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Missing data is one of the most important causes in reduction of classification accuracy. Many real datasets suffer from missing
values, especially in medical sciences. Imputation is a common way to deal with incomplete datasets. There are various
imputation methods that can be applied, and the choice of the best method depends on the dataset conditions such as sample
size, missing percent, and missing mechanism. Therefore, the better solution is to classify incomplete datasets without
imputation and without any loss of information. The structure of the “Bayesian additive regression trees” (BART) model is
improved with the “Missingness Incorporated in Attributes” approach to solve its inefficiency in handling the missingness
problem. Implementation of MIA-within-BART is named “BART.m”. As the abilities of BART.m are not investigated in
classification of incomplete datasets, this simulation-based study aimed to provide such resource. The results indicate that
BART.m can be used even for datasets with 90 missing present and more importantly, it diagnoses the irrelevant variables and
removes them by its own. BART.m outperforms common models for classification with incomplete data, according to accuracy
and computational time. Based on the revealed properties, it can be said that BART.m is a high accuracy model in classification
of incomplete datasets which avoids any assumptions and preprocess steps.

1. Introduction

One of the most widely used areas of data mining is predic-
tion [1]. When the subject of prediction is assignment of
individuals into the groups, the prediction is called classifica-
tion [2]. Classification in medical sciences is very vital as it is
a matter of life or death [3]. With the accurate classification,
illness or even death can be prevented; therefore, in addition
to avoiding wasting medical resources, life expectancy is
increased [4].

In classification, sample information can be used to iden-
tify high-risk people or even to specify the stage of a disease
[5]. There are several models for classification which are car-
ried out via statistical modeling and/or learning algorithms
such as logistic regression, decision tree, random forest [6],
and naïve Bayes. One of the most applicable supervised

learning methods is the decision tree. Each tree includes a set
of logical rules for the independent variables (node). Each
branch of the tree goes as far as a leaf. The leaves of the clas-
sification tree are corresponded to one of the response levels
[7].

The decision tree model has a simple and understandable
logic, although research has shown that ensemble of single
trees together and combining the results increase the accu-
racy of the classification [8]. The most well-known sum of
the tree model is the random forest [6]. This model, due to
its strong classification accuracy, has attracted a lot of atten-
tion and has been widely used in various fields of science. It
builds multiple classification trees where the growth of each
tree is independent of the other trees. To classify a new obser-
vation, the majority vote of the random forest trees is used as
the final classification level [6].
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Machine learning algorithms are not directly based on
statistical models. Chipman et al. in 2010 [9] introduced a
combined machine learning and statistical model named
“Bayesian additive regression trees” (BART), which is a com-
bination of trees where the statistical Bayesian model pro-
vides regularization of each tree. In recent years, BART has
become popular in numerous areas as a great prediction
model [10–14], more specifically in medicine [15–19]. There-
fore, in this study, the BART model was chosen as the classi-
fication model.

Although classification models have been developed and
newer models with higher accuracy have been proposed,
some items reduce the classification accuracy. One of these
items is the presence of the variables which have no effect
on the response [20, 21]; hence, a variable selection step is
required before use of classification models. Another item
that has a negative effect on classification models is the pres-
ence of missing values [1, 22, 23]. This is despite the fact that
in many studies, specifically in the field of medical sciences,
missingness becomes inevitable [24–26]. Therefore, there is
a need for classification models to be more robust in terms
of incomplete datasets to keep a high accuracy in the pres-
ence of missing data.

There are different ways to deal with datasets with
incomplete cases. The simplest way is the list-wise deletion
method; in this method, any case that has only one missing
value in their variables is completely excluded from the data-
set. It is clear that this method causes loss of information,
which can cause reduction in classification accuracy [27,
28]. A common and more complex approach facing missing-
ness is imputing the missing values. Various methods are
available for imputation, but each one has their own advan-
tages and disadvantages [27, 29]. Since there is no unique
method for imputation to have the best action in all condi-
tions, in practice, one has to pay attention to the characteris-
tics of each data set and the missingness pattern to choose the
best imputation method.

