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We aimed to assess the use of automatic machine learning (AutoML) algorithm based on magnetic resonance (MR) image data to
assign prediction scores to patients with nasopharyngeal carcinoma (NPC). We also aimed to develop a 4-group classification
system for NPC, superior to the current clinical staging system. Between January 2010 and January 2013, 792 patients with recent
diagnosis of NPC, who hadMR image data, were enrolled in the study.0e AutoML algorithm was used and all statistical analyses
were based on the 10-fold test. Primary endpoints included the probabilities of overall survival (OS), distant metastasis-free
survival (DMFS), and local-region relapse-free survival (LRFS), and their sum was recorded as the final voting score, repre-
sentative of progression-free survival (PFS) for each patient. 0e area under the receiver operating characteristic (ROC) curve
generated from theMR image data-based model compared with the tumor, node, and metastasis (TNM) system-based model was
0.796 (P � 0.008) for OS, 0.752 (P � 0.053) for DMFS, and 0.721 (P � 0.025) for LRFS.0e Kaplan-Meier (KM) test values for II/I,
III/II, IV/III groups in our new machine learning-based scoring system were 0.011, 0.010, and <0.001, respectively, whereas those
for II/I, III/II, IV/III groups in the TNM/American Joint Committee on Cancer (AJCC) system were 0.118, 0.121, and <0.001,
respectively. Significant differences were observed in the new machine learning-based scoring system analysis of each curve
(P< 0.05), whereas the P values of curves obtained from the TNM/AJCC system, between II/I and III/II, were 0.118 and 0.121,
respectively, without a significant difference. In conclusion, the AutoML algorithm demonstrated better prognostic performance
than the TNM/AJCC system for NPC. 0e algorithm showed a good potential for clinical application and may aid in improving
counseling and facilitate the personalized management of patients with NPC. 0e clinical application of our new scoring and
staging system may significantly improve precision medicine.

1. Introduction

Nasopharyngeal carcinoma (NPC), which is a malignant
cancer arising in the epithelium of the nasopharynx, is a
prevalent form of cancer in a number of populations, in-
cluding those in South China, Southeast Asia, the Arctic, the
Middle East, and North Africa [1–3]. It was estimated that
60,600 new cases of NPC were diagnosed in mainland China
in 2015, accounting for 40% of NPC cases worldwide [4].

Radiotherapy is the primary treatment for NPC. In recent
years, intensity-modulated radiotherapy (IMRT) has been
extensively used by virtue of its lower normal tissue doses
and more uniform target doses when compared to con-
formal radiotherapy [5–8]. 0is has led to improved disease
outcomes due to a higher local tumor control rate. In fact,
distant metastasis is now the predominant reason for
treatment failure in patients with NPC [9]. Advances in
diagnostic and therapeutic techniques have improved the
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management and treatment of NPC [10–12]. Due to its high
spatial resolution for examination of soft tissues, magnetic
resonance imaging (MRI) has been extensively used as the
optimal imaging modality for the assessment of local, re-
gional, and intracranial infiltration of NPC in clinical
practice [13]. 0e usefulness of MRI for stage assignment
and disease prognosis has also been reported [12].

0e TNM staging system of the American Joint Com-
mittee on Cancer (AJCC) [14] is generally accepted as the
most widely used tool for cancer staging and plays a key role
in guiding treatment and determining the prognosis of NPC
in clinical practice. According to recent research, the current
8th edition of the AJCC staging system for NPC is still not
completely satisfactory, though it enables a more accurate
prediction of treatment outcomes than the 7th edition [15].
0e demarcation line between the early and late stages
(stages II and III) is still not well defined [16]. 0is leads to
confusion in the choice of treatment by physicians. More-
over, patients in the same stage may require different
treatments based on their prognoses. Since the TNM/AJCC
system is based on factors manually selected from con-
ventional radiographic data, a vast amount of anatomic
structural data may be neglected. Because the significance of
such data is unknown, neglecting these data may be a
limitation of the current TNM system. 0erefore, detailed
MR image reports containing larger amounts of potentially
significant features for prognosis as well as new statistical
tools with the ability to analyze large amounts of data with
good predictive performance are both urgently needed.

Machine learning (ML) is the best solution to the
problem discussed above. ML is able to create reasonable
generalizations, classify previously unseen data, discover
patterns, or predicts new directions based on observed data
using multifarious artificial intelligence and statistical
models [17]. Many ML methods have been reported in
studies of conditions such as lung cancer, breast cancer, and
Alzheimer’s disease. However, the state-of-the-art ML
technique is “automatic machine learning” (AutoML),
which has the ability to automatically select the ML classifier
with the best performance to suit the data. 0ere are several
excellent open-source AutoML algorithms, including
XGBoost, Deep learning (DL), and Light GBM. AutoML also
includes common models such as Lasso and Ridge Re-
gression, Random Forest, and Naivebayes. In summary,
AutoML is easy to program and its use is feasible in clinical
applications.

Based on the above premise, we utilized image data from
detailed MR image reports and used ML to make prognosis
predictions. We also compared the prognostic value of the
predictions made using ML to that of the traditional TNM/
AJCC system. To the best of our knowledge, almost no
medical professionals have performed similar research.
0erefore, our study would be the first step in the explo-
ration of this issue.

2. Materials and Methods

2.1. Patient. 0e Sun Yat-sen University Cancer Center
Institutional Review Board approved this retrospective study

and waived the requirement for informed consent from the
patients. We enrolled 3,814 patients with newly diagnosed
NPC in the Sun Yat-sen University Cancer Center between
January 2010 and January 2013. Of these patients, 2,973 were
excluded due to incomplete medical records. Of the
remaining 841 patients, 24 with distant metastasis and 5
without neckMRI and 20 cases combined with other tumors
were excluded. Finally, 792 patients were included in our
study.

0e eligibility criteria were as follows: (1) pathologically
diagnosed NPC; (2) no evidence of distant metastasis; (3)
receipt of standard IMRT treatment, the details of which
were determined by radiation therapists, physicians, and
highly qualified physicists (platinum-based chemotherapy
was used as routine treatment for NPC); (4) no primary
tumor in other parts of the body; and (5) complete imaging
and clinical data. 0e exclusion criteria were as follows: (1)
presence of primary tumors in other parts of the body and
(2) failing to complete radiotherapy for physical reasons
during the course of treatment. All patients completed a
pretreatment examination including a complete medical
history, physical examination, hematology and biochemistry
profiles, chest X-ray, abdominal computed tomography, and
MRI of the neck and nasopharynx.

2.2. MR Imaging and Image Analysis. MRI studies were
performed using a 1.5 T (Signa CV/i General Electric
Healthcare, Chalfont St. Giles, United Kingdom) or 3.0 T
system (Siemens Magnetom Tim Trio, Erlangen, Germany)
with standard scan procedures. Scanning range included the
saddle pool to the lower edge of the sternal collarbone
with combined head/neck coils. Non-contrast-enhanced
axial, coronal, and sagittal plane T1-weighted images (WI)
and axial T2-WI were procured. 0e following scanning
parameters were used: T1WI in the axial, coronal, and
sagittal planes (fast-spin-echo (FSE), TR/TE� 500–600/
10–20ms, field of view (FOV)� 22 cm, frequency
matrix� 256× 512). T2-WI in the axial plane (FSE,
TR� 4000–6000ms, TE� 95–110ms, FOV� 22 cm, fre-
quency matrix� 256× 512). 0e contrast agent gadolinium
diethylenetriaminepentaacetic acid was injected at a dose of
0.1mmol/kg. T1-weighted axial and sagittal sequences and
fat-suppressed coronal imaging were performed sequentially
using the same parameters before contrast injection. 0e
scanning section thickness was 5mm, and the section gaps
were 1mm.

Two radiologists specializing in head-and-neck cancers
for over 10 years separately evaluated all MRI materials and
gave detailed MR image reports with the average time of
15–20 minutes, and the stage for each NPC case was de-
termined according to the 8th edition of the AJCC staging
system [14]. A review of invasion of other anatomical
structures based on lymph node information was also
performed. Disagreements were resolved by consensus.

2.3. Follow-Up. After treatment, patients were followed up
every three months for the first two years and every six
months thereafter for 5 years. 0e terminal outcomes were
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distant metastasis-free survival (DMFS), local-regional re-
lapse-free survival (LRFS), progression-free survival (PFS),
and 5-year overall survival (OS).

