrote
the paper. Yuxuan Song designed the study and analyzed the
data. Yuan Chen designed the study and revised the paper
critically for important intellectual content. Peng Zhang
designed the study and revised the paper critically for impor-
tant intellectual content. Donghui Jin and Yuxuan Song con-
tributed equally to this work.

Acknowledgments

The authors gratefully acknowledge contributions from
TCGA database and Molecular Signatures Database.

References

[1] F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre,
and A. Jemal, “Global cancer statistics 2018: GLOBOCAN esti-
mates of incidence and mortality worldwide for 36 cancers in

185 countries,” CA: A Cancer Journal for Clinicians, vol. 68,
no. 6, pp. 394–424, 2018.

[2] S. B. Knight, P. A. Crosbie, H. Balata, J. Chudziak, T. Hussell,
and C. Dive, “Progress and prospects of early detection in lung
cancer,” Open Biology, vol. 7, no. 9, p. 170070, 2017.

[3] M. J. Duffy and K. O’Byrne, “Tissue and blood biomarkers in
lung cancer: a review,” in Advances in Clinical Chemistry,
vol. 86, pp. 1–21, 2018.

[4] Q. Song, J. Shang, Z. Yang et al., “Identification of an immune
signature predicting prognosis risk of patients in lung adeno-
carcinoma,” Journal of Translational Medicine, vol. 17, no. 1,
p. 70, 2019.

[5] W. D. Yu, H. Wang, Q. F. He, Y. Xu, and X. C. Wang, “Long
noncoding RNAs in cancer-immunity cycle,” Journal of Cellu-
lar Physiology, vol. 233, no. 9, pp. 6518–6523, 2018.

[6] C. Y. Yang, W. Y. Liao, C. C. Ho et al., “Association between
programmed death-ligand 1 expression, immune microenvi-
ronments, and clinical outcomes in epidermal growth factor
receptor mutant lung adenocarcinoma patients treated with
tyrosine kinase inhibitors,” European Journal of Cancer,
vol. 124, pp. 110–122, 2020.

[7] W. Xie, S. Yuan, Z. Sun, and Y. Li, “Long noncoding and circu-
lar RNAs in lung cancer: advances and perspectives,” Epige-
nomics, vol. 8, no. 9, pp. 1275–1287, 2016.

[8] T. Derrien, R. Johnson, G. Bussotti et al., “The GENCODE v7
catalog of human long noncoding RNAs: analysis of their gene
structure, evolution, and expression,” Genome Research,
vol. 22, no. 9, pp. 1775–1789, 2012.

[9] J. T. Lee, “Epigenetic regulation by long noncoding RNAs,”
Science, vol. 338, no. 6113, pp. 1435–1439, 2012.

[10] C. P. Ponting, P. L. Oliver, and W. Reik, “Evolution and func-
tions of long noncoding RNAs,” Cell, vol. 136, no. 4, pp. 629–
641, 2009.

[11] A. Subramanian, P. Tamayo, V. K. Mootha et al., “Gene set
enrichment analysis: a knowledge-based approach for inter-
preting genome-wide expression profiles,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 102, no. 43, pp. 15545–15550, 2005.

[12] J. Song, Q. Xu, H. Zhang et al., “Five key lncRNAs considered
as prognostic targets for predicting pancreatic ductal adeno-
carcinoma,” Journal of Cellular Biochemistry, vol. 119, no. 6,
pp. 4559–4569, 2018.

[13] I. S. Lossos, D. K. Czerwinski, A. A. Alizadeh et al., “Prediction
of survival in diffuse large-B-cell lymphoma based on the
expression of six genes,” New England Journal of Medicine,
vol. 350, no. 18, pp. 1828–1837, 2004.

[14] D. A. Barbie, P. Tamayo, J. S. Boehm et al., “Systematic RNA
interference reveals that oncogenic KRAS-driven cancers
require TBK1,” Nature, vol. 462, no. 7269, pp. 108–112, 2009.

[15] W. Wang, Z. Zhao, F. Yang et al., “An immune-related
lncRNA signature for patients with anaplastic gliomas,” Jour-
nal of Neuro-Oncology, vol. 136, no. 2, pp. 263–271, 2018.

[16] W. Cheng, X. Ren, C. Zhang et al., “Bioinformatic profiling
identifies an immune-related risk signature for glioblastoma,”
Neurology, vol. 86, no. 24, pp. 2226–2234, 2016.

[17] W. Cheng, X. Ren, J. Cai et al., “A five-miRNA signature with
prognostic and predictive value for MGMT promoter-
methylated glioblastoma patients,” Oncotarget, vol. 6, no. 30,
pp. 29285–29295, 2015.

