LPS-Treated Podocytes Polarize Naive CD4⁺ T Cells into Th17 and Treg Cells

Da-Hai Yuan, Yang Jia, Omar Mohamud Hassan, Li-Yun Xu, and Xiao-Chuan Wu

Department of Pediatric Nephrology, Children’s Medical Center, The Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha, Hunan 410011, China

Correspondence should be addressed to Xiao-Chuan Wu; xiaochuanwu@csu.edu.cn

Received 31 December 2019; Revised 24 March 2020; Accepted 22 April 2020; Published 18 May 2020

Aim. Our study is aimed at investigating whether Lipopolysaccharide- (LPS-) treated podocytes could polarize naive CD4⁺ T cells into different subsets in vitro.

Materials and Methods. Podocytes and mouse bone marrow-derived dendritic cells (BMDCs) were first cultured with 25 μg/ml LPS for 6 hours, respectively. Then, naive CD4⁺ T cells were cocultured with the LPS-treated podocytes or BMDCs at a ratio of 1 : 1 or 1 : 1 : 1. After 48 hours, we collected the suspended cells and supernatant from all groups to measure T helper (Th)17 cells, regulatory T (Treg) cells, and cytokine concentration.

Results. We observed the expression of CD80 and major histocompatibility complex class II molecule (MHC II) in podocytes but did not found the upregulation of them after treating podocytes with LPS. LPS-treated podocytes could induce naive CD4⁺ T cells to Th17 cells and Treg cells with a higher ratio of Th17/Treg than BMDCs. Possible interaction between podocytes and BMDCs may exist in the induction process of Th17 cells and Treg cells.

Conclusion. Our study proved that CD80 and MHC II were constitutively expressed in podocytes but not upregulated by LPS. LPS-treated podocytes could polarize naive CD4⁺ T cells into Th17 and Treg cells and affect the Th17/Treg balance and may incline to cause a Th17 response.

1. Introduction

The exact pathogenesis of idiopathic nephrotic syndrome (INS) remains unclear despite notable progress in our understanding of renal biology. Shalhoub [1] first proposed that the abnormality of T cells was involved in the onset of minimal change disease (MCD). Systemic circulating factors and genetic abnormalities of the podocytes are also related to the pathogenesis of INS [2–5]. The highly differentiated renal podocytes play a vital role in glomerular filtration. Scholars thought INS to be a podocytopathy due to functional and structural changes of the podocytes, leading to massive proteinuria [6]. Moreover, a research suggested that podocytes may have a direct role in the immune disorders of INS [7].

Differentiation of naive CD4⁺ T cells could produce T helper (Th)1, Th2, Th17, and regulatory T (Treg) cells [8]. Scholars have reported Th1/Th2 imbalance and Th17/Treg imbalance existing in INS [9–12]. Th17 cells characteristically express interleukin 17 (IL-17) and transcription factor retinoid-related orphan receptor gamma t (RORγt) [13, 14]. Plenty of inflammatory and autoimmune diseases involve Th17 cells, including kidney diseases [15]. Some studies have reported IL-17 participates in podocyte damage [16, 17]. Treg cells, which have anti-inflammatory and immune tolerance roles, specifically express forkhead box P3 (Foxp3) [18]. An increased number of Th17 cells and a decreased number of Treg cells were observed in the peripheral blood of primary nephrotic syndrome (PNS) patients [11, 12]. Shao et al. [11] found a dynamic balance of Th17 and Treg cells in children with PNS and suggested that the imbalance of Th17/Treg was involved in the onset and development of PNS.