For handling missing data in a classification field, there
are approaches which handle missing data without any
imputation or loss of information [30, 31]. As these
approaches do not face selection of the proper imputation
method, they are much more user-friendly and practical.

Another inefficiency of methods that handle missing data
in the classification field is that most of these methods solely
handle missing values in the train step and cannot classify
new data with missing values unless with separate imputa-
tion [23]. This way, in the training step, first of all, the miss-
ing values should be imputed, and then the model will be
trained. However, the trained model cannot be run on a data
that have missing values. Therefore, to classify these new
data, there is a need of another imputation; then, the prob-
lems of imputation such as proper sample size or selection
of the proper imputation method arise again. Since in real-
world classification applications, it is very likely to have data
sets where at least one of its variables has a missing value, and
a method that can perform the classification in the presence
of missing values is more appropriate and practical.

“Missingness incorporated in attributes” (MIA) [32] is an
approach that natively manages missing data in decision

trees in a way that new data with missing values can be pre-
dicted without any loss of information or even imputation.
Kapelner and Bleich presented a model which enhanced
BART with MIA and investigated its properties in regression
[33].

This research aims at introducing the implementation of
MIA within BART for binary classification, which is applica-
ble to classify datasets with missing values with no need for
imputing in the training step or new data classification and
no need to drop incomplete cases. This model was performed
on simulated and real data to investigate its strength on dif-
ferent scenarios and fields. The expectation is that BART.m
brings more flexibility to deal with incomplete datasets and
provides a higher classification accuracy compared to BART
and random forest models which run on datasets completed
by imputation.

2. Materials and Methods

The BART model gained both statistical Bayesian inference
and machine learning strengths [9]. For the binary outcome,
the BART model is presented as a probit model in equation
[(1)].

P Y = 1 ∣ xð Þ =Φ ΤΜ1
1 Xð Þ + ΤΜ1

2 Xð Þ+⋯+ΤΜm
m Xð Þ

h i
, ð1Þ

Where Y is the binary response,Τj denote the j-th tree
structure of m distinct trees, X is the predictors, andΜj rep-
resents parameters in leaves. Finally, Φ is the cumulative dis-
tributive function of the standard normal distribution.

The use of Bayesian priors provides an approach to regu-
larization which causes higher classification accuracy. Priors
in classification have two components, the first one controls
the node’s depth which limits the complexity of any single
tree; the second one shrinks the leaf parameters toward the
center of the response distribution. These priors provide a
strategy to avoid overfitting by allowing the data to speak
more naturally. The “bartMachine” Package [34] in R lan-
guage [35] was used to run the BART model.

BART, as mentioned earlier, is a good model for predic-
tion but cannot handle data with missing values [33]. MIA
is an approach that could be implemented into the BART
structure to handle missing data. MIA does not require any
assumptions or need for imputation; it modifies the tree split-
ting rules during model construction. The procedure is
described in the following.

Each node of the decision tree investigates which variable
is better to classify and then splits the variable in two parts in
that node. The MIA procedure adjusts these splitting rules
according to Figure 1.

When implementing the rules of MIA during construc-
tion of the BART trees, a new model is constructed, which
is referred as BART.m [33]. Since BART.m incorporates
missing data natively in its structure, it does not require
any imputation and can make predictions on future data with
missing values [33]. Based on the advantage of BART.m, in
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this study, the BART.m model is chosen to investigate its
properties in the binary classification field.

BART and random forest classification models were used
as competing models to compare the BART.m model perfor-
mance. Hence, these two models cannot run on incomplete
datasets, and the datasets become completed via imputation.
For imputing incomplete data, it is fair to use the good impu-
tation method; so, the missForest [36] model was chosen as
the imputation method. missForest is a time-consuming
method but returns very good precision [24, 37, 38], so is
the proper method for comparison. To run Random Forest
and missForest, the R packages “randomForest” [39] and
“missForest” [40] are used, respectively.

To investigate BART.m abilities in different scenarios,
both simulated and real data are used. The simulated data
was generated under the logistic regression model [2].

logit p
1 − p

� �
= −0:3 + 0:7X1 + 0X2 − 0:6X3 + 1:2X4 − 1X1X4,

ð2Þ
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Thus, the simulated binary response is related to one
binary independent variable (X1), one irrelevant variable (X2
), two continuous variables with different effects (X3 and X4
), and one interaction (X1X4). 2000 datasets with sample size
of 1000 were generated under model 2; for this purpose, the
“SimCorrMix” Package [41] in R language was used.

In the next step, in each dataset, missingness was gener-
ated under three missing mechanisms [42]:

(1) Missing Completely at Random (MCAR)

(2) Missing at Random (MAR)

(3) Missing Not at Random (MNAR)

In MCAR, all cases have the same probability of being
missed; with MAR, the information about the missing data

is in the observed data and with MNAR, the information
about the missing data is in the missing data itself. These
missingness mechanisms were applied in each variable sepa-
rately. For MCAR and MNAR, the mechanism is obvious,
and for MAR, the following mechanism is chosen.

(i) X1 becomes miss with the probability depended to
X2

(ii) X2 becomes miss with the probability depended to
X3

(iii) X3 becomes miss with the probability depended to
X4

(iv) X4 becomes miss with the probability depended to
X1

The mentioned missing mechanism was generated by the
ampute function of the “mice” package [43] in R language.

In addition to the missing mechanism, various missing
proportions were also considered. In literature, the upper
threshold of missing proportion is 50% [36, 44, 45], but since
BART.m does not use any imputation [33], missing propor-
tion up to 90% is used in this study. To have a fair compari-
son of the missing proportions effects on the classification
accuracy, another scenario was considered which is the miss-
ing variable that is completely removed from the classifica-
tion models.

To obtain classification accuracy, the model trained with
one dataset was then tested on another dataset with the same
missing proportion, and this process was repeated 1000
times.

In addition to simulation, it is important to investigate
the effectiveness of the BART.m model on real datasets. For
this purpose, ten real-world incomplete two-level classifica-
tion datasets are selected from the UCI machine learning
repository [46]. Table 1 presents the information on these
10 datasets.

It is clear that these datasets cover a wide range of
domains and specifications. As these datasets can reflect var-
ious problems and applications in real-world datasets, they
can provide a good benchmark to investigate and compare
the ability of the different classification models.

Tenfold crossvalidation is used to achieve the accuracy.
The process of crossvalidation is stochastic; so, it should be
repeated to overcome this variation; therefore, each crossva-
lidation is repeated 100 times independently and finally, the
average of these 100 accuracies is reported.

3. Results

In this section, simulation results are presented first followed
by the real data results.

3.1. Simulation Results. Table 2 presents simulated accuracies
based on BART.m and the two competing models in different
missing proportions. BART.i and RF.i represent the BART
and random forest models which run on imputed datasets
with the missForest approach. The “Complete” header repre-
sents the situation where a dataset is complete (before

X ≤ x
c
 or X = missing

X > x
c
 or X = missing

X = not missingX = missing

X > x
c

X ≤ x
c

Figure 1: Splitting rule choices of nodes in MIA.
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making missingness), and the “exclude” header presents a
situation where a variable with missing values is completely
excluded from analysis. Each accuracy in this table is aver-
aged over 1000 iterations of each scenario combination. It
is clear that when the data does not have any missing values,
the BART.m and BART.i methods are the same and actually
are identical to the BART model.

For better insights, the plot of Table 2 is shown in Figure 2.
Two horizontal dashed lines present the last column of Table 2,
where the BART and random forest model run on the dataset
where variables with missing values are omitted (denoted by
BART.e and RF.e, respectively). Each model that handles miss-
ing values is effective up to the point that the model presents
higher accuracy than the condition where variables with miss-
ing values are excluded from that model. Therefore, in
Figure 2, under the upper horizontal line is grey, which indi-
cates any scenario in this grey area that is not suitable.

In Figure 2, it can be seen for the irrelevant variableX2 that
the best result is based on BART.e, which means it is better to
not insert X2 in the classification model; this result was
expected but an extraordinary finding is that the BART.m
model produces accuracies that are very close to BART.e,
which expresses that BART.m can diagnosis irrelevant vari-

ables and handle them by its own. For three other variables,
the BART.mmodel is better or the same as BART and random
forest models, even for 90 percent missing.

For the discrete variable X1, the random forest model
produces lower accuracy compared to BART.m, such that
even for 90% missingness, BART.m has higher accuracy than
random forest with complete dataset 0 percent missing
values in Table 2 indicate a complete dataset.

It can be seen in Figure 2 that BART.mprovides smaller stan-
dard deviations for all four variables compared to BART and ran-
dom forest models. So, in addition to accuracy, BART.m
overcomes competing models based on the more reliable results.

By comparing the accuracies of RF.i and BART.i methods
in different missing proportions, with the accuracy achieved
when the variable with missingness excluded (horizontal
lines), it can be concluded that the imputation could be used
up to 50% of missingness. Thus, when the missing propor-
tion of a variable is greater than 50%, it is better to remove
that variable instead of completing via imputation.

The results of MAR and MNAR missing mechanism are
not much different from the mentioned MCAR mechanism,
tables and figures of these two missing mechanisms are in
Tables 3 and 4 and Figures 3 and 4, respectively.

Table 1: Specifications of real-world datasets.

Dataset name Sample size Variable number Discrete variable number Missing proportion Imbalance

Breast Cancer Wisconsin [47] 699 10 0 2.29 65.5

Chronic kidney disease 400 24 13 60.5 62.5

Congressional voting records 435 16 16 46.67 61.4

Credit approval 690 15 9 5.36 55.5

Cylinder bands 540 39 19 48.7 57.8

Heart disease—ungarian 294 13 7 99.66 63.9

Hepatitis 155 19 13 48.39 79.4

Horse colic 368 23 15 98.1 63

Mammographic mass [48] 961 5 2 13.63 53.7

Ozone level detection 2536 73 0 27.13 97.1

Table 2: Accuracies achieved by simulation under MCAR missing mechanism.

Variable Model Complete Variable
Missing Percent

Exclude Variable
10% 20% 30% 40% 50% 60% 70% 80% 90%

x1
BART.m 66.56 66.27 65.97 65.66 65.34 65.05 64.80 64.50 64.22 63.97 63.65

BART.i 66.56 66.04 65.44 64.75 63.99 63.29 62.56 61.80 61.24 60.86 63.65

RF.i 63.63 63.32 62.94 62.36 61.80 61.22 60.60 60.03 59.49 59.15 60.74

x2
BART.m 66.56 66.55 66.56 66.50 66.52 66.54 66.56 66.57 66.57 66.65 66.67

BART.i 66.56 66.53 66.42 66.32 66.20 65.89 65.61 65.11 64.38 62.69 66.67

RF.i 63.65 63.61 63.47 63.30 63.14 62.82 62.60 62.23 61.62 60.26 65.91

x3
BART.m 66.56 66.14 65.71 65.30 64.89 64.56 64.21 63.77 63.44 63.11 62.62

BART.i 66.56 65.91 64.97 63.90 62.85 61.64 60.64 59.48 58.51 57.16 62.62

RF.i 63.63 63.23 62.56 61.79 61.01 60.16 59.30 58.34 57.47 56.16 63.03

x4
BART.m 66.56 65.91 65.21 64.53 63.88 63.30 62.65 62.01 61.42 60.83 60.14

BART.i 66.56 65.67 64.49 63.21 61.86 60.52 59.28 57.91 56.61 55.15 60.14

RF.i 63.63 63.08 62.26 61.28 60.28 59.24 58.17 56.97 55.85 54.47 59.60
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Table 3: Accuracies achieved by simulation under MAR missing mechanism.

Variable Model Complete Variable
Missing Percent

Exclude Variable
10% 20% 30% 40% 50% 60% 70% 80% 90%

x1
BART.m 66.56 66.26 65.96 65.63 65.37 65.08 64.79 64.52 64.24 64.01 63.65

BART.i 66.56 66.04 65.47 64.76 64.00 63.28 62.42 61.69 61.17 60.64 63.65

RF.i 63.63 63.25 62.81 62.31 61.68 61.11 60.47 59.91 59.40 59.07 60.74

x2
BART.m 66.56 66.53 66.51 66.54 66.54 66.57 66.60 66.61 66.65 66.67 66.67

BART.i 66.56 66.50 66.45 66.31 66.14 65.81 65.42 64.78 63.88 62.17 66.67

RF.i 63.65 63.55 63.48 63.29 63.17 62.90 62.51 61.96 61.34 59.87 65.91

x3
BART.m 66.56 66.22 65.87 65.48 65.08 64.68 64.30 63.87 63.48 63.13 62.62

BART.i 66.56 65.98 64.90 63.74 62.64 61.52 60.34 59.31 58.27 56.98 62.62

RF.i 63.63 63.17 62.36 61.59 60.81 59.95 59.01 58.13 57.25 55.97 63.03

x4
BART.m 66.56 66.30 66.08 65.71 65.27 64.76 63.99 63.25 62.28 61.32 60.14

BART.i 66.56 66.14 65.50 64.55 63.42 62.06 60.39 58.71 56.77 54.81 60.14

RF.i 63.63 63.35 62.90 62.27 61.49 60.63 59.32 57.95 56.21 54.46 59.60
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Figure 2: Mean and standard deviation of accuracies achieved by simulation under the MCAR missing mechanism.
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Table 4: Accuracies achieved by simulation under MNAR missing mechanism.

Variable Model Complete Variable
Missing Percent

Exclude Variable
10% 20% 30% 40% 50% 60% 70% 80% 90%

x1
BART.m 66.56 66.35 66.16 65.87 65.51 65.10 64.76 64.44 64.16 63.92 63.65

BART.i 66.56 66.04 65.43 64.70 64.15 63.70 63.47 63.39 63.33 63.11 63.65

RF.i 63.63 63.27 62.86 62.31 61.75 61.40 60.99 60.73 60.57 60.27 60.74

x2
BART.m 66.56 66.57 66.52 66.55 66.55 66.54 66.55 66.59 66.58 66.65 66.67

BART.i 66.56 66.51 66.46 66.36 66.20 65.99 65.57 65.10 64.27 62.93 66.67

RF.i 63.65 63.62 63.47 63.35 63.14 62.94 62.58 62.19 61.60 60.51 65.91

x3
BART.m 66.56 66.07 65.52 65.04 64.61 64.20 63.85 63.53 63.31 63.05 62.62

BART.i 66.56 65.51 64.38 63.30 62.25 61.30 60.38 59.47 58.70 57.45 62.62

RF.i 63.63 62.91 62.11 61.36 60.58 59.83 59.09 58.35 57.62 56.53 63.03

x4
BART.m 66.56 66.07 65.44 64.87 64.21 63.50 62.90 62.20 61.55 60.92 60.14

BART.i 66.56 65.32 63.89 62.61 61.24 59.94 58.82 57.58 56.49 55.28 60.14

RF.i 63.63 62.73 61.66 60.72 59.64 58.59 57.63 56.69 55.63 54.47 59.60

BART.m
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RF.i

BART.e
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Figure 3: Mean and standard deviation of accuracies achieved by simulation under the MAR missing mechanism.
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3.2. Real Data Results. Table 5 shows the mean and standard
deviation of classification accuracies on ten real-world data-
sets based on BART.m, BART.i, and RF.i methods.

