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Objective. Long noncoding RNA (lncRNA) and circular RNA (circRNA) are receiving increasing attention in diabetes research.
However, there are still many unknown lncRNAs and circRNAs that need further study. The aim of this study is to identify new
lncRNAs and circRNAs and their potential biological functions in type 2 diabetes mellitus (T2DM). Methods. RNA sequencing
and differential expression analysis were used to identify the noncoding RNAs (ncRNAs) and mRNAs that were expressed
abnormally between the T2DM and control groups. The competitive endogenous RNA (ceRNA) regulatory network revealed
the mechanism of lncRNA and circRNA coregulating gene expression. The biological functions of lncRNA and circRNA were
analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The candidate
hub mRNAs were selected by the protein-protein interaction (PPI) network and validated by using the Gene Expression
Omnibus (GEO) database. Results. Differential expression analysis results showed that 441 lncRNAs (366 upregulated and 75
downregulated), 683 circRNAs (354 upregulated and 329 downregulated), 93 miRNAs (63 upregulated and 30 downregulated),
and 2923 mRNAs (1156 upregulated and 1779 downregulated) were identified as remarkably differentially expressed in the
T2DM group. The ceRNA regulatory network showed that a single lncRNA and circRNA can be associated with multiple
miRNAs, and then, they coregulate more mRNAs. Functional analysis showed that differentially expressed lncRNA
(DElncRNA) and differentially expressed circRNA (DEcircRNA) may play important roles in the mTOR signaling pathway,
lysosomal pathway, apoptosis pathway, and tuberculosis pathway. In addition, PIK3R5, AKT2, and CLTA were hub mRNAs
screened out that were enriched in an important pathway by establishing the PPI network. Conclusions. This study is the first
study to explore the molecular mechanisms of lncRNA and circRNA in T2DM through the ceRNA network cofounded by
lncRNA and circRNA. Our study provides a novel insight into the T2DM from the ceRNA regulatory network.

1. Introduction

Type 2 diabetes mellitus (T2DM), formerly known as adult-
onset diabetes, is a kind of non-insulin-dependent diabetes,
which was one of the most common chronic diseases in the
population [1]. The global prevalence of adult diabetes and
impaired glucose tolerance has been increasing in recent
decades [2–4]. According to the IDF Diabetes Atlas, 451 mil-
lion people (aged 18 to 99 years) worldwide suffered from

diabetes in 2017, and the records were predicted to augment
to 693 million by 2045 [5]. Furthermore, diabetes also posed
a large economic burden. The global cost of diabetes was
reported to be $13100 (95% CI: 1.28-1.36) or 1.8% (95% CI:
1.8-1.9) of global gross domestic product (GDP) [6]. The
occurrence and development of T2DM were mainly related
to the environment and heredity. The results of the epidemi-
ological investigation showed that obesity, high-calorie diet,
and lack of physical activity were the most important
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environmental factors of T2DM [7]. In addition, the influ-
ence of genetic factors on T2DM has been gradually deter-
mined; for example, Gas6 gene rs8191974 and Ap3s2 gene
rs2028299 were associated with T2DM in the Han popula-
tion of northern China [8].

Noncoding RNA (ncRNA), discovered in recent decades,
is a class of RNA molecules which has no traditional RNA
function in protein translation, including long noncoding
RNA (lncRNA) and circular RNA (circRNA). lncRNA is an
RNA molecule with more than 200 bases in length [9], and
circRNA is a kind of closed ring structure of RNA, formed
by special selective shear of more than one exon [10].
Although the shapes of lncRNA and circRNA are different,
they can both act as sponges of microRNA (miRNA), com-
peting with the same corresponding miRNA response ele-
ment (MRE), which can effectively control the subsequent
posttranscriptional regulation of miRNA [11, 12]. Previous
studies have shown that differentially expressed ncRNAs
played an important role in the development of diabetes
[13, 14]. For example, Ruan et al. [15] found that lncRNA-
p3134 was associated with glucose metabolism and insulin
signal transduction in pancreatic B cells; Zhao et al. [14]
found that hsa-circ-0054633 provided a certain diagnostic
ability for T2DM; Lin et al. [16] established a T2DM-related
ceRNA network, extracted an mTOR-centered ceRNA sub-
network, and verified that lncRNA-NEAT1 may be associated
with the mTOR signal transduction target protein mLST8 by
binding to miR-181b. Nevertheless, there are few reports on
RNA-mediated regulatory networks in T2DM, and there are
still some shortcomings in our understanding of RNA-
mediated regulatory networks. Therefore, a systematic under-
standing of T2DM-related RNA molecular mechanisms is
essential for the development of new strategies for early diag-
nosis and therapeutic intervention of T2DM.

