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Long noncoding RNAs (lncRNAs) play important roles in brain function modulation and neurodegenerative diseases. However,
whether lncRNA regulations are involved in the mechanisms of perioperative neurocognitive disorders, especially in anesthesia-
related brain dysfunction, remain unknown. Therefore, we explored the expression and regulation pattern profiles of lncRNAs
in the hippocampus of aged rats after sevoflurane anesthesia. Three lncRNAs and 772 protein-coding genes were identified by
microarray analysis and evidenced by in vitro and in vivo experiments as differentially expressed. Functional annotation and
differentially expressed- (DE-) lncRNA-mRNA coexpression networks reveal that DE-lncRNAs are associated with
mitochondrial dysfunction and oxidative stress, aging-related metabolism alterations, DNA damage, and apoptosis, as well as
neurodegenerative features during sevoflurane anesthesia. These results suggest that lncRNAs play roles in general anesthesia-
related brain function modulation during the perioperative context and provide insights into the lncRNA-related modulation
mechanisms and targets.

1. Introduction

Every year, 66 million senior patients aged 65 and above
undergo anesthesia and surgery all around the world, includ-
ing 8.5 million patients with Alzheimer’s disease (AD) [1].
Up to 40% of these patients may suffer from perioperative
neurocognitive disorders (PND) [2], which include postoper-
ative delirium (POD) and postoperative cognitive dysfunc-
tion (POCD) [3]. Increasing age, preoperative cognitive
impairment, surgical trauma, and anesthesia may propose
the onset of PND [2, 4–6]. Aging and related neurodegenera-
tions have features of neuroinflammation and mitochondrial
dysfunction, even amyloid plaques and neurofibrillary tan-
gles, which damage the neural processes necessary for cogni-
tion [7, 8]. Surgery/anesthesia exposures contribute to the
neuropathologic changes and cognitive decline in aged

models [9]. Ours and related researches have indicated that
inhaled general anesthesia is etiologically implicated in cog-
nitive impairment in the aged brain [10, 11]. During the pro-
cess, microglial inflammation [12], mitochondrial function
deficits [13], and hippocampal synaptic plasticity modulation
[14] could be the contributing pathological factors. However,
the role of epigenetic modulation during general anesthesia-
related brain function alterations remains unknown.

Long noncoding RNAs (lncRNAs) are noncoding RNAs
with more than 200 nucleotides, which involve multiple epi-
genetic modulations. Increasing evidence suggests that
lncRNAs play significant roles in the regulation of tissue
homeostasis, oxidative stress, and metabolism [15, 16]. In
the central nervous system (CNS), the fundamental roles of
lncRNAs in various neurodegenerations are also becoming
evident; representatives include BACE1-AS, NEAT1_2, and
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Meg3. These lncRNAs exert their regulation effect through
various mechanisms such as interacting with mRNA
(BACE1-AS) [17], binding to RNA-binding proteins
(NEAT1_2) [18], or working as competing endogenous
RNAs (Meg3) [19]. However, whether lncRNA regulations
are involved in the mechanisms of PND, especially in general
anesthesia-related brain function modulation, remain to be
elucidated. Identification of candidate lncRNAs could pro-
vide insights into the mechanisms of the effects of anesthesia
and efficient diagnostic strategies. Therefore, we focused on
lncRNA and gene expression patterns in the hippocampus
of aged rats after sevoflurane anesthesia. And we established
functional annotation of differentially expressed- (DE-)
lncRNAs and their potential target genes, as well as
lncRNA-mRNA coexpression network to reveal the role of
lncRNAs in sevoflurane anesthesia-related brain function
modulation.