Generally speaking, in real datasets, the accuracy of
BART.m is higher or close to competing models. In addition
to accuracy, the run time of the classification model is impor-
tant. The computational time on ten real datasets is presented
in Table 6. The implementation was performed on an Intel
Core i5 CPU, running at 3.2GHz and 8GB RAM. For
BART.i and RF.i, the time of the missForest method reported
separately to distinguish the required time of the classifica-
tion algorithm from the imputation procedure. As the train-
ing time is usually not the limiting step, the reported time is
the computation time to classify unseen instances.

The Ozone Level Detection dataset with 2536 sample
size and 73 variables is the biggest dataset in the bench-
mark (Table 1); BART.m takes less than one minute to
run on this dataset but for imputation with missForest,
more than four hours is needed. The BART and random
forest methods take very low time to classify the complete
datasets. By considering the imputation time for BART.i

and RF.i, it can be seen that BART.m gained a consider-
ably lower run time.

Figure 5 depicts the mean and standard deviation of clas-
sification accuracy obtained by BART.m, BART.i (BART
+missForest), and RF.i (RF+missForest) methods on ten
real-world datasets (Table 5) with their corresponding run
time (Table 6).

By checking classification accuracy of real-world datasets
next to the corresponding run time in Figure 5, it can be seen
that the BART.m model produced accuracies almost as same
as the competing models; however, the advantage of BART.m
is its low run time.

4. Discussion

The BART model is a popular prediction model due to its
flexibility and accurate prediction especially in medicine
[13, 15–18]. The BART.m model is an extension of BART
which can handle datasets with missing values [33]. The
properties of BART.m has been investigated in prediction
of continuous response [33]; however, to the best of our
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Figure 4: Mean and standard deviation of accuracies achieved by simulation under the MNAR missing mechanism.
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knowledge, this is the first study that provides the use of the
BART.m function in binary classification of incomplete
datasets.

The results revealed great capabilities of the BART.m
model in binary classification. The simulation findings dem-
onstrate that the BART.m model can diagnose the irrelevant
variable for classification and remove its effect. Since the ran-
dom forest and BARTmodels cannot remove the effect of the
irrelevant variables by their own, it is recommended to first
use the variable selection step and then remove the irrelevant
variables from classification models in order to achieve
higher classification accuracy [21]. As BART.m can handle
irrelevant variables by its own, the variable selection prepro-
cess is not necessary. This property makes BART.m more
flexible.

Both literature [44, 45] and simulation results of this
study confirm that imputation is useful up to 50% of missing-
ness. While BART.m does not use imputation, it can be used
in missing proportions up to 90%. This great property of
BART.m warrants the use of BART.m in any missing propor-
tion, which makes this model more flexible.

There is no universal best imputation method for every
situation [27, 29]; hence, for each dataset, the selection of
the imputation method is a challenge. Moreover, usually, a
good imputation method like missForest is time consuming
especially for datasets with higher sample size and more var-

iables [49]. Thus, the BART.m model with no need of impu-
tation becomes a more efficient model.

One of the superiorities of the BART.m model is that it
does not require to impute missing values in both training
or new data classification steps. So, with BART.m, a new data
with missing values can be classified without the need for any
extra step. This property of BART.mmakes this model acces-
sible because other popular classification models like random
forest and BART cannot handle missingness by their own,
and they need some preprocess steps like imputation.

Also, the simulation results revealed that for three miss-
ing mechanisms MCAR, MAR, and MNAR, the BART.m
model outperforms the RF.i and BART.i methods, regardless
of discrete or continuous variables and their effects on the
response. Moreover, real data finding shows BART.m can
produce accuracies close to RF.i and BART.i. As each of the
random forest, BART and missForest models are great
models, and these results confirm that BART.m can accu-
rately handle missing values in the classification field. This
high accuracy classification property of the BART.m model
makes this model an effective model in addition to its
efficiency.

Yan et al. proposed a Selective Neural Network Ensemble
(SNNE) as a classification method to deal with incomplete
datasets [31]. They investigated the performance of SNNE
on 12 UCI datasets. For all 8 identical datasets with this

Table 6: Run time corresponding to different methods in the application process.