[18] Z. S. Bao, M. Y. Li, J. Y. Wang et al., “Prognostic value of a
nine-gene signature in glioma patients based on mRNA

16 BioMed Research International

https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
http://www.gencodegenes.org


expression profiling,” CNS Neuroscience & Therapeutics,
vol. 20, no. 2, pp. 112–118, 2014.

[19] A. Iasonos, D. Schrag, G. V. Raj, and K. S. Panageas, “How to
build and interpret a nomogram for cancer prognosis,” Journal
of Clinical Oncology, vol. 26, no. 8, pp. 1364–1370, 2008.

[20] V. P. Balachandran, M. Gonen, J. J. Smith, and R. P. DeMatteo,
“Nomograms in oncology: more than meets the eye,” The Lan-
cet Oncology, vol. 16, no. 4, pp. e173–e180, 2015.

[21] Z. Pan, H. You, Q. Bu et al., “Development and validation of a
nomogram for predicting cancer-specific survival in patients
with Wilms' tumor,” Journal of Cancer, vol. 10, no. 21,
pp. 5299–5305, 2019.

[22] Y. Tang, J. Wang, Y. Lian et al., “Linking long non-coding
RNAs and SWI/SNF complexes to chromatin remodeling in
cancer,” Molecular Cancer, vol. 16, no. 1, p. 42, 2017.

[23] R. Shakya, G. A. Tarulli, L. Sheng et al., “Mutant p53 upregu-
lates alpha-1 antitrypsin expression and promotes invasion
in lung cancer,” Oncogene, vol. 36, no. 31, pp. 4469–4480,
2017.

[24] R. Brosh and V. Rotter, “When mutants gain new powers:
news from the mutant p53 field,” Nature Reviews. Cancer,
vol. 9, no. 10, pp. 701–713, 2009.

[25] M. Oren, P. Tal, and V. Rotter, “Targeting mutant p53 for can-
cer therapy,” Aging (Albany NY), vol. 8, no. 6, pp. 1159-1160,
2016.

[26] C. Calatozzolo, M. Gelati, E. Ciusani et al., “Expression of drug
resistance proteins Pgp, MRP1, MRP3, MRP5 and GST-pi in
human glioma,” Journal of Neuro-Oncology, vol. 74, no. 2,
pp. 113–121, 2005.

[27] H. Cui, A. J. Zhang, M. Chen, and J. J. Liu, “ABC transporter
inhibitors in reversing multidrug resistance to chemotherapy,”
Current Drug Targets, vol. 16, no. 12, pp. 1356–1371, 2015.

[28] J. Mohrherr, M. Haber, K. Breitenecker et al., “JAK-STAT
inhibition impairs K-RAS-driven lung adenocarcinoma pro-
gression,” International Journal of Cancer, vol. 145, no. 12,
pp. 3376–3388, 2019.

[29] D. P. McLornan, A. A. Khan, and C. N. Harrison, “Immuno-
logical consequences of JAK inhibition: friend or foe?,” Cur-
rent Hematologic Malignancy Reports, vol. 10, no. 4, pp. 370–
379, 2015.

[30] X. Teng, X. F. Fan, Q. Li et al., “XPC inhibition rescues cis-
platin resistance via the Akt/mTOR signaling pathway in
A549/DDP lung adenocarcinoma cells,” Oncology Reports,
vol. 41, no. 3, pp. 1875–1882, 2019.

[31] S. He, Z. Li, Y. Yu et al., “Exosomal miR-499a-5p promotes cell
proliferation, migration and EMT via mTOR signaling path-
way in lung adenocarcinoma,” Experimental Cell Research,
vol. 379, no. 2, pp. 203–213, 2019.

17BioMed Research International


	Identification of a Seven-lncRNA Immune Risk Signature and Construction of a Predictive Nomogram for Lung Adenocarcinoma
	1. Introduction
	2. Materials and Methods
	2.1. Data Collection
	2.2. Identification of Immune-Related lncRNAs
	2.3. Construction of the Risk Signature
	2.4. Independence of the Risk Signature and Clinicopathological Features in the Prognostic Value
	2.5. Gene Set Enrichment Analysis
	2.6. Building and Validation of a Nomogram
	2.7. Statistical Analysis

	3. Results
	3.1. Data Acquisition
	3.2. Construction of the Risk Signature
	3.3. Validation of the Risk Signature
	3.4. Independent Prognostic Factors
	3.5. Clinicopathological Features in the Low-Risk and High-Risk Groups
	3.6. Functional Enrichment Analysis
	3.7. Construction and Validation of a Nomogram

	4. Discussion
	5. Conclusion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments

