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Gastric cancer is a disease characterized by inflammation, and epithelial-to-mesenchymal transition (EMT) and tumor-associated
macrophages (TAMs) both play a vital role in epithelial-driven malignancy. In the present study, we performed an integrated
bioinformatics analysis of transcriptome data from multiple databases of gastric cancer patients and worked on a biomarker for
evaluating tumor prognosis. We found that cadherin 11 (CDH11) is highly expressed not only in gastric cancer tissues but also
in EMT molecular subtypes and metastatic patients. Also, we obtained evidence that CDH11 has a significant correlation with
infiltrating immune cells in the tumor microenvironment (TME). Our findings reflected that CDH11 likely plays an important
role in tumor immune escape and could provide a prognostic biomarker and potential therapeutic target for patients with
gastric cancer.

1. Introduction

Gastric cancer (GC) ranks fifth in global cancer incidence
and is the third most significant contributor to cancer-
related mortality [1]. Nevertheless, while Epstein-Barr virus
(EBV) infection was added to the list of causes of GC by
The Cancer Genome Atlas (TCGA) network in 2014 [2],
the role of Helicobacter pylori (H. pylori) in GC has
remained unshakable [3]. During H. pylori infection, the
host’s defense system launches an immune response aimed
at annihilating bacterium, resulting in durable inflammation
in the gastric mucosa followed by a series of pathological
alterations that may become cancerous. Similarly, in patients
with gastritis without H. pylori infection, normal cells are
repeatedly stimulated by chronic inflammation for a long
time and gradually become dysfunctional with tumorigenic
potential, in part via recruiting immune cells into the micro-
environment [4]. All of this supports the view that GC is a
disease dominated by inflammation [5]. Thus, to a certain
extent, changes in TME composition, especially in the types
of inflammatory infiltrating cells, might provide a better

microenvironment for gastric mucosa cells to obtain the
capability for carcinogenesis.

In the human body, macrophages are divided into two
types commonly: (1) M1 phenotype, known as classical
macrophages, which has robust antigerm and antitumor
activity [6, 7], and (2) M2 phenotype, known as alternatively
activated macrophages, which involves in tissue remodeling,
angiogenesis, and tumor formation and progression [8, 9].
Generally, tumor-associated macrophages (TAMs), as an
important regulator of the tumor immune microenvironment,
are similar to M2-like phenotypes and have immunosuppres-
sive effects and have been a hot spot in research [8, 10–12].
Several studies have reported a close relationship between the
infiltration levels of macrophages and tumor progression
[13–15]. In GC patients, a high level of M2 macrophages is
associated obviously with the status of peritoneal dissemina-
tion, angiogenesis, immune evasion, and poor prognosis [16–
19]. Ectopic expression of genes in tumor tissues can induce
immune cells into the tumor microenvironment (TME),
directly or indirectly, with the help of inflammatory media-
tors secreted by GC cells or infiltrating cells [20–23].
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Cadherin 11 (CDH11) is a type II classical cadherin from
the cadherin superfamily of integral membrane proteins
that mediate calcium-dependent cell-cell adhesion [24].
Dysregulation of CDH11 contributes to many pathologic
processes like inflammation, fibrosis, cellular migration,
invasion, EMT, and carcinogenesis [25, 26]. EMT is an
inflammation-driven response that plays an important role
in the process of chronic inflammation, becoming cancerous.
In 2019, a study based on a nontumor model revealed that
there are comprehensive connections between CDH11 and
the major components of cellular microenvironment such
as macrophages, TGF-β, and myofibroblasts [27]. However,
studies on the potential functions and mechanisms of
CDH11 in the progression and immunology of GC are few,
and the topic needs to be further expounded.

In the present study, we focused on investigating the
effects of CDH11 on the prognosis and progression of GC
by utilizing multiple public gene expression databases such
as Oncomine (https://www.oncomine.org/resource/login
.html) [28], Gene Expression Omnibus (GEO, https://www
.ncbi.nlm.nih.gov/gds) [29], the Gene Expression Profiling
Interactive Analysis (GEPIA, http://gepia.cancer-pku.cn/
index.html) [30], Tumor Immune Estimation Resource
(TIMER, https://cistrome.shinyapps.io/timer/) [31], and
Kaplan-Meier Plotter (KMP, http://kmplot.com/analysis/)
[32]. During the analyses, we set pancreatic and colorectal
cancers as controls and discussed the relationships between
CDH11 and different clinical characteristics of patients with
tumors. Furthermore, we also explored the possible molecu-
lar mechanisms of CDH11 involved in gastric carcinogenesis
via the construction of the protein-protein interaction (PPI)
and the coexpression network on the STRING database
(https://string-db.org) [33] as well as investigation of the
relationships between CDH11 and the levels of infiltrating
cells in TME based on the TIMER database. The findings of
this report reflected the important role of CDH11 in GC
and revealed an underlying interaction between CDH11
and tumor immune response.

2. Materials and Methods

2.1. Gene Expression Analyses.Gene expression analyses were
completed as follows: Using the Oncomine, TIMER, and
GEPIA databases, we evaluated the differences in CDH11
expression between tumor and normal tissues in multiple
cancer types besides gastric, pancreatic, and colorectal
cancer. To exclude the impact of various annotation plat-
forms on gene expression, we retrieved the datasets of gastric,
pancreatic, and colorectal cancer annotated by the “GPL570”
platform from the GEO database and then plotted the results
of expression analyses into boxplots through the ggplot2
package in R software.

2.2. Prognostic Analysis. Survival analyses were performed
using the GEPIA, GEO, and KMP databases to accurately
assess the impact of CDH11 on the overall survival (OS)
and disease-free survival (DFS) of patients with GC. From
GEPIA, we obtained the OS data of multiple cancers, and
from GEO, we downloaded only GC datasets and carried

out survival analyses using survival package in R software.
From KMP, not only did we obtain the OS status of all GC
patients but also implemented subgroup analyses to find
more evidence for the ability of CDH11 to predict the prog-
nosis of GC. Finally, we explored the relationship between
CDH11 and DFS of gastric cancer patients. The indexes of
the survival analyses contained survival curves, the HR with
95% confidence intervals (95% CI), and log-rank P value.

2.3. Clinical Correlation Analyses. To better understand the
potential role of CDH11 in gastric tumorigenesis, we investi-
gated the relationships between CDH11 and various TNM
stages, pathological types, T stages, molecular subtypes, and
metastatic status in GC patients from the TCGA and GEO
databases. Statistical tests were used to assess the differences
between groups, and the results were represented by scatter-
ing and boxplots using GraphPad Prism software (https://
www.graphpad.com, Version 7.0).

2.4. CDH11 Molecular Interaction Analysis. We constructed
the PPI and the coexpression networks of CDH11 on the
STRING database to explain further the potential molecular
mechanisms of CDH11 involved in stomach carcinogenesis.
For the PPI network, we defined the meaning of network
edges as “evidence,” the active interaction sources as “text-
mining, experiments, and databases,” and the minimum
required interaction score as “highest confidence (0.900).”
For the coexpression network, the meaning of network edges
was defined as “confidence,” and the minimum required
interaction score as “medium confidence (0.400).” We then
performed an analysis of the KEGG pathway enrichment
for those molecules in the PPI network through the Enrichr
database (http://amp.pharm.mssm.edu/Enrichr/) [34], and
the results were visualized by the GOplot package [35].

2.5. TIMER Database Analysis. TIMER is a comprehensive
database based on TCGA, which is dedicated to evaluating
the levels of infiltrating immune cells in TME [36]. First, we
recorded the effects of different immune cells on the OS of
GC patients, and then, based on the strength of tumor purity,
we explored the correlations among CDH11, types of
infiltrating immune cells, cytokines associated with immune
cells, and gene markers on the TIMER database. The cyto-
kines and gene markers mainly involved TAMs and M1
and M2 macrophages and have been referenced in prior
studies [37]. Finally, in GC patients, we generated expression
scatter plots and carried out Spearman’s correlation analyses
via setting the x-axis with gene markers and the y-axis with
CDH11 expression.