2.4. Machine Learning

Step 1. Tenfold cross-validation (10 CV): Patients’ data were
randomly divided 10-fold without duplication to simulate
the 10 times of external validations.

Step 2. Feature reduction is crucial for reducing time
consumption by different classifiers and for more clinical
feasibility. First, using the RMRe feature of the R Package
with default setting, the top 20 most important features were
chosen and ranked separately for OS/DMFS/LRFS. Second,
in addition to the generalized linear model (GLM) (in-
cluding Lasso and Ridge) algorithm with grid hyper-
parameter search in R’s H2O package, which has an
extremely fast run (<120 s), we progressively added features
1 to 20 separately; the most important features corresponded
with the biggest average area under curve (AUC) of 10 CVs
(attached code sample: gusting_proper_number_of_varia-
bles.r). 0e detailed description is shown in Supplementary
Material 1.

Step 3. Using the AutoML algorithm of the H2O package
with the above important variable, the total learning time
was set to 7200 s to ensure that sufficient models were
trained under different algorithms.0e algorithm andmodel
with the highest average AUC of 10 CVs were eventually
chosen. Similarly, the TNM system, as the control group,
used only two features with the T- and N-stage (attached
code sample: automl.r).0e demo R code is demonstrated in
Supplementary Material 2 (http://docs.h2o.ai/h2o/latest-
stable/h2o-docs/automl.html for AutoML).

Figure 1 depicts the flow chart of our feature selection.
0e detailed hyperparameter setting and grid search are
shown in Supplementary Material 1.

2.5. Statistical Analysis. We compared data between the
image data group and the TNM system-control group.
Prognostic statistics in the above 10 CV experiments in-
cluding 10 AUCs, test error, and specificity, along with their

average and standard deviations (SDs) for predicting OS,
DMFS, and LRFS, were calculated separately for the image
data and TNM system-control groups. Paired t-test was used
to compare the two groups because they shared the same
group information declared in the 10 CV section. P< 0.05
was considered statistically significant [18].

Probabilities with a value of 1 to 100 distribution gen-
erated by the final model were considered for scoring OS,
DMFS, and LRFS separately. 0e sum of the three scores
(PFS�OS+DMFS+LRFS) was considered the standard
voting point of PFS, because in clinical practice, PFS events
are defined as any event pertaining to OS, DMFS, and LRFS.
0en this voting point for PFS was further cut off using the
receiver operating characteristic (ROC) curve method to
generate four new staging curves. To create four survival

mRMR 
Order features by importants

Fast learning
GLM + grid search

for approximately: 120s

Feature selection

AutomlAlgorithms:
(i) GLM(rigde/lasso)
(ii) XRT
(iii) GBM
(iv) Randomforest
(v) Deeplearning

Automl: classifier selection & setting, learning 7200s

Hyperparameter setting
grid search
(i) Trees and depth for GBM\RF\XRT
(ii) Ridge or lasso for GLM
(iii) Tons parameter settings for DL

Figure 1: Flow chart of feature selection used in this study. First step: feature selection to reduce features. Second step: AutoML is run.
AutoML performs hyperparameter search (parameters such as tree and depth in the flow chart are representative examples) over a variety of
H2O algorithms to deliver the best model.0e hyperparameters of AutoML supported by grid search are listed in SupplementaryMaterial 1.
Abbreviations: mRMR, minimum redundancy maximum correlation; GLM, generalized linear model; XRT, extreme random tree; GBM,
gradient boosting machine; RF, random forest; DL, deep learning.

Table 1: Patient characteristics.

Characteristics n (%) OS (%) DMFS (%) LRFS (%)
Total 792 (100%) 89.0 88.1 90.2
Gender

Male 576 (72.7%) 91.7 91.7 93.1
Female 216 (27.3%) 97.3 96.5 97.1

Age
≥45 397 (50.1%) 92.3 92.8 94.4
<45 395 (49.9%) 96.7 95.3 95.7

Histology
WHO I 5 (0.6%) 99.9 99.9 99.9
WHO II 41 (5.2%) 99.1 99.1 99.4
WHO III 746 (94.2%) 90.0 89.1 90.9