2. Materials and Methods

2.1. Animals and Anesthesia. The experiments were per-
formed in accordance with the guide for the care and use of
laboratory animals, and the protocol was approved by the
Peking University Biomedical Ethics Committee Experimen-
tal Animal Ethics Branch (No. LA201412). As previously
study described [20], adult male Sprague-Dawley rats, 18-
month old, weighing between 550 and 600 g were used. The
rats were maintained under standard housing conditions
for 2 weeks before the experiment. Food and water were pro-
vided ad libitum. The rats were randomly assigned to the
sevoflurane anesthesia or control group. For whole tran-
scriptome microarray analysis, there were 3 rats in each
group. For qPCR and other experiments, there were 6 rats
or 6 cell samples in each group. Previous studies revealed that
the minimum alveolar concentration (MAC) of sevoflurane
for rats was between 2.4-2.7% [21]. In our study, rats in the
sevoflurane anesthesia group received 2.5% sevoflurane in
100% oxygen for 4 hours in an anesthetizing chamber, and
the control group received 100% oxygen at an identical flow
rate for 4 h in an identical chamber. Sevoflurane and oxygen
concentrations were monitored continuously (Datex, Tewks-
bury, MA, USA). The rats were breathing spontaneously at a
stable ambient temperature. The rectal temperatures of the
animals were maintained at 37 ± 0:5°C. This anesthesia pro-
tocol has been shown not to significantly alter the values of
blood pressure and blood gas in the preliminary studies
[20]. Anesthesia was terminated by discontinuing sevoflur-
ane and placing animals in a chamber containing 100% oxy-
gen until 20 minutes after the recovery of consciousness. The
animals were then returned to individual home cages until
sacrifice. Rats were sacrificed by decapitation. The brain tis-
sues were removed rapidly, and the hippocampus was dis-
sected out and frozen in liquid nitrogen.

2.2. Cell Culture and Treatments. C6 rat glioma cells (CLS
Cat# 500142/p672_C6, RRID:CVCL_0194) were used in the
studies. The cells were cultured in 6-well plates and grown at
37°C in an incubator with a humidified atmosphere with 5%
CO2 in F-12K medium (Gibco™, Thermo Fisher Scientific,

Waltham, MA, USA) as described in our previous study
[22]. The medium was supplemented with 2.5% fetal bovine
serum, 15% horse serum, 100U/ml penicillin, and 100μg/ml
streptomycin. S-100 production increases ten folds as cells
grow from low density to confluency, which could induce
abnormal gene expression regulation in the cells. As a result,
about 18h after seeding, we treated the cells when they reach
approximately 70% confluency. The cells were randomly
assigned to a treatment or control group. In the treatment
group, the cells were treated in a sealed plastic box in a 37°C
incubator, with 4.1% sevoflurane plus 21% O2 and 5% CO2,
delivered from an anesthesia machine for 4h as described by
Dong et al. [23]. The cells in the control group received vehicle
gas under the same condition in the absence of sevoflurane. A
Datex-infrared gas analyzer (Puritan-Bennett, Tewksbury,
MA) was used to continuously monitor the delivered concen-
trations of carbon dioxide, oxygen, and sevoflurane. Then, the
cells were harvested and frozen in liquid nitrogen.

2.3. RNA Extraction and Quantification. Total RNAs were
isolated from the hippocampi and cells using TRIzol reagent
(Invitrogen, Carlsbad, CA), then digested with RNase-Free
DNase to remove residual DNAs. The RNA concentrations
were analyzed using the Nanodrop 2000 (Thermo Fisher Sci-
entific), then total RNA (2μg) was reverse-transcribed using
the GoScript™ Reverse Transcription System (Promega).