2.6. Statistical Analysis.GraphPad Prism is used for statistical
analysis. The D’Agostino-Pearson normality test was used
to describe the distribution of gene expression. An F-test
was used to evaluate the homogeneity of variance. Student’s
t-test, one-way ANOVA, and the Mann-Whitney-Wilcoxon
test were used to reveal the statistical significance between
groups according to data distribution and numbers of com-
pared groups. Kaplan-Meier analysis and log-rank test were
applied to determine the survival curves. Correlations
between CDH11, infiltrating cell types, and gene markers of
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Figure 1: Continued.
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immune cells were established by Spearman’s correlation.
The strength of the correlations was determined using the
following guide for the absolute value: 0.00–0.10 “negligible,”
0.10–0.39 “weak,” 0.40–0.69 “moderate,” 0.70–0.89 “strong,”
and 0.90–1.0 “very strong” [38]. The results were considered
to have statistical significance when P < 0:05. Survival curves
were obtained from the GEPIA sever and survival package in
R software and displayed with HR and P value from a log-
rank test.

3. Results

3.1. The Expression Levels of CDH11 in Various Human
Cancers. With Oncomine, compared with normal tissues,
a high level of CDH11 expression was observed in breast,
colorectal, esophageal, gastric, liver, lymphoma, pancreatic
cancer, and sarcoma tissues. However, lower expressions
were found in bladder, kidney, lung, ovarian, and prostate
cancer tissues (Figure 1(a)). The details of CDH11 expres-
sion in gastric, colorectal, and pancreatic cancers are listed
in Table S1. Data obtained from TIMER and GEPIA showed
similar results, with high levels of CDH11 expression shown
to be more common in adenocarcinoma like breast, gastric,
pancreatic, and colorectal cancers, while lower expression
mainly existed in tumors of the urinary and respiratory
systems (Figure 1(b) and Figure S1). In GEO, we compared
CDH11 expression between normal and cancerous tissues
from the matrixes of the GSE66229 [39], GSE54129,
GSE13911 [40], GSE15471 [41], GSE16515 [42], GSE21510
[43], and GSE18105 [44] datasets. The results reflected that
the expression levels of CDH11 are higher in cancerous
tissues than in normal tissues (Figure 1(c)), and statistical
significance existed (P < 0:05). The corresponding
information of these candidate datasets in this study is
provided as Table S2.

3.2. Prognostic Potential of CDH11 in Cancers. In GEPIA, we
confirmed that the OS of stomach adenocarcinoma (STAD)
patients with a high level of CDH11 expression compared
with the low-level group had statistical significance
(P < 0:05, Figure 2(a)), but there were no significant relation-

ships with PAAD, COAD (Figures 2(b) and 2(c)), and other
types of cancers (Figure S2). Based on the results from two
cohorts (GSE26253 and GSE62254), a total of 732 samples
with different stages of GC, downloaded from GEO,
showed that high CDH11 expression is strongly associated
with poor prognosis (OS: HR = 1:20, 95%CI = 1:1 to 1.4,
log-rank: P = 0:002 and OS: HR = 2:20, 95%CI = 1:3 to 3.7,
log-rank: P = 0:006, respectively) (Figures 2(d) and 2(e)).
Survival analysis of all GC patients using the KMP database
found similar results (Figures 2(f)–2(i)). Subgroup analysis
revealed that CDH11 overexpression is dramatically related
to the poor prognosis of GC patients who are at T3 and T4
stages or grade 3 or have a high tumor mutation burden
(TMB) (Figure 3). Also, we found evidences that CDH11
might promote the gastric cancer progression (Table S3).
These results suggest that the expression level of CDH11
has a remarkable impact on the survival of GC, and
CDH11 may be a good marker for predicting the prognosis
of GC patients, particularly in advanced cases.

