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Pancreatic cancer (PC) is one of the most malignant tumors. Despite considerable progress in the treatment of PC, the prognosis of
patients with PC is poor. The aim of this study was to identify potential biomarkers for the diagnosis and prognosis of PC. First, the
original data of three independent mRNA expression datasets were downloaded from the Gene Expression Omnibus and The Cancer
Genome Atlas databases and screened for differentially expressed genes (DEGs) using the R software. Subsequently, Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the DEGs were performed, and a protein-
protein interaction (PPI) network was constructed to screen for hub genes. The hub genes were analyzed for genetic variations, as
well as for survival, prognostic, and diagnostic value, using the cBioPortal and Gene Expression Profiling Interactive Analysis (GEPI
A) databases and the pROC package. After screening for potential biomarkers, the mRNA and protein levels of the biomarkers were
verified at the tissue and cellular levels using the Cancer Cell Line Encyclopedia, GEPIA, and the Human Protein Atlas. As a result, a
total of 248 DEGs were identified. The GO terms enriched in DEGs were related to the separation of mitotic sister chromatids and
the binding of the spindle to the extracellular matrix. The enriched pathways were associated with focal adhesion, ECM-receptor
interaction, and phosphatidylinositol 3-kinase (PI3K)/AKT signaling. The top 20 genes were selected from the PPI network as hub
genes, and based on the analysis of multiple databases, MCM2 and NUSAP1 were identified as potential biomarkers for the diagnosis
and prognosis of PC. In conclusion, our results show that MCM2 and NUSAP1 can be used as potential biomarkers for the diagnosis
and prognosis of PC. The study also provides new insights into the underlying molecular mechanisms of PC.

1. Introduction

Pancreatic cancer (PC) is one of the most common malig-
nant tumors, with a 5-year survival rate of only 9% [1]. Cur-
rently, surgery is the most effective way to improve the
survival rate of patients with PC. However, the prognosis of
patients with PC is still very poor because the onset of PC
is cryptic, symptoms are atypical, lymph node metastasis
occurs early, the degree of malignancy is high, and the prog-
ress is rapid [2]. Therefore, early diagnosis and intervention
are essential for reducing mortality and improving the clini-
cal prognosis of patients with PC.

The main potential biomarkers of PC identified in the
past two decades are CA19-9, DUPAN-2, CAM17.1, TPS,
SPan-1, TAT1, POA, YKL-40, TUM2-PK, and matrix metal-
loproteinases [3]. Although CA19-9, which is considered a
better biomarker for the diagnosis and prognosis of PC [4],
is highly sensitive, its application in early diagnostic screen-
ing for PC is limited owing to a low specificity [5, 6]. There-
fore, research to find effective biomarkers for PC continues.

Increasing evidence indicates that abnormal expression
of and mutations in certain genes are closely related to the
occurrence and development of PC. Abnormal expression
of OPN and CISD2 has been shown to play a key role in the
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progression of PC [7, 8], while PAM4, S100A6, and SPARC
have been identified as biomarkers of PC [9–11]. Therefore,
further elucidation of the pathogenesis of PC at the genetic
level may help identify new diagnostic and prognostic indica-
tors. With the rapid development of sequencing technology,
microarray analyses, based on high-throughput platforms,
have been widely used in biomedical and clinical research
for screening genetic variants [12, 13]. At present, there are
many PC-related expression profile datasets of varying qual-
ity. However, most of the PC-related bioinformatics studies
based on The Cancer Genome Atlas (TCGA) and Gene
Expression Omnibus (GEO) did not perform quality control
of the original data, nor did they verify their findings in other
databases. Consequently, potential diagnostic and prognostic
biomarkers showing compatibility across different transcrip-
tomic platforms and patient cohorts have not been systemat-
ically investigated. In this study, we aimed to identify
potential diagnostic and prognostic biomarkers for PC using
the data available in the GEO and TCGA databases and val-
idate the expression of these biomarkers using the Cancer
Cell Line Encyclopedia (CCLE), International Cancer
Genome Consortium (ICGC), cBioPortal, Gene Expression
Profiling Interactive Analysis (GEPIA), and Human Protein
Atlas databases. Our results will help develop novel therapeu-
tic strategies to improve clinical outcomes and provide new
insights into the pathogenesis of PC.

2. Materials and Methods

2.1. Gene Expression Profile Datasets. GEO (http://www.ncbi
.nlm.nih.gov/geo) is a public repository of various high-
throughput experimental data [14]. In this study, two
mRNA expression profile datasets for PC (GSE15471
[15] and GSE16515 [16]), based on the GPL570 platform
(Affymetrix Human Genome U133 Plus 2.0 Array), were
downloaded from the GEO database. The GSE15471 data-
set consisted of 39 PC tissues and 21 normal pancreatic
tissues, and the GSE16515 dataset included 36 PC tissues
and 16 normal pancreatic tissues. TCGA (http://www
.cancergenome.nih.gov) is a large-scale cancer genetic
information database [17] that provides information
regarding the key genomic changes and clinical data for
33 cancers. An mRNA expression profile that contained
data for 179 PC tissues and four normal pancreatic tissues
was obtained from TCGA.

2.2. Data Preprocessing and Identification of Differentially
Expressed Genes (DEGs). The affy package [18] in the R soft-
ware (version 3.6.1, http://r-project.org/) was used to read the
raw data (CEL file) of the three datasets and then convert the
original data format, fill the missing values, and apply back-
ground correction. The samples were then subjected to dif-
ferential expression analysis, and the DEGs were exported
using the limma package [19]. DEGs that satisfied the adj.
P value < 0.05 and ∣ log2FC∣ > 1 criteria were considered.
Finally, the intersection of the DEGs from the three datasets
was obtained using the FunRich software [20] (version 3.1.3,
http://funrich.org/index.html).

2.3. Construction of the Protein-Protein Interaction (PPI)
Network and Analysis of Important Modules. The Search
Tool for the Retrieval of Interacting Genes database (version
11.0, http://string-db.org) [21] was used to construct a PPI
network for DEGs, and interactions with a combined score
of greater than 0.9 were considered statistically significant.
The PPI network was then visualized using the Cytoscape
software (version 3.7.1) [22]. To better extract valuable clues
from important modules, the cytoHubba plugin [23] was
used to select and sort 20 genes using the Maximum
Correlation Criteria (MCC) algorithm. The NetworkAnalyst
database (https://www.networkanalyst.ca/faces/home.xhtml)
was used to display the coexpressed gene network of DEGs;
cBioPortal (https://www.cbioportal.org) [24] was used to
analyze the hub genes and their coexpressed genes in PC;
the Cancer RNA-Seq Nexus (CRN) database (http://syslab4
.nchu.edu.tw) [25] was used to further validate the expression
of the hub genes.

2.4. Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) Pathway Enrichment Analyses of
DEGs. GO covers three aspects of biology: cellular compo-
nent (CC), molecular function (MF), and biological process
(BP) [26]. KEGG is a database that analyzes high-level func-
tions of biological systems at the molecular level [27]. To fur-
ther analyze the functions of DEGs, GO and KEGG pathway
enrichment analyses of DEGs were performed using the clus-
terProfiler package [28]. FDR < 0:05 was considered statisti-
cally significant.

2.5. GO and KEGG Pathway Enrichment Analyses of the Hub
Genes. The Database for Annotation, Visualization, and Inte-
grated Discovery (DAVID; https://david.ncifcrf.gov; version
6.8) provides a comprehensive set of gene and protein func-
tional annotation information [29]. GO and KEGG pathway
enrichment analyses of the hub genes were performed using
the DAVID database, and FDR < 0:05 was considered statis-
tically significant.