Dataset name BART.m missForest BART RF

Breast Cancer Wisconsin 0 : 02.44 0 : 05.92 0 : 02.29 0 : 00.04

Chronic kidney disease 0 : 04.71 2 : 16.30 0 : 01.48 0 : 00.05

Congressional voting records 0 : 03.85 0 : 20.17 0 : 01.59 0 : 00.07

Credit approval 0 : 05.99 1 : 21.50 0 : 02.46 0 : 00.11

Cylinder bands 0 : 08.23 6 : 04.30 0 : 02.20 0 : 00.10

Heart disease—Hungarian 0 : 01.98 0 : 17.38 0 : 01.13 0 : 00.05

Hepatitis 0 : 01.45 0 : 19.29 0 : 00.74 0 : 00.05

Horse colic 0 : 05.10 1 : 37.10 0 : 01.44 0 : 00.08

Mammographic mass 0 : 04.58 0 : 40.35 0 : 03.20 0 : 00.12

Ozone level detection 0 : 58.98 4 : 39 : 36.98 0 : 07.81 0 : 00.11

Table 5: Mean ± standard deviation of classification accuracies of real-world datasets.

Dataset name BART.m BART.i RF.i

Breast Cancer Wisconsin 96:74 ± 0:20 96:44 ± 0:18 97:06 ± 0:21
Chronic kidney disease 99:76 ± 0:21 97:32 ± 0:43 99:51 ± 0:15
Congressional voting records 95:86 ± 0:30 95:90 ± 0:27 95:92 ± 0:30
Credit approval 86:40 ± 0:40 86:50 ± 0:37 86:85 ± 0:49
Cylinder bands 78:83 ± 0:85 79:08 ± 0:83 84:46 ± 0:76
Heart disease—Hungarian 83:95 ± 0:54 78:47 ± 1:78 78:76 ± 1:63
Hepatitis 83:53 ± 1:11 86:22 ± 0:97 87:00 ± 1:20
Horse colic 84:69 ± 0:57 83:50 ± 0:78 83:15 ± 0:98
Mammographic mass 83:40 ± 0:30 82:82 ± 0:34 81:48 ± 0:52
Ozone level detection 97:10 ± 0:02 97:10 ± 0:05 96:97 ± 0:04
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study, the BART.m’s accuracies were very close to those
obtained by SNNE. In another study, Tran et al. introduced
another approach to handle incomplete datasets in classifica-
tion [50]. They applied 10 UCI datasets which seven of them
had binary response. In the seven aforementioned datasets,
BART.m’s accuracies were similar to those reported by Tran
et al. These findings provide evidence to confirm the effec-
tiveness of the BART.m classification model in dealing with
incomplete datasets.

In addition to the valuable properties of BART.m, it
should be considered that the model cannot classify incom-
plete instances when the training dataset is complete; in other
words, to classify future instances with missingness, the
model should be trained on the incomplete dataset.

For further studies, it is beneficial to investigate the
BART.m classification properties in a scenario which multi-
ple variables have missingness.

5. Conclusion

This study revealed great capabilities of the BART.m model
to classify binary incomplete datasets. As it does not engage
to find the best imputation method, it is more practical. It
can determine and automatically remove irrelevant variables
without any extra task; so, there is no need for a variable
selection preprocess step. It can be used even in 90% percent
missingness, as well as provide high classification accuracy in
just a few seconds. With all of these properties, BART.m
becomes a flexible method which can be used by the public
without any need of professional knowledge about assump-
tions and preprocess steps of incomplete classification
models. Therefore, BART.m is an efficient and effective
model for classification, which has proven to be a working
concept incorporating statistical methods in machine learn-
ing algorithms.

Data Availability

Ten real-world incomplete two-level classification datasets
used to support the findings of this study have been deposited
in the UCI machine learning repository ([http://archive.ics
.uci.edu/ml]).
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