3.3. High CDH11 Expression Impacts the Progression of GC.
High levels of CDH11 expression were observed in AJCC
stage IV and diffuse type of GC in TCGA (P < 0:05,
Figures 4(a), a1 and 4(b), b1), GSE26942 [39] (P < 0:05,
Figures 4(a), a2 and 4(b), b2), and GSE62254 [45] (P < 0:05
, Figures 4(a), a3 and 4(b), b3). GSE84437, which included
433 GC samples, was used to evaluate the condition of
CDH11 expression among different T1-T4 stages of GC,
and the final results showed that the highest level of expres-
sion was in the T4 stage (P < 0:05, Figure 4(c)). Here, the
T1-4 categories refer to the depth of tumor invasion in the
submucosa, muscularis propria, subserosa, serosa, and/or
the adjacent structure, respectively [46]. Apart from these,
we also detected statistical differences in CDH11 expression
between different molecular subtypes as well as different
metastatic status in GSE62254 (P < 0:05, Figures 4(d) and
4(e), respectively). However, we did not find significant
differences of CDH11 expression in GC patients with lymph
node metastasis (Figure S3). These findings show that
CDH11 contributes to the progression of GC, which
thereby warrant further investigation.
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Figure 1 Expression levels of CDH11 in various human cancers. (a) Increased or decreased CDH11 in different cancers compared with normal
tissues in theOncomine database. (b) Expression levels ofCDH11 in different tumor types from theTIMERdatabase (∗P < 0:05, ∗∗P < 0:01, and
∗∗∗P < 0:001). (c) (c1–c3) Expression levels of CDH11 in gastric cancer datasets from the GEO database (Wilcox T.:Wilcox. test; E: exponent).
(c4, c5) Expression levels of CDH11 in pancreatic cancer datasets from the GEO database. (c6, c7) Expression levels of CDH11 in
colorectal cancer datasets from the GEO database. Red represents high expression levels, and blue represents low expression levels.
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Figure 2: Kaplan-Meier survival curves comparing the high and low expressions of CDH11 in various cancers. (a–c) Survival curves of overall
survival (OS) in STAD (stomach adenocarcinoma), PAAD (pancreatic adenocarcinoma), and COAD (colon adenocarcinoma) from the
GEPIA database. (d, e) Survival curves of OS in two gastric cancer cohorts from GEO. (f) High CDH11 expression was correlated with
poor OS in the RNA-seq data of GC from the KMP database. (g–i) Survival curves of high and low CDH11 expressions with different
affymetrix IDs in the gene chip data of GC from the KMP database. HR: hazard ratio.
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3.4. CDH11 Molecular Interaction Analysis. Most CDH11-
interacting molecules are members of the cadherin super-
family, according to the PPI network (Figure 5(a)). However,
coexpression molecules are mainly related to the extracellular

matrix (ECM), such as the collagen family and periostin
(POSTN) (Figure 5(b)). The KEGG pathways of interacting
molecules are enriched in carcinogenic pathways such as
gastric, endometrial, and thyroid cancers. Notably, we
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Figure 4: Different levels of CDH11 expression between various clinical characteristics of GC patients. (a) CDH11 expression in different
AJCC stages I-IV of patients with gastric cancer (a1, analyzing STAD (stomach adenocarcinoma) data from TCGA (The Cancer Genome
Atlas); a2 and a3, two gastric cancer cohorts (GSE26942 and GSE62254) from the GEO database). (b) CDH11 expression in different
Lauren types of patients with gastric cancer (b1, analyzing STAD data from the TCGA database; b2 and b3, two gastric cancer cohorts
(GSE26942 and GSE62254) from the GEO database). (c) CDH11 expression in different T stages of gastric cancer from GSE84437 in the
GEO database. (d) CDH11 expression in different molecular types of gastric cancer from GSE62254. (e) CDH11 expression in different
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Cancer (AJCC); NOS: not otherwise specified; T1: the depth of tumor invasion arrives in submucosa; T2: the depth of tumor invasion
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found that leukocyte transendothelial migration, a pathway
involving the TME, appears in these enriched pathways
(Figure 5(c)). This evidence indicates that CDH11 may
participate in ECM remodeling and the formation of the
tumor immune microenvironment.