To explore the function of ncRNA in T2DM, we investi-
gated the differential expression of lncRNA (DElncRNA),
circRNA (DEcircRNA), miRNA (DEmiRNA), and mRNA
(DEmRNA) by high-throughput sequencing. Blood samples
were collected from three T2DM patients who were diag-
nosed for the first time and three healthy controls. Two com-
petitive endogenous RNA (ceRNA) regulatory networks (the
lncRNA-circRNA-miRNA-mRNA network and the protein-
protein interaction (PPI) network) were further established,
and the GO and KEGG enrichment analysis were performed
to detect and verify the functional expression of abnormal
target genes in diabetes mellitus, respectively. This is the first
time that the ceRNA network established by circRNA and
lncRNA has been used to explore the molecular mechanisms
behind T2DM.

2. Materials and Methods

2.1. Participants. Three patients with T2DM and three age-
matched healthy controls (HC) were recruited from the Sec-
ond Hospital of Jilin University from August 2017 to June
2018, and all of them were all Han Chinese men aged 40-60
(Table 1). T2DM patients were diagnosed for the first time
according to patients’medical history, neurological examina-
tion, and laboratory examination, and all of them had no his-

tory of using antiplatelet or antidiabetic agents. The
diagnostic criteria of a T2DM patient were as follows: (1)
fasting glucose ðFBGÞ ≥ 7:0mmol/L (fasting means at least 8
hours without calorie intake), (2) oral glucose tolerance test
(OGTT) 2h glucose ≥ 11:1mmol/L, or (3) random blood
glucose ≥ 11:1mmol/L. Patients with a history of coronary
atherosclerotic heart disease (CAD), hypertension, atrial
fibrillation, myocardial infarction, tumour, acute infectious
disease, immune disease, and hematological disease were
excluded from the study.

2.2. Ethical Approval and Informed Consent. All participants
provided written informed consent; the study was approved
by the Ethics Committee of School of Public Health of Jilin
University (ethical approval number: 2017-06-19), and it
always follows the privacy of the participants.

2.3. Collection of Blood Samples and RNA Sequencing. The
blood samples of diabetes patients and control groups were
collected with a purple head anticoagulant tube in the next
morning after fasting for ten hours or overnight. Total
RNA was isolated and purified using RNAiso Plus (total
RNA extraction reagent) (TAKARA BIO INC, CA, Japan)
according to the manual. RNA purity was checked using
the NanoPhotometer® spectrophotometer (IMPLEN, CA,
USA). RNA concentration was measured using the Qubit®
RNA Assay Kit in the Qubit® 2.0 Fluorometer (Life Technol-
ogies, CA, USA). The RNA integrity was further assessed by
using the RNA Nano 6000 Assay Kit of the Agilent Bioanaly-
zer 2100 system (Agilent Technologies, CA, USA).

After removing the ribosomal RNA, two sequencing librar-
ies were generated: the NEBNext® Ultra™ Directional RNA
Library Prep Kit for Illumina® (NEB, USA) was used for
lncRNA, circRNA, and mRNA sequencing, and the NEBNext®
Multiplex Small RNA Library Prep Set for Illumina® (NEB,
USA) was used for miRNA sequencing following the corre-
sponding manufacturer’s recommendations, respectively.

