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Background and Purpose. The gray-to-white matter ratio (GWR) on brain computed tomography (CT) is associated with
neurological outcomes after cardiac arrest (CA); however, the prognostic value of GWR in CA patients has yet to be confirmed.
Therefore, we conducted a meta-analysis of related studies to investigate the prognostic value of GWR on brain CT for
neurological outcomes after CA. Materials and Methods. The PubMed, ScienceDirect, Web of Science, and China National
Knowledge Infrastructure databases were searched for all relevant articles published before March 31, 2020, without any
language restrictions. The pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated with a random-effects
model using Stata 14.0 software. Result. A total of 24 eligible studies with 2812 CA patients were recruited in the meta-analysis.
The pooled result showed that decreased GWR was correlated with poor neurological outcomes after CA (OR = 11:28, 95% CI:
6.29–20.21, and P < 0:001) with moderate heterogeneity (I2 = 71:5%, P < 0:001). The pooled sensitivity and specificity were 0.58
(95% CI: 0.47–0.68) and 0.95 (95% CI: 0.87–0.98), respectively. The area under the curve (AUC) of GWR was 0.84 (95% CI:
0.80–0.87). Compared with GWR (cerebrum) and GWR (average), GWR using the basal ganglion level of brain CT had the
highest AUC of 0.87 (0.84–0.90). Subgroup analysis indicated that heterogeneity may be derived from the time of CT
measurement, preset specificity, targeted temperature management, or proportion of cardiac etiology. Sensitivity analysis
indicated that the result was stable, and Deeks’ plot showed no possible publication bias (P = 0 :64). Conclusion. Current
research suggests that GWR, especially using the basal ganglion level of brain CT, is a useful parameter for determining
neurological outcomes after CA.

1. Introduction

Cardiac arrest (CA) is a growing public health issue carry-
ing an enormous global burden of morbidity, and out-of-
hospital CA accounts for approximately 10% of individuals
who survive to hospital discharge [1]. Unfortunately, the
incidence of neurological sequelae among survivors of
CA remains as high as 70% despite advances in post-CA
care [2, 3]. Neurological sequelae have a significantly neg-
ative impact on the community in terms of life years lost
and healthcare costs in survivors and the emotional bur-
den of family members. Early clinical predictors in survi-

vors of CA are important for counseling families and
making management decisions.

Some signs on brain computed tomography (CT) that
have been associated with ischemic cerebral insult include
a loss of boundary between the gray matter (GM) and the
white matter (WM). Several studies [4–27] indicate that a
loss of differentiation between GM and WM, reflected as
decreased gray-to-white matter ratio (GWR) on brain CT,
predicts a poor outcome in CA patients. However, in the
absence of large and comprehensive diagnostic studies, the
prognostic role of GWR in survivors of CA is still contro-
versial. Therefore, we performed a meta-analysis to evaluate
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the prognostic value of GWR for neurological outcomes
after CA.

2. Methods

This meta-analysis was carried out according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
statement [28]. We registered our systematic review prospec-
tively in PROSPERO (CRD42020182066). As this study was
a review of published literature, the approval of an ethics
committee and consent of patients were not required.

2.1. Literature Search. The PubMed, ScienceDirect, Web of
Science, and China National Knowledge Infrastructure data-
bases were searched for all relevant articles published before
March 31, 2020, without any language restrictions. The
search terms included “gray-to-white ratio” and “cardiac
arrest.” Moreover, the references from the retrieved studies
were also reviewed by manual search to identify any new eli-
gible studies.

Studies were included if they satisfied the following cri-
teria: the full-text publication evaluated the association of
GWR on brain CT for neurological outcomes, and suffi-
cient information should be available to evaluate odds
ratios (ORs) with 95% confidence intervals (CIs). Letters,
comments, editorials, case reports, communications, and
duplicated studies were excluded.

2.2. Data Extraction and Quality Assessment. The data
extraction of the present study was independently performed
by two reviewers. The extracted data included the first names
of the author, country, study design, sample size, time of
brain CT measurement, targeted temperature management
(TTM), area under the curve (AUC), cutoff value, GWR
value, proportion of cardiac etiology, and outcomes for
each study. The caudate nucleus (CN), putamen (PU),
posterior limb of the internal capsule (PLIC), and corpus

callosum (CC) were measured for the basal ganglia, and
the gray and white matter from the medial cortex was
measured at the centrum semiovale (MC1, MW1) and high
cortical level (MC2, MW2). The GWR for the basal ganglia
(GWR‐BG = ðCN + PUÞ/ðPLIC + CCÞ), GWR for the cere-
brum (GWR‐CE = ðMC1 +MC2Þ/ðMW1 +MW2Þ), and the
average of the two (GWR‐AV = ðGWR‐BG + GWR‐CEÞ/2)
were calculated as previously described [4]. The simplified
GWR estimation method (GWR‐SI = PU/PLIC, CN/PLIC,
or PU/CC) was calculated as previously described [7].