3.5. Relationship between CDH11 and Immune Infiltration
Level in GC. In the TIMER database, we found that the high

infiltration level of macrophages in TME is significantly
correlated with the poor prognosis of STAD patients
(P < 0:05, Figure 6). Further analysis showed CDH11 over-
expression to be strongly related to the infiltration level of
macrophages in STAD (COAD: r = 0:607, P < 0:05; PAAD:
r = 0:606, P < 0:05; STAD: r = 0:704, P < 0:05; Figure 7).
Based on tumor purity, we ascertained that most cytokines
are secreted by TAMs and M2 macrophages, and marker
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sets have significant correlations with CDH11 in STAD,
with examples including CCL-2, TGFB1, CXCL12, and
MPP2 of TAMs and IL-10, IL1R1, CD163, and MRC1 of
M2 phenotype (P < 0:0001; Figure 8). However, NOS2,
TNF, CD80, and CD83 of the M1 phenotype were shown
to have a negative or weak correlation (Figure 8). Similar
results were found in the GEPIA database (Table 1). These
results reflect that CDH11 plays a specific role in immune
infiltration of GC, especially via macrophages.

4. Discussion

CDH11 has been reported to play a dual role in the occur-
rence and development of various types of cancer. In
breast cancer, CDH11 enhances the ability of cancer cells
to metastasize and invade [47], while blocking it inhibits
the process of EMT phenotype [48]. However, in malignant
tumors of the head and neck, CDH11 is a tumor suppressor
controlling the proliferation and invasion of cancer cells
[25]. In GC, it was reported that CDH11 is associated with

tumor progression and prognosis via regulating adhesion-
related pathways [49]. Here, we reported that CDH11 not
only promotes the biological process of EMT but also is
closely related to a poor prognosis in GC patients, especially
in those with more severe tumor stages. Furthermore, our
analysis shows that there is a significant correlation between
CDH11 and the infiltration levels of macrophages in the
TME of GC. Thus, these findings provide a new viewpoint
in realizing the potential role of CDH11 in tumor progres-
sion and immunology and its use as a cancer biomarker to
predict prognosis in GC.

In the present study, we mainly discussed the value
and significance of CDH11 in patients with GC via inte-
grated bioinformatics analysis. Although the advent of
high-throughput DNA sequencing has provided us with an
effective tool to study the molecular pathology of tumors,
different platforms often produce different sequencing results
[50]. During our study, we limited the platform as “GPL570”
only when analyzing the data from the GEO database to
eliminate the differences from various sequencing platforms.
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Furthermore, tumor purity is an important confounder in
evaluating the correlation between gene expression and
clinicopathologic features [51]. Thus, we also accounted for
the interference of tumor purity when analyzing the relation-
ship between CDH11 and immune cell infiltrations in TME.
All of these measures guaranteed the reliability of our results.
Through a comprehensive analysis of CDH11 expression
profiles of GC in multiple databases, we found that CDH11
is highly expressed in tumor tissues, which indicates that
CDH11 may promote oncogenesis in the stomach. The
results between CDH11 and the clinical features of GC
patients showed that CDH11 overexpression is distinctly
associated with worse pathological features such as EMT,
metastatic status, higher T stage, and tumor mutation burden
(TMB). Survival analysis also confirmed that a higher level of
CDH11 expression has a higher HR of OS in GC patients.
Similar results have been reported in previously published
studies [52, 53]. Cancer is the result of a multigene and
multistep process. Therefore, we constructed the PPI and
the coexpression molecule networks of CDH11, and the
results indicated that CDH11 might take part in matrix
degradation, which is one of the significant characteristics
in the process of invasion and metastasis in GC.

Another important aspect of our results is that CDH11
was found to be strongly linked to the infiltration level of
diverse immune cells in different types of cancer, especially
GC. CDH11 have a positive relationship not only with the
infiltration level of macrophages in the TME of GC but also
with cytokines secreted by macrophages and gene markers
such as CCL2, CXCL12, and TGFB1 of TAMs and IL10,
IL1R1, CD163, and MRC1 of M2. As inducers, CCL2,

TGFB1, CXCL12, and MMP2 not only recruit more macro-
phages into the TME but also facilitate their polarization
and the generation of more M2 macrophages [12, 54–58].
High expression of M2-related markers often reflects the
increased proportion of M2 macrophages in the TME
[20, 37, 59]. These findings reflect the potential capability
of CDH11 to induce macrophages into the TME and
accelerate the transformation of M1 to M2 by interacting
with cytokines and finally regulate the formation of the
immune microenvironment.