The clustering of the index-coded samples was per-
formed on a cBot Cluster Generation System using TruSeq
SR Cluster Kit v3-cBot-HS (Illumina) according to the man-
ufacturer’s instructions. After cluster generation, subsequent
sequencings (pair-end 150 bp for circRNAs and mRNAs,
single-end 50 bp for miRNAs) were conducted on the Illu-
mina HiSeq 4000 platform (Illumina Inc.) and Illumina
Hiseq 2500/2000 platform according to the manufacturer’s

Table 1: Descriptive characteristics of participants.

Case
1

Case
2

Case
3

Control
1

Control
2

Control
3

Gender Man Man Man Man Man Man

Race Asian Asian Asian Asian Asian Asian

Age 40 45 55 51 51 52

Height (cm) 172 175 173 170 172 169

Weight (kg) 98 80 70 60 76 80

DM Yes Yes Yes No No No

Hypertension No No No No No No

CAD No No No No No No
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instructions. Library construction and RNA sequencing were
performed by Novogene Co., Ltd. (Beijing, China). The tran-
scriptome data generated have been deposited in Baidu
SkyDrive (https://pan.baidu.com/).

2.4. Quality Control of Raw Sequencing Data. To study the
general characteristics and expression profiles of all DEncR-
NAs and DEmRNAs in the human blood sample, the RNA
sequencing technology was centrally important. For lncRNA,
firstly, raw data (raw reads) was obtained by removing rRNA
through using an Epicentre ribo-0rRNA removal kit (Epicentre,
USA) and removing free rRNA residue through ethanol precip-
itation. Subsequently, sequencing libraries were generated by
using the rRNA-depleted RNA by NEBNext® Ultra™ Direc-
tional RNA Library Prep Kit for Illumina® (NEB, USA) follow-
ing the manufacturer’s recommendations. For circRNAs and
mRNAs, raw data (raw reads) of fastq format was first proc-
essed through in-house perl scripts. In this step, clean data
(clean reads) was obtained by removing reads containing an
adapter, reads containing ploy-N, and low-quality reads from
raw data. For miRNAs, raw data (raw reads) of fastq format
was first processed through custom perl and python scripts.
In this step, clean data (clean reads) was obtained by removing
reads containing ploy-N, with 5′ adapter contaminants, with-
out 3′ adapter or the insert tag, reads containing ploy-A,
ploy-T, ploy-G, or ploy-C, and low-quality reads from raw data.
At the same time, Q20, Q30, and GC-content of the all raw data
were calculated. Taken together, all the downstream analyses
were based on clean data.

2.5. RNA Sequencing Data Analysis. The significantly
DElncRNAs, DEcircRNAs, DEmiRNAs, and DEmRNAs
were investigated using the DESeq R package (1.8.3). A
threshold value of ∣ log2ðfold changeÞ∣ ≥ 1:5 with a P value
< 0.05 was determined. In order to obtain an overview of
the expression profiles of lncRNAs, circRNAs, miRNAs,
and mRNAs, volcano plotting, heat mapping, and chromo-
some mapping were performed using ggplot 2, pheatmap,
and karyoploteR, respectively.

2.6. The Construction of the ceRNA Regulatory Network.
Based on the ceRNA theory, we constructed a ceRNA regula-
tory network for the DEncRNAs and DEmRNAs to show the
regulatory relationships among lncRNA, circRNA, miRNA,
and mRNA. miRanda (http://www.microrna.org/microrna)
was used to predict miRNA binding seed sequence sites,
and the ceRNA network which consisted of lncRNA-
miRNA pairs, circRNA-miRNA pairs, and miRNA-mRNA
pairs with the same miRNA nodes was visualized by Cytos-
cape 3.7.0.

2.7. Functional Analysis. To better comprehend the mecha-
nisms of T2DM, GO analysis and KEGG pathway analysis
were conducted to predict the potential functions of all
DEncRNAs and DEmRNAs. Among them, GO analysis
was based on three terms, namely, biological processes
(BP), cellular components (CC), and molecular functions
(MF), to construct gene annotation, while KEGG was a data-
base resource for understanding high-level functions and

interactions among differentially expressed genes (KEGG as
a reference resource for gene and protein annotation)
(http://www.genome.jp/kegg/). KOBAS software was used
to test the statistical enrichment of differential expression
genes in KEGG pathways.