Podocytes exhibit many characteristics of immune cells [19]. Moreover, podocytes can present antigens and activate CD4⁺ T cells and CD8⁺ T cells, suggests that podocytes could play a role like nonhematopoietic antigen-presenting cells (APCs) [7]. Naive Th cells can differentiate into different
subsets mediated by pathogen-primed dendritic cells (DCs) [20], which are the most potent professional APCs. Lipopolysaccharide (LPS), the Toll-like receptor 4 (TLR4) ligand, has diverse effects on DC-mediated T cell polarization. LPS induces Th1 cell polarizing factor production by most mouse and human CD11c+ DC subsets, so LPS-treated DCs usually support the expansion of Th1 cells [20]. Besides, DCs treated with a low dosage of LPS can induce Th2 immunity, while DCs treated with a high dosage of LPS was followed by a decrease of Th2 immunity and induction of Th17 response [21]. It has also been shown that LPS-treated DCs correlated with the Treg expansion at the DC-draining lymph nodes [22]. Zhou et al. [23] reported that LPS treatment upregulated the expression of tolerance-related factors such as galectin-1 and CD205 on bone marrow-derived DCs (BMDCs) in vitro and suggested that LPS may regulate BMDC-mediated immune tolerance. Given that podocytes are likely to be considered APCs, it is unclear whether podocytes could mediate the polarization of Th cells like DCs and affect the balance of Th cell subsets. So, we used a cell coculture method to study whether LPS-treated podocytes could mediate the polarization of Th cells, aiming to find a new potential therapeutic strategy for INS.

2. Materials and Methods

2.1. Cell Culture and Treatment. Conditionally immortalized mouse podocyte cell line (PCL) transfected by stable and sensitive SV40T was purchased from Zhong Qiao Xin Zhou Biotechnology, China. PCL cells were cultured in complete medium (RPMI-1640 with 100 U/ml IFN-γ and 10% FBS) at 33°C under 5% CO2 with the change of the medium every 2 or 3 days, subculturing when the cell confluence reached 70%-80% and for differentiation at 37°C under 5% CO2.

C57BL/6 mice were reared in a constant temperature and humidity environment with an artificial light cycle and unrestricted access to standard water and diet. C57BL/6 mice (male, 6-8 weeks) were sacrificed by cervical dislocation for mouse naive CD4+ T cells. Mononucleocytes from mouse spleens were collected, and then naive CD4+ T cells were isolated with MagniSort™ Mouse CD4 Naive T cell Enrichment Kit (Invitrogen, USA) following the manufacturer’s protocol. The percentage of CD4+CD45+CD44+ cells calculated by flow cytometry was 97.66 ± 0.21% (see Figure S1a and S1c in Supplementary Material).

In a previous study, LPS (25 μg/ml) induced an increase of TLR 1–4 gene expression in podocytes within 1 hour, and the expression of TLR4 had begun to decline by 6 hours [25]. Herein, in our study, PCL cells were cultured with 25 μg/ml LPS (eBioscience, USA) for 6 hours, and the harvested BMDCs were cultured with 25 μg/ml LPS for 6 hours, too. Before coculture, we examined the levels of CD80, major histocompatibility complex class II molecule (MHC II), and TLR4 mRNA expressed in PCL cells and BMDCs.

2.2. Coculture. After 6 hours of treatment with LPS, PCL cells and BMDCs were washed by PBS. 2 × 105 naive CD4+ T cells were cocultured with LPS-treated PCL cells or BMDCs at a ratio of 1 : 1 or 1 : 1 : 1. One control group (naive CD4+ T cells only) and three coculture groups (BMDCs+naive CD4+ T cells, PCL cells+naive CD4+ T cells, and PCL cells+BMDCs + naive CD4+ T cells) were established. After 48 hours of culture at 37°C under 5% CO2, suspended cells and supernatant in each group were collected for further study.

2.3. Flow Cytometry. For flow cytometry, we used monoclonal antibodies CD11c-FITC, CD80-PE, MHC II-APC, CD4-PE-Cyanine7, CD44-PE, CD45-FITC, Foxp3-PE, CD25-APC, and IL-17A-APC (eBioscience, USA). Cells were incubated with monoclonal antibodies for 30 min in the dark for the staining of surface antigens. IL-17A and Foxp3 were performed by intracellular staining.