2.6. Screening for Biomarkers. To further screen for potential
biomarkers for the diagnosis and prognosis of PC, a compre-
hensive analysis of the 20 hub genes was performed. We used
cBioPortal to analyze genetic variations in the hub genes. The
GEPIA database (http://gepia.cancer-pku.cn) [30] was used
to analyze associations of hub gene expression with overall
survival (OS) and disease-free survival (DFS) of patients with
PC. To further investigate the diagnostic value of the hub
genes for PC, receptor operating characteristic (ROC) curves
were plotted using the pROC package [31]. Potential bio-
markers for the diagnosis and prognosis of PC were investi-
gated by analyzing genetic changes, verifying differential
expression, and evaluating the survival, prognostic, and diag-
nostic value of the hub genes.

2.7. Multidimensional Verification of Biomarkers. To mini-
mize the bias and improve the accuracy of the results of anal-
ysis, multiple online databases, including CCLE (https://
portals.broadinstitute.org/ccle) [32], the Human Protein
Atlas (https://www.Proteinatlas.org/) [33], and GEPIA, were
used to determine the mRNA and protein expression levels of
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potential biomarkers at the tissue and cell levels. The thera-
peutic potential of the biomarkers was investigated by ana-
lyzing genetic correlations between the screened biomarkers
and EGFR, ERBB2, and KRAS, which are important thera-
peutic targets in PC [34–36], using the GEPIA database and
circlize package in R [37].

3. Results

3.1. DEGs Identified in the Three Datasets. The results of nor-
malization of the sample data from the GSE15471 and
GSE16515 datasets are presented in box plots (Fig. S1a and

S1b). Samples in both datasets were at the same level, indicat-
ing high consistency. The results of the sample cluster analy-
sis of the two datasets are shown in Fig. S1c and S1d,
indicating that the sample quality was reliable. After data
preprocessing, we extracted 2,759 and 1,629 DEGs from the
GSE15471 and GSE16515 mRNA expression profiles, respec-
tively, using the R software. The volcano plots of the upregu-
lated and downregulated DEGs are shown in Figures 1(a) and
1(b). Figures 1(c) and 1(d) show the hierarchical clustering
heatmaps of DEGs from the two mRNA expression profiles.
A total of 5,134 DEGs were obtained from the mRNA expres-
sion profiles derived from TCGA database. The DEGs from
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Figure 1: Differential expression analysis. (a) Volcano plot of DEGs in the GSE15471 dataset. (b) Volcano plot of DEGs in the GSE16515
dataset. Red dots indicate upregulated genes; green dots indicate downregulated genes; and black dots indicate unaltered genes. (c)
Hierarchical clustering heatmap of DEGs in the GSE15471 dataset. (d) Hierarchical clustering heatmap of DEGs in the GSE16515 dataset.
Blue represents downregulated genes, and red represents upregulated genes.
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Figure 2: Continued.
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the three datasets were then intersected, and 248 DEGs were
found to overlap among the three datasets (Figure 2(a)).

3.2. Analysis of Important Modules in the PPI Network. The
PPI network for the DEGs is presented in Figure 2(b). The
top 20 genes, which were selected as the hub genes using

the most relevant standard (MCC), included MELK,
MAD2L1, ATAD2, PBK, CDK1, NUSAP1, HMMR, FANCI,
TPX2, BUB1, KIF23, DTL, CDKN3, RAD51AP1, KIF20A,
MCM2, CCNB1, SMC4, CENPE, and ANLN (Figure 2(c)
and Table 1). The coexpression gene network of the DEGs
is presented in Figure 3(a). The DEGs had a large weight ratio
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Figure 2: Venn diagram and the PPI network. (a) Venn diagram of the overlapping DEGs in the three datasets. (b) PPI network of DEGs. The
size of the circle indicates the weight of the gene action; the line indicates the interaction between the genes, and the thickness of the line indicates
the strength of the interaction. (c) Twenty hub genes. A darker color represents a higher score, and a lighter color represents a lower score.

Table 1: Top 20 hub genes ranked using the Maximum Correlation Criteria algorithm.