2.8. The Establishment of the PPI Network and Identification
of Hub mRNAs. A PPI network was constructed by STRING
(https://string-db.org/) and visualized by Cytoscape 3.7.0.
Then, “Molecular Complex Detection” (MCODE), a cluster-
ing algorithm identifying locally densely connected regions
in a large PPI network based on node-weighting arithmetic,
was employed to recognize highly interacted hub mRNA
clustering.

2.9. Cross Validation. GSE21321, a previously published
Gene Expression Omnibus (GEO) dataset including nine
T2DM cases and ten normal controls, is an independent
cohort which includes both miRNA and mRNA [17]. In
order to validate the DEmiRNAs and DEmRNAs, we down-
loaded the miRNA and mRNA dataset from the GEO data-
base. All 19 participants were Singaporean and males. Data
of DEmiRNAs and DEmRNAs for GSE21321 was obtained
by using GPL10322 (v.11.0 - hsa, mmu & rno [probe-level])
miRCURY LNA microRNA Array and GPL6883 (Illumina
HumanRef-8 v 3.0 expression beadchip), respectively. The
background correction, normalization, and summarization
were performed using the robust multichip average algo-
rithm. Then, the log2 transformation to the intensities of
miRNAs and mRNAs was extracted from GSE21321 data.
Based on these data, we used a t-test to perform the differen-
tial expression analyses. The individual P values and log2ð
fold changeÞ were obtained to validate significance of RNAs
we have found.

3. Result

3.1. Overview of the Transcriptome Profiling. Before further
analyzing, we needed to take some measures to ensure the
accuracy of the results. In the circRNA library, 79364942,
87375680, and 103611692 clean reads were generated in
the three T2DM patients, respectively; then, 97740922,
97583408, and 100893034 clean reads were generated in the
three healthy controls, respectively. In the lncRNA library,
79364942, 87375680, and 103611692 clean reads were gener-
ated in the three T2DM patients, respectively; then,
97740922, 97583408, and 100893034 clean reads were gener-
ated in the three healthy controls, respectively. The detailed
quality control results are listed in Tables S1 and S2.

3.2. Differential Expression Analysis. The results showed that
there were clear differences in the expression profiles of
lncRNAs, circRNAs, miRNAs, and mRNAs through the vol-
cano plot (Figures 1(a)–1(b), S1A, and S2A) and heatmaps
(Figures 2(a)–2(b), S1B, and S2B), respectively. In the present
study, 441 lncRNAs (366 upregulated and 75 downregu-
lated), 683 circRNAs (354 upregulated and 329 downregu-
lated), 93 miRNAs (63 upregulated and 30 downregulated),
and 2935 mRNAs (1156 upregulated and 1779 downregu-
lated) were identified as remarkably differentially expressed
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in the T2DM group. The top 20 up- and downregulated
lncRNAs, circRNAs, miRNAs, and mRNAs are listed in
Tables S3–S6, respectively. The results also showed the
position, positive and negative chains, and gene length
information of the source genes of DEmRNAs (Figure S3),
DEcircRNAs (Figure 3), and DElncRNAs (Figure 4) on
chromosomes through the chromosome map. The
chromosomes in the top five of DElncRNA distribution
were as follows: chr1 (59, 13.38%), chr2 (41, 9.30%), chr12
(33, 7.48%), chr16 (29, 6.58%), and chr3 (28, 6.35%); the
chromosomes in the top five of DEcircRNA distribution
were as follows: chr1 (66, 9.67%), chr2 (60, 8.78%), chr12
(41, 6.00%), chr3 (40, 5.86%), and chr9 (40, 5.86%); and the
chromosomes in the top five of DEmRNA distribution were
as follows: chr1 (270, 9.20%), chr17 (217, 7.39%), chr19
(208, 7.09%), chr2 (177, 6.03%), and chr11 (176, 6.00%).