T stage (a)
T1 204 (25.8%) 99.0 98.5 98.2
T2 97 (12.2%) 98.6 98.6 99.1
T3 296 (37.4%) 96.6 95.7 96.5
T4 195 (24.6%) 94.8 95.3 96.3

N-stage (a)
N0 182 (23.0%) 98.7 98.6 98.9
N1 438 (55.3%) 94.4 94.3 93.8
N2 113 (14.3%) 97.7 96.8 98.4
N3 59 (7.4%) 98.1 98.4 99.1

Clinical stage (a)
1 73 (9.2%) 99.9 99.7 99.6
2 175 (22.1%) 98.9 98.5 98.2
3 303 (38.3%) 96.6 95.6 96.6
4 241 (20.4%) 93.7 94.3 95.7

Abbreviations: WHO, World Health Organization; (a) according to the 8th
AJCC/UICC.
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curves, we required three cutoffs, and the most appropriate
method for obtaining the cutoff value is ROC curve analysis.
0e Youden-index was calculated using the ROC curve. For
the first time, a total of 792 cases from the entire data were
used to calculate the first ROC cutoff value (0.986), and those
with a score higher than this were classified as stage IV;
others with a cutoff value lower than this value were used to
calculate the second ROC cutoff value (0.643) to determine
stage III cases. Similarly, the third ROC cutoff value (0.270)
was used to define stage I/II. 0e Kaplan-Meier survival
analysis was used to compare the OS, DMFS, LRFS, and PFS

staging curves between our new machine learning-based
scoring system and the 8th TNM staging system.

Statistical analyses were performed using R 3.1.2 (http://
www.R-project.org), with the main R package including
mRMRe, H2O, survival, Hmisc, and stats.

3. Results

3.1. Patient Characteristics. Of the 792 patients, 576 were
male and 216 were female (male/female ratio, 2.7 :1). 0e
median age was 45 years (range, 11–78).
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Figure 2: Feature selection as performed by AutoML. (a)0e important imaging findings of OS with 13 variables, ranked according to their
importance, are listed; the best AUC is selected. (b) 0e important imaging findings of DMFS with 12 variables, ranked, are listed; the best
AUC is selected. (c) 0e important imaging findings of LRFS with 11 variables, ranked, are listed; the best AUC is selected.
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Table 1 lists the patient characteristics. 0e median
follow-up period was 55.6 months (range, 1.2–83.4 months).
Overall, 94 patients (11.9%) developed distant metastases, 78
patients (9.8%) relapsed, 87 patients (11.0%) died, and 25
patients (3.2%) had both distant metastases and relapses.0e
5-year survival rates for the entire cohort were as follows:
OS, 89.0%; DMFS, 88.1%; and LRFS, 90.2%.

3.2. Prognostic Performance. 0e feature selection was
performed by AutoML, shown in Figure 2. All in all, im-
portant imaging findings including OS with 13 variables,
DMFS with 12 variables, and LRFS with 11 variables are
listed in Table 2 and ranked according to their importance.
During AutoML learning, each algorithm corresponds to
multiple models since grid search automatically generates
hyperparameter, and the best AUC is finally selected. 0e

final algorithm of AutoML included OS, ridge regression
with parameter (lambda� 0.004, nlambda� 30); DMFS,
GBM (Trees� 49, min depth� 3, max depth� 7, min leav-
es� 4, max leaves� 18), and LRFS, GLM ridge
(lambda� 0.002, nlambda� 30).

0e mean AUC of image data- and TNM system-based
ML model is illustrated in Table 3. 0e average AUC of 10
CVs for OS, DMFS, and LRFS results obtained from the
image data-based model was 0.796, 0.752, and 0.721, re-
spectively, which was higher than 0.712, 0.693, and 0.617,
respectively, obtained from the TNM system-based model.
0e P values were 0.008, 0.053, and 0.025 for OS, DMFS, and
LRFS, respectively. 0e average test errors of 10 CVs for OS,
DMFS, and LRFS results from image data-based model were
lower than those obtained from the TNM system-based
model, and the P values were 0.006, 0.011, and 0.006, re-
spectively. 0e average specificity of 10 CVs for OS, DMFS,

Table 2: All important imaging higher ranked imaging findings.