Rank Gene symbol Full name Entrez ID Score

1 BUB1 BUB1 mitotic checkpoint serine/threonine kinase 699 2:71E + 22
1 CCNB1 Cyclin B1 891 2:71E + 22
1 CDK1 Cyclin-dependent kinase 1 983 2:71E + 22
1 KIF23 Kinesin family member 23 9493 2:71E + 22
1 MAD2L1 Mitotic arrest deficient 2-like 1 4085 2:71E + 22
1 MELK Maternal embryonic leucine zipper kinase 9833 2:71E + 22
1 NUSAP1 Nucleolar and spindle-associated protein 1 51203 2:71E + 22
1 PBK PDZ-binding kinase 55872 2:71E + 22
9 HMMR Hyaluronan-mediated motility receptor 3161 2:71E + 22
9 KIF20A Kinesin family member 20A 10112 2:71E + 22
11 DTL Denticleless E3 ubiquitin protein ligase homolog 51514 2:71E + 22
12 ANLN Anillin actin binding protein 54443 2:71E + 22
12 TPX2 TPX2 microtubule nucleation factor 22974 2:71E + 22
14 CDKN3 Cyclin-dependent kinase inhibitor 3 1033 2:71E + 22
15 CENPE Centromere protein E 1062 2:71E + 22
15 RAD51AP1 RAD51-associated protein 1 10635 2:71E + 22
17 MCM2 Minichromosome maintenance complex component 2 4171 2:71E + 22
18 ATAD2 ATPase family AAA domain-containing 2 29028 2:71E + 22
18 FANCI FA complementation group I 55215 2:71E + 22
18 SMC4 Structural maintenance of chromosomes 4 10051 2:71E + 22
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in the coexpression network, with a large number of related
genes, indicating that the DEGs play a comprehensive and
complex role in the pathogenesis of PC. Simultaneously, the
hub genes and their coexpression gene network in PC
(Figure 3(b)) were analyzed using cBioPortal. The results
showed that the 20 hub genes were closely related to and
interacted with their coexpressed genes. The heatmap of the
20 hub genes, constructed using the CRN database, is shown
in Figure 3(c). These 20 hub genes were highly expressed in
PC tissues but not in normal tissues.

3.3. GO and KEGG Pathways Enriched in DEGs. GO analysis
showed that BP-related changes in DEGs were significantly
enriched in mitotic sister chromatid separation, regulation
of cell cycle phase transition, and positive regulation
response to cytokine stimulation (Figure 4(a)). The changes
in CC were mainly in the centromere region, spindle, and
endoplasmic reticulum cavity (Figure 4(b)). The changes in
MF were mainly enriched in the extracellular matrix binding
and integrin binding (Figure 4(c)). The KEGG pathway
enrichment analysis showed that the enriched pathways were

(b)

PC v.s. normal (adjacent normal)
Selection Subset name Samples

1 Stage IIB 114
32 Normal (adjacent normal)

Low expression High expression

Gene Expression (TPM)
1 2

ANLN
ATAD2

BUB1
CCNB1

CDK1
CDKN3
CENPE

DTL
FANCI
HMMR
KIF20A

KIF23
MAD2L1

MCM2
MELK

NUSAP1
PBK

RAD51AP1
SMC4
TPX2

(c)

Figure 3: DEGs and hub gene coexpression networks. (a) Coexpression gene networks of DEGs. (b) Network of interactions between the hub
genes and their coexpressed genes in PC. (c) Heatmap verifying the expression of the hub genes in the CRN database. Red indicates high
expression of the gene, and blue indicates low expression of the gene.
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associated with focal adhesion, ECM-receptor interaction,
and the phosphatidylinositol 3-kinase (PI3K)/Akt signaling
pathway (Figure 4(d)).

3.4. GO and KEGG Pathways Enriched in the Hub Genes. The
GO terms enriched in the hub genes were mainly related to
the apoptosis process, cell cycle, chromosome, and histone
kinase activity, while the KEGG pathways enriched in the
hub genes were related to the cell cycle and p53 signaling
pathway (Fig. S2).