2.4. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). For investigating the TLR4 mRNA expression in PCL cells and BMDCs after LPS treatment, we performed qRT-PCR. TRIzol Reagent (Invitrogen, USA) was used to extract total RNA following the manufacturer’s protocol. Reverse transcribing total RNA using HiFiScript cDNA Synthesis Kit (Cwbioitech, China). UltraSYBR Mixture (Cwbioitech, China) was used for the qRT-PCR reaction. The reaction condition was as follows: heating to 95°C for 10 min, 40 cycles of 95°C for 15 sec, and 60°C for 30 sec. The relative expression levels of TLR4 mRNA were evaluated by the 2ΔΔCq method. The internal control was performed by actin mRNA. Primer Premier 5.0 software (Premier, CAN) was used to design the specific primer. The primer sequences of TLR4 were as follows: forward primer, AGACACTTTAT TCAAGAGCCTTTG; reverse primer, AAGGCGATTACA ATTCCACC. The primer sequences of actin were as follows: forward primer, ACATCCGTAAAAGACCTCTATGCC; reverse primer, TACTCCTGCTTGCTGGTAC.

2.5. Enzyme-Linked Immunosorbent Assay (ELISA). To detect the concentration of interferon-gamma (IFN-γ), IL-4, and IL-17A in the supernatant of each group, we used colorimetric sandwich ELISA kits (Proteintech, USA) following the manufacturer’s instructions.

2.6. Statistical Analysis. Data are all shown as the mean ± SEM. Statistical analysis and data graphics were performed using SPSS statistics 25.0 software (IBM, USA) and GraphPad Prism 8 (GraphPad Software Inc., USA).
Co-culture for 48 h

LPS-treated podocytes

LPS-treated BMDCs

C57BL/6 mice

Naive CD4+ T cells

Podocytes

Detect Th17 cells, Treg cells and supernatant cytokines in every group

Figure 1: Continued.
way analysis of variance (ANOVA) was used for multiple comparisons. *P < 0.05 was considered to be statistically significant.

3. Results

3.1. The Expression of CD80, MHC II, and TLR4 mRNA in LPS-Treated Podocytes and BMDCs. Figure 1(a) shows a schematic diagram of this study.

The untreated groups showed PCL cells constitutively express CD80 and MHC II (Figures 1(b), 1(c), 1(e), 1(f), and 1(g)). After treatment with 25 μg/ml LPS, the levels of CD80 and MHC II in PCL cells were not upregulated but downregulated compared to the untreated groups (Figures 1(b)–1(g)). As expected, the upregulation of TLR4 mRNA was observed in LPS-treated PCL cells (Figure 1(h)).

After treatment with LPS, the levels of CD80 and MHC II expressed in BMDCs were not significantly different from the untreated groups (Figures 2(a)–2(f)), indicating that the harvested BMDCs were mature enough. There was an increase in TLR4 mRNA observed in LPS-treated BMDCs (Figure 2(g)).

3.2. LPS-Treated Podocytes Could Induce Naive CD4+ T Cells to Th17 Cells and Treg Cells. In the three coculture groups, the levels of Th17 cells (CD4+IL-17A+ cells) in total CD4+ cells elevated significantly compared to the control group (Figures 3(a)–3(e)), indicating that LPS-treated podocytes and BMDCs both can induce naive CD4+ T cells to Th17 cells. Moreover, in the PCL cell+BMDC+naive CD4+ T cell group, the elevated Th17 cells was higher than the PCL cell+naive CD4+ T cell group (Figure 3(e)).

In the three coculture groups, the levels of Treg cells (CD4+CD25+Foxp3+ cells) in total CD4+ cells raised significantly compared to the control group (Figures 4(a)–4(e)), indicating that LPS-treated podocytes and BMDCs both can induce naive CD4+ T cells to Treg cells. The raised Treg cells in the PCL cell+naive CD4+ T cell group was lower than the BMDC+naive CD4+ T cell group (Figure 4(e)). Moreover, in the PCL cell+BMDC+naive CD4+ T cell group, the elevated level of Treg cells had a more significant range than that of the PCL cell+naive CD4+ T cell group (Figure 4(e)).

Together, these findings proved that LPS-treated podocytes could induce naive CD4+ T cells to Th17 cells and Treg cells. Podocytes have a less powerful role than BMDCs in promoting the production of Treg cells from naive CD4+ T cells. Podocytes and BMDCs cultured together had a more robust role than podocytes alone in the induction process of Th17 cells and Treg cells.