ID Variables Numbers 5 years surv P Important
OS
1 Jugular foramen 770/22 89.32/53.13 <0.001 1.000
2 Paranasal sinuses 695/97 90.63/71.70 <0.001 0.966
3 Central necrosis of retropharyngeal LNs 696/96 89.58/78.75 0.002 0.893
4 Steep hill 494/298 92.08/81.96 <0.001 0.891
5 Meninges 764/28 89.57/48.05 <0.001 0.791
6 Invasion of carotid sheath 655/137 90.16/79.47 0.001 0.666
7 Extracapsular invasion of cervical LNs 735/57 89.09/77.70 0.002 0.630
8 Number of lower cervical LNs 0∼11 — <0.001 0.488
9 Bilateral of parapharyngeal space 691/101 89.96/76.36 <0.001 0.336
10 Number of retropharyngeal LNs 0∼6 — 0.002 0.332
11 Pressure of carotid sheath 775/17 88.43/80.00 0.075 0.327
12 Number of upper cervical LNs 0∼23 — <0.001 0.256
13 Posterior nasal meatus invasion 648/144 89.96/80.61 <0.001 0.205

DMFS
1 Number of cervical LNs 0∼34 — <0.001 1.000
2 Meninges 764/28 88.81/51.63 <0.001 0.462
3 Posterior nasal meatus invasion 648/144 90.01/77.16 <0.001 0.396
4 Bilateral of retropharyngeal LNs 575/217 91.14/78.30 <0.001 0.387
5 Infratemporal fossa 771/21 88.61/52.84 <0.001 0.386
6 Extracapsular invasion of cervical LNs 735/57 88.45/78.19 0.007 0.250
7 Central necrosis of retropharyngeal LNs 696/96 88.97/78.49 0.002 0.242
8 Medial cartilage of ear 315/477 90.73/85.69 0.034 0.234
9 Musculus longus colli 513/279 91.24/81.06 <0.001 0.231
10 Jugular foramen 770/22 88.43/62.20 <0.001 0.204
11 Sphenoid sinus 700/92 89.51/74.02 <0.001 0.197
12 Number of upper cervical LNs 0∼23 — <0.001 0.182

LRFS
1 Clustering of LNs 602/190 91.18/83.08 0.003 1.000
2 Pharyngeal recess 61/731 97.83/88.65 0.058 0.817
3 Paranasal sinuses 695/97 91.37/74.03 <0.001 0.765
4 Central necrosis of retropharyngeal LNs 600/192 91.02/83.98 0.004 0.540
5 Jugular foramen 770/22 90.03/64.62 <0.001 0.531
6 Bilateral of cervical LNs 317/475 93.85/86.11 0.001 0.366
7 Bilateral of retropharyngeal LNs 575/217 91.89/82.07 <0.001 0.309
8 Tensor velum palatine muscle 366/426 92.82/86.27 0.005 0.293
9 Bone of ear 755/37 89.83/79.78 0.038 0.193
10 Pressure of carotid sheath 775/17 89.70/72.51 0.033 0.145
11 Infratemporal fossa 771/21 89.78/72.96 0.012 0.137

P: log-rank; LNs� lymph nodes; number (none/yes or invasion); HR (—) for continue variables; important (standardize): while 1.000 is the most important.
Variables are selected by mRMR.
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and LRFS results from the image data-based model was
greater than those from the TNM system-based model, and
the P values were 0.006, 0.011, and 0.006, respectively.

Each patient received three voting points representing
OS, DMFS, and LRFS. 0e sum of these voting points
represented the PFS voting points and its ROC curve
(Figure 3). Using the above PFS voting point system, we
created a ROC curve and established three cutoff points, and
the best cutoff value obtained was 0.986 (highest Youden-
index). 0e second cutoff value was greater than 0.643,
which is in accordance with staging III. 0e third cutoff
value was greater than 0.270, in accordance with staging I
and II.

Further, the survival curves estimated by Kaplan-
Meier survival analysis of PFS are shown in Figure 4, and
the main statistical data are represented in Table 4. Sig-
nificant differences were observed in the new machine
learning-based scoring system for each ROC curve
(P< 0.05). On the contrary, in the TNM/AJCC system, the
P value of curves between II/I and III/II was 0.118 and
0.121, respectively, which was not significantly different.
Moreover, the patient number distributed as per the new
scoring system was more balanced compared to the TNM/
AJCC system.