3.5. Identification of MCM2 and NUSAP1 as Potential
Biomarkers. To screen for potential biomarkers for the diag-
nosis and prognosis of PC, we first used cBioPortal to analyze
whether genetic variations in the hub genes are involved in
PC progression. As shown in Fig. S3, the 20 hub genes
showed genetic variations in the PC samples. Among the
genes, the highest genetic variation rate was found in ATAD2
(5%), including missense, start lost, initiator codon, frame-
shift, stop lost, and stop gained mutations, which suggested
that these mutations might be involved in the occurrence
and progression of PC. To investigate the prognostic value
of the hub genes in PC, we performed a survival analysis
using the GEPIA database. As shown in Figure 5, high
mRNA levels of BUB1, CDK1, FANCI, KIF20A, HMMR,
KIF23, MCM2, NUSAP1, and TPX2 were associated with a
poor OS and were also closely related to a poor DFS of
patients (Fig. S4). Thus, the results of the survival analysis
suggested that these nine hub genes might be new indicators
for predicting the prognosis of PC. The results obtained using

ROC curve analysis showed that MCM2 (area under the
curve ðAUCÞ = 0:954) and NUSAP1 (AUC = 0:93) had the
highest diagnostic value for PC (Figure 6). In summary, we
identified MCM2 and NUSAP1 as potential biomarkers for
the diagnosis and prognosis of PC using analysis of genetic
variation, verification of differential expression, and evalua-
tion of the survival, prognostic, and diagnostic value of the
20 hub genes.

3.6. Multidimensional Verification of MCM2 and NUSAP1 as
Potential Biomarkers. To ensure the accuracy of the analyti-
cal results, we used multiple databases to validate the mRNA
and protein expression of MCM2 and NUSAP1 in PC at the
tissue and cell levels. We used the GEPIA (Figure 7(a)), ICGC
(Figure 7(b)), and TCGA (Figure 7(c)) databases to analyze
the MCM2, NUSAP1, EGFR, ERBB2, and KRAS expression.
The correlation coefficient (R) values are shown in Table 2.
At the cell level, CCLE was used to analyze the expression
of MCM2 and NUSAP1 in cell lines derived from different
tissues. The results showed that MCM2 and NUSAP1 were
expressed in various cell lines, but their mRNA levels were
low in pancreatic cell lines (Figures 8(a) and 8(b)). We also
analyzed the mRNA expression of MCM2 and NUSAP1 in
21 experimental PC cell lines and found that both were
upregulated in most of the PC cell lines (Figures 8(c) and
8(d)). At the tissue level, the GEPIA-based analysis indicated
that MCM2 and NUSAP1 were upregulated in PC tissues
(Fig. S5). Further analysis using the Human Protein Atlas
showed that MCM2 and NUSAP1 were poorly expressed at
the mRNA and protein levels in normal pancreatic tissues
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Figure 5: Continued.
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compared with their expression in other tissues (Fig. S6). The
MCM2 and NUSAP1 protein levels were higher in PC tissues
than in normal pancreatic tissues (Figure 9).

4. Discussion

The lack of methods for early screening for and detection of
PC leads to late detection of the disease and a high mortality
rate in patients [38]. Hence, early diagnosis and treatment are
pivotal for improving the clinical outcome of patients with
PC. A growing body of evidence suggests that some of dys-
regulated genes in PC may be potential biomarkers for the
diagnosis and prognosis of the disease [39, 40]. Therefore,
we used bioinformatics tools to analyze PC-associated
mRNA expression profiles and to identify potential bio-
markers for diagnosis and prognosis of PC.

In this study, we downloaded three PC-related mRNA
expression datasets from the GEO and TCGA databases
and screened the data for DEGs. In total, 248 DEGs were
identified, and it was found that the GO terms enriched in
DEGs were mainly related to “mitotic mitosis”, “centromere
region”, “mitotic spindle”, and “extracellular matrix bind-
ing”; the enriched pathways were mainly associated with
“focus adhesion”, “ECM-receptor interactions”, and
“PI3K/Akt signaling pathway”. ECM and focal adhesion have
been shown to be important components of tumorigenesis
and cancer progression [41–43]. Dysregulation of the cell
cycle is the key factor in the malignant biological behaviors
associated with the proliferation, invasion, and metastasis
of PC cells [44, 45]. Zhang et al. [46] showed that LAMB3
affected the proliferation, invasion, and metastasis of PC by
regulating the PI3K/Akt signaling pathway. Our data are

consistent with the above findings and provide new insights
into molecular mechanisms of pathogenesis of PC.