Quality Assessment of Diagnostic Accuracy Studies 2 was
used to assess the reporting quality of the included original
studies [29]. If there was disagreement, a consensus was
reached by a third reviewer.

2.3. Statistical Analysis. Statistical analyses will be performed
using Stata/MP 14.0 (StataCorp, College Station, TX, USA).
The associations between GWR and neurological outcomes
after CA were estimated on the basis of the pooled ORs and
95% CIs. Heterogeneity was assessed by using the I2 statistic
where P < 0:1 and/or I2 > 50% indicated heterogeneity
between the data, and the combined analysis was performed
using a random-effects model. Otherwise, a fixed-effects
model was used. Publication bias was formally assessed using
Deeks’ plot if more than 10 qualified studies are included in
our study. Additionally, we used sensitivity analysis to evalu-
ate the stabilization of the study. For all statistical analyses,
P < 0:05 was considered to indicate statistical significance,
and all tests were two-sided.

3. Results

3.1. Literature Search. The general characteristics of the
included studies are summarized in Figure 1. Initially,
274 publications were retrieved by the mentioned search
strategy, of which 95 duplicated studies were excluded.
Of the remaining 179 studies, 155 were excluded for being

Records identified through
database searching (n = 248)

Additional records identified
through other sources (n = 26)

Records a�er duplicates removed
(n = 95)

Records screened
(n = 179)

Records excluded
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Full-text articles assessed
for eligibility (n = 34) 

Full-text articles excluded with
reason:

Irrelevant topic (n = 1)
Duplicated date (n = 6)

Unavailable data (n = 3) Studies included in qualitative
synthesis (n = 24) 

Studies included in quantitative
synthesis (meta-analysis) (n = 24) 
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Figure 1: Flow diagram showed the selection process of meta-analysis.
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reviews, comments, or abstracts and unrelated to the topic.
After screening the title, abstract, and full text, 24 studies
[4–27] that involved a total of 2812 patients were eligible
for inclusion.

3.2. Characteristics of the Included Studies. The characteris-
tics of the included studies are summarized in Table 1.
Of the 24 studies [4–27], 22 were retrospective cohort
studies [4–19, 21, 23–27], and two were prospective in
nature [20, 22]. The number of included patients per study
ranged from 25 to 346, with an average of 115. The

reported cutoff of GWR in the included studies varied
between 1.07 and 1.26. The AUC of GWR in different
studies varied between 0.650 and 0.947.

3.3. Quality Assessment. The patient selection risk of bias
domain in 18 studies [4, 5, 7, 9–11, 13–21, 23, 24, 26] was
labeled as unclear risk because the authors did not indicate
whether patients were recruited consecutively, and the index
text risk of bias domain in 13 studies [4, 6, 8, 11, 14, 16, 17,
19–21, 24, 26, 27] was labeled high risk because the authors
did not have a preset specificity. In addition, the patient

Patient selection
Index test

Reference standard
Flow and timing

0% 25% 50%

Risk of bias Applicability concerns

75% 100% 0% 25% 50% 75% 100%

High

Unclear

Low

Figure 2: Flow diagram of studies’ selection and quality assessment of the included articles.

Note: weights are from random effects analysis

Overall (I−squared = 71.5%, p < 0.001)
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Figure 3: Forest plots for the meta-analysis of the prognostic value of the gray-to-white matter ratio for neurological outcomes after cardiac
arrest.
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selection risk of bias domain in one study [25] was labeled as
unclear risk because patients with a normal brain CT scan
served as controls (Figure 2 and additional Figure 1).

3.4. Diagnostic Performance. As shown in Figure 3, the
pooled results demonstrated that decreased GWRwas associ-
ated with poor prognosis in post-CA patients (OR = 11:28,
95% CI: 6.29–20.21, and P < 0:001; I2 = 71:5%, P < 0:001).
As shown in Figure 4, the pooled sensitivity and specificity
were 0.58 (95% CI: 0.47–0.68) and 0.95 (95% CI: 0.87–
0.98), respectively. The positive likelihood ratio was 11.4
(95% CI: 4.60–28.40), the negative likelihood ratio was 0.44
(95% CI: 0.35–0.56), the diagnostic OR was 26 (95% CI:
10–69), and the AUC was 0.84 (95% CI: 0.80–0.87).

Eight studies [7, 11, 14, 15, 18, 19, 21, 26] compared the
prognostic performance of GWR-BG, GWR-CE, and
GWR-AV. The pooled results (Table 2) demonstrated that

GWR using the basal ganglion level of brain CT has the high-
est AUC of 0.87 (0.84–0.90).