With the results of our research combined with those
of previously published studies, the role of CDH11 in
the development of GC may be explained by several
possible mechanisms. For one, CDH11 has a positive
correlation with the expression of TGFB1 encoding the
protein of transforming growth factor-β (TGF-β). As we
know, TGF-β is recognized as a powerful inducer of EMT,
which is a vital step in the tumor transformation cascade
[60, 61]. In the PPI network, we found that CDH11 interacts
extensively with the members of the cadherin family, such as
CDH1, CDH2, CDH3, CDH11, and CDH17. Among these
molecules, CDH1 and CDH2 are the general markers to eval-
uate EMT status [62]. In addition, our analysis reveals that
CDH11 is coexpressed with molecules involved in the extra-
cellular matrix, such as COL1A2, COL1A1, COL3A1,
COL5A2, and POSTN. Meanwhile, CDH11 also shows a
robust positive correlation with MMP2, which is one of the
notable molecules in the MMP family involved in cell adhe-
sion, angiogenesis, and tumor progression [63–65]. Aberrant
expression of matrix-related genes often leads to changes in
the stroma structure and makes it easier to degrade, finally
resulting in ECM remodeling, which is essential in the initia-
tion and progression of EMT [66]. Also, CDH11 has a close
relationship with the infiltration level of macrophage-
related inflammatory factors (e.g., IL10, CCL2, and
CXCL12). This may be the result of interaction between
tumor cells with high expression of CDH11 and infiltrating
immune cells in the TME. As previously mentioned,
tumor-related immune cells can kill tumorous cells or
promote them to progress and metastasize. Unfortunately,
in most cases, immune cells in the TME become an accom-
plice of tumors. On the one hand, they introduce more
immune cells into the microenvironment through the
inflammatory mediators they or the tumor cell secreted; on
the other hand, they arouse significant changes in the compo-
sition of immune cells in the TME, immunocytes with killer
function decrease, immunocytes with inhibitive function
increase, and an immunosuppressive microenvironment
more suitable for tumor cells is eventually formed. In our
study, according to the close relationship between CDH11
and macrophages, especially the M2 phenotype, we can infer
that CDH11 contributes to helping cancer cells escape the
immune response. Nevertheless, many unanswered issues
are deserving of further investigation. In particular, how
CDH11 affects cadherin family members, or which one has
the biggest influence on tumorigenesis, and the exact
relationships among CDH11, EMT, inflammatory cytokines,
and TAMs need to be confirmed by both in vitro and in vivo
experiments.

Table 1: Correlation analysis of CDH11 expression and the gene
markers of macrophages in the GEPIA database.

Description Gene marker
CDH11 in STAD

Normal Tumor
R P R P

TAMs

CCL2 0.41 ∗ 0.54 ∗∗∗∗

TGFB1 0.03 ns 0.65 ∗∗∗∗

CXCL12 0.74 ∗∗∗∗ 0.61 ∗∗∗∗

MMP2 0.75 ∗∗∗∗ 0.78 ∗∗∗∗

M1 phenotype

NOS2 0.20 ns 0.05 ns

TNF -0.18 ns 0.19 ∗∗∗

CD80 -0.05 ns 0.44 ∗∗∗∗

CD83 0.40 ∗ 0.42 ∗∗∗∗

M2 phenotype

IL10 0.30 ns 0.57 ∗∗∗∗

IL1R1 0.36 ns 0.74 ∗∗∗∗

CD163 0.58 ∗∗∗ 0.54 ∗∗∗∗

MRC1 0.77 ∗∗∗∗ 0.61 ∗∗∗∗

STAD: stomach adenocarcinoma; R: Spearman correlation coefficient; P: P
values of partial correlation analysis; TAMs: tumor-associated
macrophages. ∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001; ∗∗∗∗P < 0:0001. ns: no
significance.
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5. Conclusion

CDH11 participates in the biological process of EMT and
induces the formation of TAMs in the TME, thus promot-
ing the occurrence and development of GC and ultimately
leading to a poor prognosis. Therefore, CDH11 likely plays
a vital role in tumor immune escape and could provide a
prognostic biomarker and potential therapeutic target for
patients with GC.
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