In addition, we constructed a PPI network for DEGs and
selected the top 20 genes as the hub genes. The hub genes
were analyzed using GO and KEGG pathway enrichment
and were found to be mainly enriched in the GO terms “apo-
ptotic process” and “cell cycle” and in the KEGG pathways
related to the “cell cycle” and “p53 signaling pathway”. Previ-
ous studies have reported that the apoptotic process and cell
cycle are closely related to the development and progression
of PC [47, 48]. As one of the important signaling pathways
in the body, the p53 signaling pathway has been shown to
be involved in the development, invasion, and metastasis of
various tumors [49, 50]. Studies have reported that targeting
of DTL can induce cell cycle arrest and senescence and can
therefore be used to treat liver cancer [51]. Downregulation
of MELK [52], MAD2L1 [53], and CCNB1 [54] can also
inhibit cell cycle progression of liver cancer. ANLN [55],
BUB1 [56], CDK1 [57], SMC4 [58], CENPE [59], ATAD2
[60], TPX2 [61], KIF23 [62], CDKN3 [63], and KIF20A
[64] are closely related to the development of various tumors.
However, reports regarding the role of FANCI and
RAD51AP1 in tumors are limited, and hence, these genes
deserve further investigation.

To further screen for potential biomarkers for the diag-
nosis and prognosis of PC, we analyzed genetic variations,
verified the differential expression, and evaluated the sur-
vival, prognostic, and diagnostic value of the hub genes.
Finally, we identified MCM2 and NUSAP1 as potential bio-
markers for the diagnosis and prognosis of PC. To minimize
the bias, we used multiple databases to verify the mRNA and
protein levels of MCM2 and NUSAP1 at the tissue and cell
levels. The results showed that the mRNA and protein levels
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Figure 5: Association of hub gene expression with overall survival of patients. (a) BUB1, (b) CDK1, (c) FANCI, (d) KIF20A, (e) HMMR, (f)
KIF23, (g)MCM2, (h) NUSAP1, and (i) TPX2. The solid line represents the survival curve, and the dashed line represents the 95% confidence
interval. Patients with higher than the median value are indicated by the red line, and those with lower than the median value are indicated by
the blue line. Log-rank P < 0:05 was considered statistically significant.
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Figure 7: Intergene correlation analysis of expression levels based on (a) the GEPIA database, (b) the ICGC database, and (c) TCGA database.

Table 2: Intergene correlation analysis of expression levels of MCM2, NUSAP1, EGFR, ERBB2, and KRAS.

GEPIA dataset ICGC dataset TCGA dataset
Gene 1 Gene 2 Correlation coefficient Gene 1 Gene 2 Correlation coefficient Gene 1 Gene 2 Correlation coefficient

MCM2 NUSAP1 0.9 MCM2 NUSAP1 0.879 MCM2 NUSAP1 0.9

EGFR NUSAP1 0.6 MCM2 ERBB2 0.704 MCM2 ERBB2 0.8

ERBB2 NUSAP1 0.8 MCM2 KRAS 0.78 MCM2 KRAS 0.8

KRAS NUSAP1 0.82 MCM2 EGFR 0.75 MCM2 EGFR 0.62

KRAS MCM2 0.8 NUSAP1 ERBB2 0.705 NUSAP1 ERBB2 0.8

ERBB2 MCM2 0.8 NUSAP1 KRAS 0.76 NUSAP1 KRAS 0.82

EGFR MCM2 0.62 NUSAP1 EGFR 0.692 NUSAP1 EGFR 0.6

KRAS KRAS 0.82 KRAS ERBB2 0.748 KRAS ERBB2 0.82

EGFR KRAS 0.76 KRAS EGFR 0.86 KRAS EGFR 0.76

EGFR KRAS 0.72 ERBB2 EGFR 0.673 ERBB2 EGFR 0.72
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Figure 8: Continued.
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of MCM2 and NUSAP1 were significantly upregulated in PC
cells and tissues. In addition, gene correlation analysis
showed that the expression levels ofMCM2, NUSAP1, EGFR,
ERBB2, and KRAS significantly correlated, and thus, MCM2
and NUSAP1 are likely to become potential therapeutic tar-
gets for PC.