3.5. Subgroup Analysis. Due to heterogeneity, subgroup anal-
ysis was conducted on the basis of the preset specificity (pre-
set specificity = 1 or nonpreset specificity), sample size (<100
or ≥100), study design (retrospective or prospective), country
(Asia or non-Asia), time of CTmeasurement (≤24h or >24h),
TTM (all or not all), cutoff (≤1.18 or >1.18), cardiac etiology
(≤50% or >50%), and row of CT (16 rows or 64 rows) for a
subsequent investigation of potential heterogeneity. We found
that nonpreset specificity, time of CT measurement, TTM, or
proportion of cardiac etiology may cause heterogeneity but
did not affect the final conclusion (Table 3).

3.6. Sensitivity Analysis and Publication Bias Assessment.
Sensitivity analysis did not find any single study that had
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Figure 4: Summary ROC curve for estimating the testing accuracy of the gray-to-white matter ratio for neurological outcomes after cardiac
arrest.

Table 2: Prognostic performance of GWR using different regions of the brain.

OR (95% CI) P I2 (P value) Sensibility Specificity AUC

GWR-BG 15.77 (6.57–37.71) <0.001 0% (0.690) 0.32 (0.12–0.60) 1.0 (0.13–1.0) 0.87 (0.84–0.90)

GWR-CE 11.06 (4.68–26.16) <0.001 0% (0.947) 0.27 (0.14–0.45) 1.0 (0.24–1.00) 0.72 (0.68–0.76)

GWR-AV 15.92 (6.88–36.83) <0.001 59.6% (0.722) 0.35 (0.18–0.58) 1.0 (0.14–1.00) 0.79 (0.75–0.82)

AUC: area under the curve; AV: average; BG: basal ganglia; CE: cerebrum; CI: confidence interval; GWR: gray-to-white ratio; OR: odds ratio.
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an impact on the total pooled effect, indicating that the result
was stable (Figure 5). Publication bias was examined using
Deeks’ plot asymmetry test, and the funnel plot did not reveal
significant publication bias (P = 0 :64; Figure 6).

4. Discussion

In this systematic review and meta-analysis, we evaluated the
diagnostic accuracy of GWR for neurological outcomes after
CA by analyzing the current clinical evidence. Our principal
findings were as follows: the predictive ability of GWR for a
poor neurological outcome assessed using the AUC was
0.84 (95% CI: 0.80–0.87). Furthermore, GWR using the basal
ganglion level of brain CT had the highest AUC of 0.87
(0.84–0.90).

A previous meta-analysis by Lopez Soto et al. [30]
showed that a decreased GWR brain CT is useful for predict-
ing poor neurological outcomes with a sensitivity of 0.44 and
specificity of 0.97; this finding is consistent with our results.
However, we comprehensively searched the PubMed, Scien-
ceDirect, Web of Science, and China National Knowledge
Infrastructure databases, and four additional studies were

considered in the present meta-analysis. In addition, we
compared the prognostic performance of GWR measure-
ment methods, including GWR-BG, GWR-CE, and GWR-
AV, and discovered that the GWR using GWR-BG had the
highest performance.

The AUC of GWR-BG was higher than those of GWR-
CE and GWR-AV for the following reasons. The relative
attenuations of GM and WM throughout various regions of
the brain show discrepancy. Gentsch et al. [7] speculated that
the basal ganglia are more severely damaged by hypoxia due
to their high metabolic activity and their location within the
boundary zones of perfusion or measurement of Hounsfield
units in the cortical GM is less reliable due to partial volume
effects [31].

There is currently no consensus on a distinct GWR cutoff
value that may predict a poor outcome with high specificity.
The reported cutoff of GWR in the 24 included studies varied
between 1.07 and 1.26. In addition, the AUC of GWR showed
great discrepancy in different studies and varied between
0.650 and 0.947. This discrepancy may be associated with
the following reasons. First, Morimoto et al. [32] reported
that cerebral edema is more common after CA of respiratory

Table 3: Subgroup analysis.

N OR (95% CI) P I2 (P value)

Specificity

1 11 58.90 (24.40–142.22) <0.001 0.0% (0.852)

Not 1 13 5.44 (3.33–8.88) <0.001 60.5% (0.002)

Sample size

<100 15 12.08 (6.32–23.06) <0.001 42.6% (0.041)

≥100 9 9.37 (3.55–24.74) <0.001 83.4% (<0.001)
Study design

Retrospective 22 9.23 (5.31–16.06) <0.001 65.8% (<0.001)
Prospective 2 57.46 (5.18–637.15) 0.001 59.7% (0.115)

Country

Asia 16 7.81 (4.15–14.68) <0.001 65.7% (<0.001)
Non-Asia 8 18.26 (7.30–45.68) <0.001 53.2% (0.037)