3.3. Construction of the ceRNA Regulatory Network. Accord-
ing to the “ceRNA hypothesis,” we constructed a ceRNA reg-
ulatory network (Figure S4), by integrating the expression
profiles and regulatory relationships of the lncRNAs,
circRNAs, miRNAs, and mRNAs. The ceRNA regulatory
network, which had more than 2 regulatory relationships,
contains 364 lncRNAs (295 upregulated and 69
downregulated), 447 circRNAs (251 upregulated and 196
downregulated), 46 miRNAs (34 upregulated and 12
downregulated), and 408 mRNAs (210 upregulated and 198

downregulated). Because of the large full network, so we
only showed the network of top four up- and
downregulated circRNAs and lncRNAs (Figure 5).

3.4. GO and KEGG Pathway Analysis. To better comprehend
the mechanisms involved in T2DM, we performed GO
enrichment and KEGG pathway analysis. The top 10 highly
enriched GO terms of BP, CC, and MF are shown in
Figures 6(a)–6(c). The most enriched GO terms in BP, CC,
and MF were “vesicle-mediated transport”, “cytoplasm”,
and “protein binding”, respectively. According to the KEGG
database, we gained 211 pathways, among which some
enriched terms were involved in T2DM, such as “fc gamma
R-mediated phagocytosis”, “tuberculosis”, “synaptic vesicle
cycle”, “lysosome”, and “mTOR signaling pathway”. The
top 20 KEGG pathways are shown in Table S7 and
Figure 7, and the specific genes enriched in the top 20
KEGG pathways are shown in Table 2.

3.5. Identification of Hub mRNAs from the PPI Network. To
further investigate the function of genes at the protein level,
we established a PPI network consisting of 100 nodes and
133 edges to view the interactions among 408 mRNAs
through removing unconnected nodes (Figure 8). Consider-
ing the importance of hub mRNAs in a network, we set the
mRNA with a degree greater than 5 to hub mRNAs and
picked them out from the PPI network. Those fifteen mRNAs
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Figure 1: The expression profiles of lncRNAs. (a) The volcano plots of DElncRNA. Red and green indicate up- and downregulation,
respectively. (b) The cluster analysis (heatmaps) of DElncRNA. The expression data was clustered with a log10ðTPM + 1Þ value. The color
scale indicates the expression of DElncRNAs: red and blue indicate up- and downregulation, respectively. “T” represents the T2DM
samples, and “C” represents the healthy controls.
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(UBE2V1, ANAPC11, UNKL, FBXL12, SPSB2, TRIM41,
RNF123, MIB2, RHOC, CLTA, CD44, PIK3R5, EPN2,
LCK, and AKT2) are also shown in bold in Table 2. A
lncRNA-circRNA-miRNA-hub mRNA network was then
built to delineate the links among the DElncRNAs, DEcircR-
NAs, DEmiRNAs, and DEmRNAs (Figure 9). Seven key
DEmiRNAs were found from the network.

3.6. Validation in the GEO Dataset. The expression pattern of
93 DEmiRNAs and 15 selected DEmRNAs was verified by
the GSE21321 dataset. RNA sequencing is more representa-
tive in characterizing transcripts. In this study, RNA
sequencing was performed on the Illumina platform to
obtain the DEmiRNAs and DEmRNAs of the T2DM. Data
of DEmiRNAs and DEmRNAs for GSE21321 were obtained
by using GPL10322 miRCURY LNA microRNA Array and
GPL6883 Illumina HumanRef-8 v3.0 expression beadchip,
respectively. However, the chips used in GSE21321 have been
used early. Hence, the probes in this platform were not suffi-
cient to detect all the DEmiRNAs and DEmRNAs in this
study. Only 15 DEmiRNAs (also including has-miR-421, a
key DEmiRNA) were detected in GSE21321. The P value
and log2ðfold changeÞ of selected DEmiRNAs and DEmR-
NAs in GSE22255 are displayed in Table 3. Among them,
the P values of the only one DEmiRNA and five DEmRNAs

(has-miR-125a-5p, CD44, CLTA, UBE2V1, FBXL12, and
AKT2) were all less than 0.05; that is to say, they were statis-
tically significant. Although other 14 DEmiRNAs and 10
DEmRNAs were not significantly expressed between T2DM
and normal control in GSE21321, it cannot be denied that
these RNAs may play vital roles in the development of
T2DM.