MCM2 is an important DNA replication initiation factor
in humans. It is present in the nucleus and is highly expressed
in proliferating cells. MCM2 is not expressed or is poorly
expressed in quiescent or well-differentiated cells, suggesting
that it can be used as a specific marker for proliferating cells.
Studies have reported that MCM2 is a key molecule involved
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Figure 8: Expression of MCM2 and NUSAP1 at the cell level. (a) Expression of MCM2 in cell lines derived from different tissues. (b)
Expression of NUSAP1 in cell lines derived from different tissues. (c) Expression of MCM2 in 21 commonly used PC cell lines. (d)
Expression of NUSAP1 in 21 commonly used PC cell lines.
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Figure 9: Representative immunohistochemical images of MCM2 and NUSAP1 expression in normal pancreatic and PC tissues.
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in the pathogenesis of non-small-cell lung cancer and may be
a novel therapeutic target for lovastatin in the treatment of
this cancer [65]. Proteomic analysis of clinical specimens of
high-grade small cell lung cancer showed that MCM2 was
associated with a poor prognosis in patients [66]. Increasing
evidence has confirmed that MCM2 can be used as a bio-
marker for the diagnosis and prognosis of various cancers.
Yang et al. [67] showed that MCM2 expression in gastric
cancer tissues was significantly higher than that in the nor-
mal gastric mucosa, and the levels of expression positively
correlated with the prognosis, suggesting that MCM2 can
be used as a novel prognostic biomarker for gastric cancer.
Torres-Rendon et al. [68] analyzed the MCM2 expression
in clinical samples of oral squamous cell carcinoma using
immunohistochemistry and demonstrated that MCM2
might be a useful prognostic marker for the disease. In
another study, staining for MCM2 was directly performed
on 183 liquid-based cytological samples. Studies have shown
that the positive rate of MCM2 expression increased with the
severity of cervical lesions and was related to the type of
human papilloma virus, which indicates a potential applica-
tion value of MCM2 in the diagnosis of cervical lesions
[69]. All these results show that MCM2 is involved in the
occurrence and progression of various tumors and can be a
potential biomarker for their diagnosis and prognosis, which
is consistent with the results of our analysis. However, there
are no studies regarding the role of MCM2 in PC, and thus,
MCM2 needs to be confirmed as a potential marker for the
diagnosis and prognosis of PC.

NUSAP1 is a tubulin that is involved in the assembly of
the spindle to ensure a normal cell cycle, thus playing an
important role in mitosis [70]. An abnormal cell cycle is an
important feature of tumor formation, and currently, the role
of NUSAP1 in cancer is being actively investigated. Some
studies have shown overexpression of NUSAP1 in renal cell
carcinoma [71], colon cancer [72], glioma [73], and other
malignant tumors and its significant association with tumor
invasion and metastasis, as well as with a poor prognosis in
patients. Thus, the results of this study are consistent with
those regarding the role of NUSAP1 in other tumors.
NUSAP1 expression in acute myeloid leukemia can block
the cell cycle [74], whereas reduction in the NUSAP1 expres-
sion increased the killing effect of paclitaxel on oral epithelial
squamous cell carcinoma cells [75]. In patients with liver
cancer, the level of NUSAP1 expression is closely associated
with the severity of the prognosis, whereas interference with
NUSAP1 expression inhibits the growth of liver cancer cells
[76]. Gulzar et al. [77] found that high levels of NUSAP1
expression were related to the growth characteristics of
tumor cells in PC, thus making NUSAP1 a novel biomarker
for PC recurrence after surgery. Studies have also confirmed
that NUSAP1 has a high prognostic value for breast cancer
[78]. Thus, the high prognostic value of NUSAP1 for various
tumors is consistent with the results of this study. Although
relevant research on the role of NUSAP1 in PC is lacking,
we speculated that NUSAP1 may be a potential biomarker
for PC.