3.3. LPS-Treated Podocytes Induced a Higher Th17/Treg Ratio Than BMDCs. To evaluate the effect of LPS-treated podocytes on Th17/Treg balance, we further compared the ratio of Th17/Treg among coculture groups (Figure 4(f)). The PCL cell+naive CD4+ T cell group had a higher Th17/Treg ratio than the BMDC+naive CD4+ T cell group (Figure 4(f)).

3.4. Supernatant Cytokine Concentration in Coculture Groups. The concentration of Th1 cytokine IFN-γ in the PCL cell+naive CD4+ T cell and BMDC+naive CD4+ T cell groups was not elevated compared to the control group (Figure 5(a)). However, the concentration of IFN-γ in the PCL cell+BMDC+naive CD4+ T cell group was significantly higher than those in the other three groups (Figure 5(a)).

The concentrations of Th2 cytokine IL-4 in all three coculture groups were not significantly elevated (Figure 5(b)). IL-17A secretion was detectable in the BMDC+naive CD4+ T cell group but not in the PCL cell+naive CD4+ T cell group.
Moreover, the concentration of IL-17A in the PCL cell+BMDC+naive CD4+ T cell group was significantly higher than those in the other three groups (Figure 5(c)).

4. Discussion

The reported incidence of INS in children is 1.15 to 16.9/100000 [6]. At present, the main treatment agents for INS are glucocorticoids and other immunosuppressants such as tacrolimus and mycophenolate mofetil. Nevertheless, drug side effects and high recurrence rates have constantly been clinical problems. Therefore, new treatment strategies are urgently needed. Since Shalhoub [1] proposed that MCD was a disorder of T cells which disrupted the glomerular basement membrane by producing a circulating factor, it has been considered that the pathogenesis of INS involves T cell dysfunction for decades. However, new shreds of evidence suggest that podocytes have a direct role in the occurrence and recurrence of INS.
Figure 3: LPS-treated podocytes could induce naive CD4+ T cells to Th17 cells (CD4+IL-17A+ cells). LPS-treated PCL cells or BMDCs were cocultured with naive CD4+ T cells (obtained by magnetic cell sorting) at a ratio of 1:1 or 1:1:1. One control group (naive CD4+ T cells only) and three coculture groups (BMDCs+naive CD4+ T cells, PCL cells+naive CD4+ T cells, and PCL cells+BMDCs+naive CD4+ T cells) were established. After 48 hours, suspended cells in each group were collected for further study. (a–d) The levels of Th17 cells in the naive CD4+ T cell group (a), BMDC+naive CD4+ T cell group (b), PCL cell+naive CD4+ T cell group (c), and PCL cell+BMDC+naive CD4+ T cell group (d) were calculated by flow cytometry, respectively. (e) Comparison of the levels of Th17 cells in total CD4+ T cells among groups. Data are shown as the mean ± SEM. **P < 0.01. ***P < 0.001. n = 5/group. BMDC: bone marrow-derived dendritic cell; PCL: podocyte cell line.
Figure 4: Continued.
Podocytes share many factors’ characteristics (including CD80 and MHC II) of the immune system and are likely to be considered APCs [7, 19]. There was no direct evidence shown that CD80 and MHC II could indicate the activation or maturation of PCL cells, but the expression of CD80 and MHC II on PCL cells could exhibit some of the features of APCs [7, 26]. CD80 (also known as B7-1), essential for the activation of T cells, is a costimulatory molecule expressed on the surface of APCs. Increased expression of CD80 in podocytes may be involved in the pathogenesis of proteinuria by breaking the glomerular filter [26, 27]. The CTLA-4 mimicking therapeutic agents, which binds CD80, have been tested in CD80-positive proteinuric kidney disease [28].

Our previous study proved that the change of urinary CD80 concentration could predict the recurrence of steroid-sensitive nephrotic syndrome [29]. Nevertheless, the CD80 hypothesis remains controversial [30, 31]. Reiser et al. [26] reported that LPS treatment upregulated the expression of CD80 in podocytes and led to severe proteinuria in WT and SCID mice but not in CD80−/− mice. In our current study, podocytes constitutively expressed CD80 and MHC II. Upregulations of TLR4 mRNA in podocytes and BMDCs after treatment with LPS proved the effectiveness of LPS. However, there was no upregulation of CD80 in the LPS-treated podocytes (Figure 1(e)), which was consistent with a recent study [31]. So, the CD80 hypothesis requires further confirmation.