4. Discussion

With the development of molecular biotechnology, it has
been found that ncRNA, which was once recognized as
“noise” [18], played a crucial role in various biological pro-
cesses. Recently, some studies found that the dysregulated
expression of lncRNA or circRNA was related to the occur-
rence and development of diabetes mellitus, such as XLOC-
010971, XLOC-013310 [19], and miR-7 [20]. However, there
were few reports on RNA-mediated regulatory networks in
diabetes, as well as reports of new transcripts. To characterize
the new transcripts and biological functions of lncRNA and
circRNA in T2DM, we performed high-throughput sequenc-
ing of blood samples from diabetic patients and healthy con-
trols and transcribed and elucidated the underlying
pathogenesis of T2DM.
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In this study, we first performed high-throughput
sequencing of blood samples from three pairs of T2DM
patients and healthy controls to analyze differentially
expressed lncRNA, circRNA, miRNA, and mRNA, and the
results showed that there were 441 DElncRNAs and 683
DEcircRNAs. To further investigate the regulatory roles of
DElncRNA and DEcircRNA in T2DM, the interaction net-
work of lncRNA, circRNA, miRNA, and mRNA was con-
structed. This network showed that lncRNA and circRNA
may play a central regulatory role. A single lncRNA and cir-
cRNA can be associated with multiple identical miRNAs, and
then, they coregulate more mRNAs. For example, lncRNA-
MIAT (the degree value is 33) and hsa-circ-0007582 (the
degree value is 26) linked most miRNAs. The expression of
lncRNA-MIAT was significantly higher in T2DM patients
than in the control group, which was consistent with the
results of Sathishkumar et al. [21]. And lncRNA-MIAT was
determined to be involved in various diseases, especially
myocardial infarction, diabetic retinopathy, and other micro-
vascular complications [22], so it can be inferred that
lncRNA-MIAT may also play an important role in the pro-
cess of T2DM.

The biological function and potential pathways of the
DElncRNAs and DEcircRNAs were initially analyzed by the
GO and KEGG pathways. It was worth noting that the fol-
lowing significant enrichment pathways were closely related
to glucose metabolism. Firstly, the mTOR signaling pathway
and lysosomal pathway were closely associated with T2DM.
Insulin activated mTORC1 by inducing the TSC1-TSC2-

TBC1D7 complex (TSC complex) and dissociation of lyso-
somes [23]. Conversely, decreased activity of mTORC1 led
to hypoinsulinemia [24], and excessive activation of
mTORC1 led to insulin resistance [25], which has been con-
firmed in mouse models [26]. Secondly, apoptosis played an
important role in the pathophysiology of T2DM [27], and
pancreatic B cell apoptosis was a common pathological fea-
ture of T2DM. In the early stage of diabetes, B cells could
overcome the lack of insulin action by increasing insulin
secretion. If the function of B cells was deteriorating at this
time, thus showing hyperglycemia, then the cells could not
compensate for insulin resistance [28]. In T2DM, insulin
resistance and visceral obesity could lead to glucose toxicity,
accelerate apoptosis, and lead to B cell death [29]. However,
research has shown that autophagy could play a role in resist-
ing the cell damage caused by diabetes, protecting pancreatic
β cells and increasing the survival rate of pancreatic β cells in
the progression of T2DM [30]. Thirdly, the tuberculosis
pathway was highly associated with diabetes. Malnutrition
and lack of physical activity led to tuberculosis patients stim-
ulating adrenaline, glucagon, and cortisol at the same time,
thereby increasing glucose levels [31].

In addition, in order to further elucidate the mechanism
of the ceRNA network, we also constructed a PPI network
and screened fifteen hub mRNAs from the PPI network.
Among them, PIK3R5, AKT2, and CLTA were mRNAs
enriched in the important pathway. For example, PIK3R5
and AKT2 were mainly enriched in the mTOR signaling
pathway and apoptosis pathway, while CLTA was mainly

Table 2: The enriched genes in the top 20 pathways.