Most bioinformatics studies have reported analysis of a
single mRNA expression dataset. In this study, we selected

three mRNA expression datasets from two databases, thereby
increasing the sample size and confidence level. We used dif-
ferent bioinformatics methods to mine the data deeper and
used multiple databases to perform multidimensional verifi-
cation of MCM2 and NUSAP1 expression in PC, providing
diverse perspectives. However, this study has certain limita-
tions. First, a certain degree of heterogeneity was present in
the datasets selected for this study, and only four normal
samples were included in TCGA. Although we removed the
batch data and performed quality control and standardiza-
tion of the raw data, a larger sample size and a higher-
quality dataset are still required to verify the reliability of
the results. Second, our study involved a second round of
mining and analysis of previously published datasets.
Although some previous data were consistent with those of
our analysis, further molecular biology experiments are
required to verify the accuracy of our results. As a future
research direction, validation of MCM2 and NUSAP1 as
diagnostic and prognostic markers of PC is needed in a large
number of clinical PC samples and PC cell lines.

5. Conclusions

In conclusion, using bioinformatics analysis of three
mRNA expression datasets, a total of 20 hub genes were
identified, which may play key roles in the occurrence
and progression of PC. Analysis of the clinical significance
of the 20 hub genes in PC revealed two abnormally regu-
lated genes, MCM2 and NUSAP1, which were confirmed,
using multidimensional verification, as potential bio-
markers for the diagnosis and prognosis of PC. However,
the results need to be validated in a larger number of clin-
ical samples using additional experimental methods before
using MCM2 and NUSAP1 as effective diagnostic and
prognostic markers for PC.
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Supplementary Materials

Supplementary 1. Fig. S1: data preprocessing. (a) Box plot of
standardized expression data for the GSE15471 dataset. (b)
Box plot of the standardized expression data for the
GSE16515 dataset. The red symbol indicates a normal tissue
sample, and the blue symbol indicates a sample from a
patient with PC. The red diamond in each box represents
the average level of gene expression in each sample. (c) Sam-
ple clustering map of the GSE15471 dataset. (d) Sample clus-
tering map of the GSE16515 dataset. Blue represents
downregulation of genes, and red represents upregulation
of genes.

Supplementary 2. Fig. S2: GO and KEGG pathway enrich-
ment analyses of the hub genes. (a) BP, (b) CC, (c) MF, and
(d) KEGG analysis results.

Supplementary 3. Fig. S3: genetic variation analysis of the hub
genes. (a) Changes in the hub gene copy number and a muta-
tion panorama. (b) Mutation details of the hub genes.

Supplementary 4. Fig. S4: association of hub gene expression
with disease-free survival (DFS) of patients with PC. (a)
BUB1, (b) CDK1, (c) FANCI, (d) KIF20A, (e) HMMR, (f)
KIF23, (g)MCM2, (h) NUSAP1, and (i) TPX2. The solid line
represents the survival curve, and the dashed line represents
the 95% confidence interval. Patients with higher than the
median value are indicated by the red line, and those with
lower than the median value are indicated by the blue line.
Log-rank P < 0:05 was considered statistically significant.

Supplementary 5. Fig. S5: dot plots of MCM2 and NUSAP1
expression in different tumor and normal specimens. Each
point represents a sample, with red representing tumor sam-
ples and green representing normal samples. (a) MCM2
expression. (b) NUSAP1 expression.

Supplementary 6. Fig. S6: mRNA and protein expression of
MCM2 and NUSAP1 in normal human tissues, based on
the Human Protein Atlas. (a) MCM2 mRNA. (b) NUSAP1
mRNA. (c) MCM2 protein. (d) NUSAP1 protein.
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