APCs include several kinds of cells, such as macrophages, dendritic cells, and B cells. It has been reported that DCs are more efficient at presenting antigens to naïve T cells than macrophages [32]. Moreover, the stimulatory effect of macrophages on naïve T cells remains controversial. Bartz et al. [33] have shown that DCs had a strong stimulating effect on allogeneic naïve T cells, while macrophages had no stimulating effect on those cells. It is considered that B cells are indolent APCs due to their inefficiency in capturing and presenting antigens.

**Figure 4:** LPS-treated podocytes induce naïve CD4+ T cells to Treg cells (CD4+CD25+Foxp3+ cells). After 48 hours of coculture, suspended cells in each group were collected for further study. (a-d) The levels of Treg cells in the naïve CD4+ T group (a), BMDC+ naïve CD4+ T cell group (b), PCL cell+ naïve CD4+ T cell group (c), and PCL cell+BMDC+ naïve CD4+ T cell group (d) were calculated by flow cytometry, respectively. (e) Comparison of the levels of Treg cells in total CD4+ T cells among groups. (f) Comparison of the Th17/Treg ratio among culture groups. Data are shown as the mean ± SEM. *P < 0.05. **P < 0.01. ***P < 0.001. n = 5/group. BMDC: bone marrow-derived dendritic cell; PCL: podocyte cell line.
processing antigens compared to DCs or macrophages [34]. LPS-treated DCs can induce naïve Th cells to Th1, Th2, Th17, or Treg cells depending on different conditions [20–22]. Therefore, we added BMDCs rather than other kinds of APCs into the coculture system with naïve CD4+ T cells as a positive control group. Since podocytes are considered APCs, podocytes may also have a similar role in mediating the polarization of Th cells. A previous study reported podocytes stimulated the secretion of Th1 cytokines IFN-γ and IL-2 by CD4+ cells [7]. Our current study further proved that LPS-treated podocytes could induce naïve CD4+ T cells to Th17 cells and Treg cells (Figures 3(e) and 4(e)). The elevated Treg cells in the PCL cell+naive CD4+ T cell group was less than those in the BMDC+naive CD4+ T cell group (Figure 4(e)), indicating possible interaction between podocytes and BMDCs. The increase of Th1 cytokine IFN-γ in the PCL cell+ naïve CD4+ T cell and BMDC+ naïve CD4+ T cell groups was not observed compared to that in the control group (Figure 5(a)). However, when LPS-treated PCL cells and BMDCs were cultured together with naïve CD4+ T cells (the PCL cell+BMDC+ naïve CD4+ T cell group), the concentrations of IFN-γ was significantly increased (Figure 5(a)), indicating possible interaction between podocytes and BMDCs. The increase of IL-17A in the PCL cell+BMDC+ naïve CD4+ T cell group was observed and significantly higher than that in the BMDC+ naïve CD4+ T cell group (Figure 5(c)), suggesting podocytes and BMDCs cultured together had a more influential role than BMDCs alone in promoting the secretion of IL-17A. Considering IL-17A secretion was undetectable in the PCL cell+ naïve CD4+ T cell group (Figure 5(c)), this may be due to interaction but not the superposition effect between podocytes and BMDCs. Together, it seemed that possible interaction between podocytes and BMDCs in inducing Th17 cells, Treg cells, IFN-γ, and IL-17A existed in our study.