KEGG terms Input genes

Fc gamma R-mediated phagocytosis AKT2, PIK3R5, SPHK1, PIP5K1A, LAT, FCGR3A, GSN, CFL1, DNM2

Tuberculosis
CTSD, SPHK1, FCGR3A, CIITA, ITGB2, CAMK2D, MRC2, RFX5,

ATP6V0C, ATP6V0A1, MYD88, HLA-DMA, AKT2

Synaptic vesicle cycle ATP6V0E2, DNM3, ATP6V0C, NAPA, ATP6V0A1, CLTA, DNM2

Lysosome CLN3, CTSD, PPT2, GBA, ATP6V0C, TPP1, SLC11A2, ATP6V0A1, CLTA, GGA1

Natural killer cell-mediated cytotoxicity NFATC1, SH3BP2, LAT, ITGB2, FAS, PIK3R5, GZMB, FCGR3A, LCK

HTLV-I infection
CCND3, TCF3, CRTC1, NFATC1, NFATC3, HLA-DMA, XPO1,

ITGB2, PIK3R5, CHEK2, ANAPC11, LCK, AKT2, POLD2

Bacterial invasion of epithelial cells FN1, DNM3, SEPT9, PIK3R5, CLTA, DNM2

mTOR signaling pathway TSC2, STRADA, PIK3R5, AKT2, MLST8

Influenza A CIITA, HLA-DMA, XPO1, FAS, PIK3R5, DDX39B, IRF3, NXF1, MYD88, AKT2

Apoptosis FAS, PIK3R5, PRKAR1B, MYD88, CAPN1, AKT2

Collecting duct acid secretion ATP6V0E2, ATP6V0C, ATP6V0A1

mRNA surveillance pathway NXF1, ACIN1, SMG7, DDX39B, PABPC1L, PABPC1

Pertussis IRF1, MYD88, ITGB2, IRF3, CFL1

Fanconi anemia pathway FANCM, BRCA1, FANCI, TOP3A

Base excision repair MUTYH, POLD2, XRCC1

Proteoglycans in cancer FN1, FLNA, ANK1, RDX, FAS, CAMK2D, PIK3R5, CD44, ERBB2, AKT2

T cell receptor signaling pathway NFATC1, NFATC3, LAT, PIK3R5, LCK, AKT2

Toll-like receptor signaling pathway IRF5, TOLLIP, PIK3R5, IRF3, MYD88, AKT2

Primary immunodeficiency CIITA, RFX5, LCK

Measles CCND3, FAS, PIK3R5, RACK1, IRF3, MYD88, AKT2

Bold: hub mRNAs.
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enriched in the lysosome pathway. First, the potential of
PIK3R5 as a clinical biomarker for gestational diabetes melli-
tus has been confirmed [32]. Second, in early mouse experi-

ments, AKT2 was proven to be an essential gene for
maintaining normal glucose homeostasis [33], and it was also
confirmed in subsequent studies [34]. However, there was

Inf
12.00

0.00

Log2(fold change)

–9.00
–Inf

Figure 8: The PPI network. The node color changed gradually from green to red in ascending order according to the log2ðfold changeÞ of
genes. The edge size changed gradually from fine to coarse in ascending order according to the combined score between two neighboring
genes. The node size changed gradually from small to large in ascending order according to the degree of the node.

circRNA mRNA

–Inf Inf–9.00 0 9.00

IncRNA miRNA

Log2(fold change)

Figure 9: The lncRNA-circRNA-miRNA-hub mRNA network. In this figure, lncRNA, circRNA, miRNA, and mRNA were indicated by
diamond, rectangle, ellipse, and octagon, respectively. The node color changed gradually from green to red in ascending order according
to the log2ðfold changeÞ of RNAs.
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little research on the association between CLTA and T2DM.
Therefore, we can do further in-depth research on this.

Some limitations should be noted in this study. Firstly,
the sample size of RNA sequencing was small, which may
affect the extrapolation accuracy of the results, so it is neces-
sary to increase the sample size to verify the results in the
next step. Secondly, this is only a preliminary exploration,
and the results need to be verified by experiments.