4. Discussion

0e image data-based model had higher AUC and specificity
and lower test error than the TNM system-based model for
prediction of OS, DMFS, and LRFS. We thus conclude that
image data from detailed MR image reports outperform the
TNM system in prognosis prediction for NPC. More in-
terestingly, we used the OS, DMFS, and LRFS prediction
probabilities to assign a PFS probability. Using this measure,
we established a new scoring staging system, which was
proven to be superior to the current TNM/AJCC system.

0e TNM/AJCC system is an important tool for the
prediction of prognosis and for guiding treatment strategies

for patients in different risk groups. It is used to evaluate the
disease based on the range of local invasion, regional
lymphatic spread, and distant metastasis, which are regarded
the major prognostic factors for NPC. Fundamentally, the
TNM/AJCC system is based on several important ana-
tomic structures that are the most significant and well-
accepted features of the disease on MR images. 0e system
thus considers multiple types of prognosis (OS, DMFS,
LRFS, and PFS). Nevertheless, it is difficult to meet all
independent statistical conditions for the same factor at
the same time without neglecting others. According to
recent studies, the current 8th edition of the TNM/AJCC is
still not completely satisfactory in risk segregation and
survival prediction [16, 19, 20]. Recently, an increasing
number of studies have confirmed the inadequacy of the
current TNM/AJCC system using “nomograms.” Such
studies highlight the urgent need for a better prognostic
determination system for risk categorization of individual
patients [21, 22].

We created a scoring system for NPC based on detailed
MR image reports using ML. We used the scoring system to
predict the probabilities of OS, DMFS, and LRFS for each
patient and then added the above three probabilities to
calculate a PFS probability, which was used to create a new
scoring staging system. We divided the patients into four
groups using our new scoring system and found that our
new machine learning-based scoring system was better than
the original AJCC system. Although our study was the first
to design such a scoring system, our findings confirm its
feasibility. Our scoring system even outperforms the current
AJCC system in certain respects. For instance, the new
scoring staging system tends to assign patients in the same
stage with worse prognoses to the advanced stage. 0is
improves the accuracy of the individualized treatment.
Furthermore, the new scoring system may be used to assign
prognoses for patients in the same AJCC stage. 0is would
enable physicians to prescribe more precise individualized
treatments for patients in the same stage. Our scoring system
suggested that physicians should use higher-dose therapy for
patients in the same stage who had worse prognoses. In
contrast, the scoring system suggested that patients with
better prognoses should be treated based on the old
guideline.

0e new machine learning-based scoring system re-
ported here was based on detailed MR image reports from a
world-class nasopharyngeal cancer research center. As
mentioned earlier, we adopted a completely unique report
analysis method that has never been reported previously.
0e image data derived from the detailed MR image reports
provide more precise and abundant information than the
current 8th edition stage NPC. 0ese data contribute to the
prognostic system, but only under the condition that the
influential factors can be recognized and selected from such
a large amount of data.

Current statistical methods used for staging rely mainly
on Cox regression. To optimize its predictive performance,
several studies have added more factors to the TNM system
to build a scoring system using a nomogram based on Cox
regression. However, Cox regression cannot be used to

Table 3: 0e mean AUC of image data-based and TNM system-
based ML model.

OS DMFS LRFS

Image data (AUC) 0.796
(0.044)

0.752
(0.042)

0.721
(0.052)

TNM system (AUC) 0.712
(0.064)

0.693
(0.050)

0.617
(0.073)

P value (AUC) 0.008 0.053 0.025

Image data (test error) 0.208
(0.037)

0.271
(0.052)

0.287
(0.050)

TNM system (test error) 0.326
(0.052)

0.346
(0.031)

0.413
(0.047)

P value (test error) 0.006 0.011 0.006

Image data (specificity) 0.721
(0.061)

0.576
(0.114)

0.540
(0.153)

TNM system (specificity) 0.405
(0.132)

0.383
(0.060)

0.174
(0.010)

P value (specificity) 0.006 0.011 0.006
0e average performance of the two models is reported with standard
deviation in the parenthesis.
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effectively select important features in a stepwise manner
when applied to a large number of variables and large
amounts of data.