Cutoff

≤1.18 11 10.16 (4.00–25.76) <0.001 73.6% (<0.001)
>1.18 12 11.72 (5.12–26.83) <0.001 72.0% (<0.001)

Time of CT measurement

≤24 h 19 11.75 (5.84–23.66) <0.001 75.8% (<0.001)
>24 h 5 10.25 (4.97–21.14) <0.001 0% (0.555)

TTM

All 12 5.96 (3.18–11.16) <0.001 66.0% (0.001)

Part 6 17.79 (4.56–69.39) <0.001 72.0% (0.003)

None 2 22.63 (2.82–181.78) <0.001 0.0% (0.547)

Cardiac etiology

≤50% 8 21.97 (10.86–44.46) <0.001 0.0% (0.593)

>50% 9 4.51 (2.44–8.34) <0.001 64.4% (0.004)

Row of CT

16 rows 4 11.66 (2.22–11.66) 0.004 61.6% (0.050)

64 rows 5 8.76 (3.65–21.01) <0.001 6.1% (0.372)

CI: confidence interval; CT: computed tomography; OR: odds ratio; TTM: targeted temperature management.
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etiology due to the development of metabolic acidosis (possi-
bly lactic acidosis) induced by hypoxia. Similarly, Lee et al.
[15] suggested that noncardiac etiology is associated with a
more severe brain edema than cardiac etiology. A change in
GWR values is associated with the water content of the brain
tissue; therefore, patients with respiratory or noncardiac eti-

ology CA may have lower GWR in the initial brain CT. Sec-
ond, the timing for brain CT scans was not standardized.

Subgroup analysis indicated that nonpreset specificity,
time of CT measurement, TTM, and proportion of cardiac
etiology may cause heterogeneity. Although conclusions
based on pooled estimates in subgroups are consistent, clini-
cians should consider these heterogeneity factors in their
clinical practice. Several studies [5, 7, 9, 10, 12, 13, 15, 18,
22, 23, 25] have determined cutoff values with 100% specific-
ity for predicting poor neurological outcomes to identify
patients with a minimal chance of achieving a good neuro-
logical outcome, which could partly affect the difficulty of
deriving conclusions based on pooled estimates. Survival
with a favorable neurological outcome may be possible in
patients with hypothermia despite a severe early injury,
which influences the predictive value GWR for the neurolog-
ical outcome. Thus, the reevaluation of the predictive value of
GWR is necessary when patients receive hypothermia ther-
apy. Metter et al. [20] proved that the time from arrest to
CT is not related to GWR or attenuation values although
cerebral edema after CA evolves over time. Notably, brain
CT scans performed during the first 2 h after ROSC may
not provide sufficient time for the formation of cerebral
edema and GWRwithin this time window and are not a good
outcome predictor [15, 33]. Noncardiac etiology, instead of
cardiac etiology, may lead to severe brain injury with an
eventual poor clinical outcome; GWR is more helpful in pre-
dicting neurological outcomes in CA patients with noncar-
diac etiologies than with cardiac etiologies [15]. However,
we failed to perform a subgroup analysis on the basis of the
slice thickness of brain CT scanners because only one study
used 2.5–4.8mm slice thickness; the others used 5mm slice
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thickness. However, Oh et al. [34] obtained a significant
variance in Hounsfield units when different CT scanners
were used but observed only minor differences in GWR
values. Hanning et al. [8] utilized coregistration with an
atlas to calculate the average GWR, but the obtained value
differs from the average GWR calculated through the man-
ual placement of a few regions of interest. This condition
indicates that the computing method, whether automated
or manual, needs to be considered when assessing the pre-
dictive value of GWR.

Several limitations should be carefully considered in the
present study. First, our analysis was based mainly on find-
ings from retrospective studies, which might contain a higher
number of confounding factors than prospective studies. Sec-
ond, the studies involved in this meta-analysis had varying
cutoff values. Third, the included studies exhibited significant
heterogeneity, which may have reduced the reliability of the
analysis. Fourth, neuroprognostication studies are potentially
susceptible to a self-fulfilling prophecy because the investi-
gated prognostic parameters may affect the withdrawal of
life-sustaining therapy. Lastly, the timing of brain CT is crit-
ical to the sensitivity of GWR to poor outcome prediction,
and some included studies did not perform CT at optimal
time points (within 6 h and usually around 2h) [17]. Further
research is needed to establish the optimal timing of brain CT
measurement.

5. Conclusions

Brain CT is simple, cost-effective, and easily implemented
after CA. Stratification analysis based on CT scan obtained
at different time points after CA, etiology induced by CA,
and therapeutic hypothermia is required to understand the
pattern of GWR and neurological outcomes.
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