5. Conclusion

In conclusion, this study is the first study to explore the
molecular mechanisms behind T2DM by using the ceRNA
network established by circRNA and lncRNA and found
that the mTOR signaling pathway, the lysosomal pathway,
the apoptosis pathway, and the tuberculosis pathway were
closely related to glucose metabolism. In addition, five
mRNAs (CD44, CLTA, UBE2V1, FBXL12, and AKT2)
were identified as the biomarkers of T2DM based on the

PPI network and GEO data validation. Our study provides
a novel insight into the T2DM from the ceRNA regulatory
network.
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Table 1: data filtering of circRNA, lncRNA, and mRNA.
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Table 7: the top 20 enriched KEGG pathways of the
lncRNA-circRNA-miRNA-mRNA network in T2DM. Fig-
ure 1: the expression profiles of miRNAs. (A) The volcano
plots of DEmiRNA. Red and green indicate up- and down-
regulation, respectively. (B) The cluster analysis (heatmaps)
of DEmiRNA. The expression data was clustered with a
log10ðTPM + 1Þ value. The color scale indicates the expres-
sion of DEmiRNAs: red and blue indicate up- and downreg-
ulation, respectively. “T” represents the T2DM samples, and
“C” represents the healthy controls. Figure 2: the expression
profiles of mRNAs. (A) The volcano plots of DEmRNA.
Red and green indicate up- and downregulation, respectively.
(B) The cluster analysis (heatmaps) of DEmRNA. The
expression data was clustered with a log10ðTPM + 1Þ value.
The color scale indicates the expression of DEmRNAs: red
and blue indicate up- and downregulation, respectively. “T”
represents the T2DM samples, and “C” represents the
healthy controls. Figure 3: the chromosome map of DEmR-
NAs between the T2DM and control groups. “+”:

Table 3: DEmiRNAs and DEmRNAs validated in GSE21321.

ID RNA P value Log2 fold changeð Þ
17474 hsa-miR-421 0.054 0.042

10928 hsa-miR-125a-5p 0.018 0.123

21498 hsa-miR-654-3p 0.132 0.008

27542 hsa-miR-139-5p 0.553 0.007

27549 hsa-miR-548d-3p 0.094 0.017

29328 hsa-miR-582-3p 0.138 -0.006

42451 hsa-miR-139-3p 0.165 0.033

42470 hsa-miR-543 0.431 0.020

42750 hsa-miR-636 0.159 0.064

42811 hsa-miR-542-5p 0.142 0.014

42875 hsa-miR-330-5p 0.288 0.010

46355 hsa-miR-548p 0.184 -0.029

46625 hsa-miR-1303 0.134 -0.017

46705 hsa-miR-548k 0.124 -0.031

46752 hsa-miR-1270 0.283 -0.022

54850 FBXL12 0.001 -1.150

208 AKT2 0.016 -1.870

7335 UBE2V1 0.017 -2.820

1211 CLTA 0.037 0.056

960 CD44 0.034 0.698

51529 ANAPC11 0.176 -0.267

63891 RNF123 0.128 0.306

3932 LCK 0.136 -0.338

90933 TRIM41 0.152 -0.269

23533 PIK3R5 0.190 -0.403

22905 EPN2 0.408 -1.750

389 RHOC 0.856 -0.041

84727 SPSB2 0.620 0.258

142678 MIB2 0.924 0.020

64718 UNKL 0.847 0.090
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chromosome positive chains; “-”: chromosome negative
chains; the width of the bar represents the length of the
RNA. Figure 4: the full ceRNA regulatory network. In this
figure, lncRNA, circRNA, miRNA, and mRNA were indi-
cated by diamond, rectangle, ellipse, and octagon, respec-
tively. The node color changes gradually from green to red
in ascending order according to the log2ðfold changeÞ of
RNAs. Supplementary Figure 2: top 10 GO enrichment
annotations: biological process (A), cellular component (B),
and molecular function (C). The horizontal axis stands for
the gene number which was enriched on the GO term
and the vertical axis for the GO term name. The node
color changed gradually from blue to red in ascending
order according to the negative log10ðq‐valueÞ.
(Supplementary Materials)
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