ML, which is a booming field at the intersection of
computer science, statistics, data mining, and optimization
[23], appears to be the preferred option for the resolution of
the challenges described above. Due to its strong foundation
in statistical theory, ML has become increasingly popular
and acceptable when compared to conventional clinical
algorithms [24, 25]. ML is mathematically based on mul-
tifold systems, such as the 10-fold system, as well as cross-
validation to simulate different sets of data. AutoML, which
is the ML method we chose for feature selection, has been
demonstrated to be robust and to outperform traditional
approaches in a previous report [26].0e use of AutoML has
become increasingly prevalent in business, science, and
other disciplines. Unlike other MLmethods, AutoML can be
used to automatically suit the data and select the machine
learning classifier with the best performance. Interestingly,

AutoML can be used to find the optimal combination of
prediction algorithms using a process called Stacked En-
sembles. Due to the lower time demanded, higher prognostic
performance, and easy application without the need for
expert programming knowledge, AutoML has the potential
to be used by individuals who are notML experts. It was thus
easy to establish the new scoring system without the use of
complicated steps. Our approach was shown to be accurate
and stable in a clinical application and has the potential for
use in precision medicine.

Our new scoring system had advantages when compared
to the existing scoring systems based on nomogram. For
example, the nomogram scoring is fixed when the variables
are determined, while the new scoring system can be used to
assign separate prognostic scores for OS, DMFS, and LRFS
and to calculate a comprehensive prognostic score. 0ere-
fore, it is convenient for doctors to assess and stage patients
based on the different prognostic indicators in the new
system in the clinic. For patients with the same PFS
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Figure 3: Receiver operating characteristics of Cox regression. (a) We used PFS fraction and PFS to establish the ROC curve, and the best
cutoff value was 0.986 (highest Youden-index), which is regarded as the first cutoff value. We considered the first cutoff value over 0.986 for
the new staging IV. Next, we used the remaining patients to draw the ROC curve and calculate the remaining two cutoff values. (b) 0e
second cutoff value is not less than 0.643, which is in accordance with staging III. (c)0e third cutoff value is not less than 0.270, which is in
accordance with staging I and II. Stage IV PFS%≥0.986, Stage III PFS%≥0.643, Stage II PFS%≥0.270, and Stage I PFS% <0.270.

BioMed Research International 7



probability, doctors can shorten the review time of patients
with high LRFS probability and enhance the treatment of
patients with high DMFS probability by comparing their OS,
DMFS, and LRFS probability.

0is study has some limitations. First, the new method
ignores the time to event as compared with the existing
survival analysis. Second, we do not have a testing set
currently due to small data volume and unbalanced data; a
large external data volume can be used as an external
testing set in future studies. 0ird, our new scoring system
was established using only image data from detailed MR
image reports. Considering that a number of other
prognostic predictors of NPC have been reported, in-
cluding the presence of Epstein-Barr virus DNA and
the C-reactive protein/albumin ratio (CRP/Alb), the
prognostic performance of our scoring system can be

improved substantially by including the above-mentioned
variables.

5. Conclusion

Image data from detailed MR image reports enabled better
prognostic performance in predicting treatment outcomes
for NPC than that achieved using the TNM/AJCC system.
We created a completely new scoring system, which is a step
toward the enhancement of image data-based clinical pre-
dictions and precision oncology.

Data Availability

0e data of the MRI and other measurements are stored in
our RDD. 0ese data used to support the findings of this
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Figure 4: Analysis of Kaplan-Meier survival curve for the estimation of progression-free survival (PFS): (a) new scoring system (b) AJCC
staging.

Table 4: Kaplan-Meier (KM) test on II/I, III/II, and IV/III in ML-groups and TNM AJCC groups.

PFS AJCC staging Number Events Events/number (%) 5 years surv P value∗

AutoML-based system
I 123 4 3.25 0.964 — —
II 237 26 10.97 0.891 0.011 II/I
III 168 34 20.24 0.788 0.010 III/II
IV 264 99 37.50 0.608 <0.001 IV/III

TNM-based system
I 73 5 6.85 0.927 — —
II 175 24 13.71 0.860 0.118 II/I
III 303 58 19.14 0.803 0.121 III/II
IV 241 76 31.54 0.670 <0.001 IV/III

∗P values as KM way to compare cure II/I, III/II, IV/III.
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study are available from the corresponding author upon
request.
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