As DCs and podocytes may exist at the same microenvironment, they have the opportunity to contact each other. Meanwhile, they both function as APCs, so we hypothesize that there was an interaction between podocytes and DCs in mediating the polarization of Th cells. Therefore, we added BMDCs into a coculture system of PCL cells with naïve T cells. The results indicated that podocytes and BMDCs cultured together had a more influential role than podocytes alone in the induction process of Th17 cells and Treg cells (Figures 3(e) and 4(e)), which may be due to the superposition effect or interaction between podocytes and BMDCs. The increase of Th1 cytokine IFN-γ in the PCL cell+ naïve CD4+ T cell and BMDC+ naïve CD4+ T cell groups was not observed compared to that in the control group (Figure 5(a)). However, when LPS-treated PCL cells and BMDCs were cultured together with naïve CD4+ T cells (the PCL cell+BMDC+ naïve CD4+ T cell group), the concentrations of IFN-γ was significantly increased (Figure 5(a)), indicating possible interaction between podocytes and BMDCs. The increase of IL-17A in the PCL cell+BMDC+ naïve CD4+ T cell group was observed and significantly higher than that in the BMDC+ naïve CD4+ T cell group (Figure 5(c)), suggesting podocytes and BMDCs cultured together had a more influential role than BMDCs alone in promoting the secretion of IL-17A. Considering IL-17A secretion was undetectable in the PCL cell+ naïve CD4+ T cell group (Figure 5(c)), this may be due to interaction but not the superposition effect between podocytes and BMDCs. Together, it seemed that possible interaction between podocytes and DCs in inducing Th17 cells, Treg cells, IFN-γ, and IL-17A existed in our study. However, it needs to be further confirmed by a more excellent experiment. If the interaction does exist, it will provide a new direction for the treatment of INS. There is no research aimed at the aspect by now. So, it is necessary to study the interaction between podocytes and DCs in the future work.

Previous studies reported that LPS-treated DCs usually supported the Th1 response and DCs treated with a low
dosage of LPS led to a Th2 response [20, 21]. Moreover, podocytes promoted the secretion of Th1 cytokines IFN-γ and IL-2 by CD4+ cells [7]. However, in our study, increasing of Th1 cytokine IFN-γ and Th2 cytokine IL-4 in the PCL cell naïve CD4+ T cell group and BMDC naïve CD4+ T cell group was not detectable (Figures 5(a) and 5(b)); it may be due to the high dosage of LPS (25 μg/ml). Peters et al. [21] have reported that BMDCs treated with a high dosage of LPS (100ng/ml) led to a decrease of Th2 immunity and induction of Th17 response. They found that the secretion of transforming growth factor-beta (TGF-β) and IL-6 continuously increased until 100 ng/ml LPS [21]. TGF-β and IL-6 are the polarizing factors for the differentiation of Th17 cells [37], and IL-6 could negatively regulate Th1 cell differentiation [38]. This may explain why Th1 cytokine IFN-γ and Th2 cytokine IL-4 were not induced.

Compared to the control group, Th17 cell cytokine IL-17A in the PCL cell naïve CD4+ T cell group was not increased significantly (Figure 5(c)). However, in the PCL cell naïve CD4+ T cell group, the increase of Th17 cells calculated by flow cytometry was observed (Figure 3(e)). The two results were inconsistent. We hypothesized that the intracellular IL-17A might not be entirely secreted outside the cells. The expression of IL-17A was performed by intracellular staining when calculating Th17 cells by flow cytometry, so its upregulation could be detectable. Moreover, Yan et al. [17] have reported that mouse podocytes expressed IL-17A receptor continuously and IL-17A bound to the IL-17A receptor further caused podocytes injury through the ROS-NLRP3-inflammasome-caspase-1 pathway. It could support our hypothesis that the PCL-induced secretion of IL-17A may be overridden by the binding to the IL-17A receptor on podocytes. This may explain why PCL cells could induce naïve CD4+ T cells to Th17 cells, but IL-17A secretion was not detected in the supernatant of PCL cell naïve CD4+ T cell group.

5. Conclusions

In conclusion, our study proved that CD80 and MHC II constitutively expressed in podocytes but not upregulated by LPS. LPS-treated podocytes could polarize naïve CD4+ T cells into Th17 and Treg cells and affect the Th17/Treg balance and may promote the local inflammatory response. This may provide a new potential treatment strategy for INS. However, in vivo verification and the specific signal pathways need further investigation.

Data Availability

All data used to support the results of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest related to the contents of this article.

Acknowledgments

This work was supported by the Key Discipline Fund of Hunan Province, China.

Supplementary Materials

Figure S1: the identification of naïve CD4+ T cells and BMDCs. (Supplementary Materials)

References

distinct from the T helper type 1 and 2 lineages,” *Nature Immunology*, vol. 6, no. 11, pp. 1123–1132, 2005.