2.4. Quantitative Real-Time PCR (qRT-PCR). We performed
qRT-PCR in a total reaction volume of 10μl, including
PowerUp SYBR® Green master mix (Thermo Fisher Scientific),
10μMPCR forward and reverse primers (Invitrogen, Carlsbad,
CA, USA), and approximately 1.5μl of cDNA template on
CFX96 Real-Time PCR Detection System (Bio-Rad, Hercules,
CA, USA) according to the manufacturer’s instructions. Primer
sequences were obtained from the literature and checked for
their specificity through in silico PCR. The forward and reverse
primers of TC0900001760.rn.1 (NONCODE GENE ID: NON-
MMUG000308, Location Ch9: 36497845-9813) were 5′-AGCC
CCAAAGTAAGACATTT-3′ and 5′-CCCCTTGAGATCAC
AATCAA-3′, of TC1300001223.rn.1 (NONCODE GENE ID:
NONMMUG001518, Location Ch13: 28298352-300631) were
5′-TGGTAACCAACTACTTTCGG-3′ and 5′-AAACATGA
GTGGAAGAGGTC-3′, of TC1800000859.rn.1 (NONCODE
GENE ID: NONMMUG020388, Location Ch18: 73630496-
1258) were 5′-CTCCATTCTCTTACTTGAC-3′ and 5′-CA
GAGTGTACTAGGAAGCTC-3′, and of TC1400000903.rn.1
(NONCODE GENE ID: NONMMUG005150, Location Ch14:
84503818-11796) were 5′-GACTCATTCCAGCACAGTTA-
3′ and 5′-CTTGAGGGAGAATAGCAGTC-3′ (These probe
sets were designated according to mouse genes and located
through sequence similarity alignment in rat genome). The for-
ward and reverse primers of Hif3a were 5′-CACATGGACTG
GGACCAAGACAGG-3′ and 5′-GTGTAGGCTGCTGGTG
TGGAGTGT-3′, of Prkcd were 5′-CCATCTCATCTGTACC
TTCC-3′ and 5′-CCATCCTTGTCCAGCATTA-3′, and of
Nfe2l2 were 5′-GCACATCCAGACAGACACCA-3′ and
5′-GGCTGGGAATATCCAGGGCA-3′. Amplification was
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carried out with an initial denaturation step at 95°C for 2min,
followed by 45 cycles of 95°C for 10 s, 55°C for 30 s, and
60°C for 30 s, then a final extension at 65°C for 2min in
10μl reaction volume. After amplification, a melt curve was
performed to make sure that none of the nonspecific prod-
ucts such as primer dimers were amplified. All reactions
were run in duplicate, and the results were averaged from
6 independent studies. qPCR was quantified in two steps,
firstly, Actb (β-actin) levels were used to normalize target
gene levels (ΔCycle threshold ðΔCtÞ = Cttarget gene – CtActb, tar-
get gene level = 2−ΔCt). Beta-actin was chosen as an internal
control because previous studies confirmed that it was one
of the most stable genes in the hippocampus of rats [24].
It also acts as a reliable endogenous control and has been
widely used in the context of sevoflurane anesthesia in aged
rats [25, 26]. Secondly, the target gene levels of the sevoflur-
ane group were presented as the percentage of those of the
control group, and 100% of the target gene levels referred
to the control levels.

2.5. Affymetrix Whole Transcriptome Microarray Analysis
and Functional Annotation. Whole transcriptome microar-
ray analysis was performed using Clariom™ D Pico Assay,
previously known as GeneChip™ Rat Transcriptome Array
1.0 (Affymetrix, Santa Clara, CA, https://www.thermofisher
.com/order/catalog/product/902666). This array has a full
coverage of the transcribed genome, including both coding
and noncoding splicing variants. Briefly, isolated RNA
(100ng) was mixed with 1.5μl of Poly-A RNA control solu-
tion and subjected to reverse transcription. The obtained
cDNA was used for in vitro transcription to prepare anti-
sense RNA (aRNA) by incubation at 40°C for 16h. Then,
the aRNA was applied for the second round of sense cDNA
synthesis using the WT Expression kit (Ambion, Austin,
TX). The obtained cDNA was used for biotin labeling and
fragmentation by Affymetrix GeneChip® WT Terminal
Labeling and Hybridization. Biotin-labeled fragments of
cDNA (5.5μg) were hybridized to the Affymetrix® Rat Tran-
scriptome Array Strip (45°C/24 h), and up to 25 unique
probes sequences were hybridized to a single transcript. Fol-
lowing hybridization, each array strip was washed and
stained using the Fluidics Station of GeneChip® Scanner
3000 7G system (Affymetrix, Santa Clara, CA). The array
strips were scanned using the Imaging Station of the Gene-
Chip® Scanner 3000 7G system.

2.6. Mitochondrial Preparation. Tissue mitochondrial isola-
tion kit (Beyotime Biotech, Shanghai, China) was used for
mitochondrial preparation. The hippocampus was dissected
out 3 h after anesthesia and placed in a freshly prepared cold
mannitol solution encompassing 10mM HEPES-potassium
hydroxide, 70mM sucrose, 0.1% (w/v) BSA, 200mM d-man-
nitol, and 1mM EDTA at pH of 7.4. Then, it was homoge-
nized, the broken cell debris and nuclei were sedimentated
by centrifugation at 600 × g and 4°C for 5min, and the super-
natant was carried out after centrifugation at 10,000 × g and
4°C for 10min. The resulting mitochondrial pellets were sus-
pended in the mannitol solution.

2.7. Reactive Oxygen Species (ROS) Assay. A ROS assay kit
(Beyotime Biotech, Shanghai, China) with fluorescent probe
DCFH-DA was used to measure the ROS level in the hippo-
campal mitochondria. Incubation of the hippocampal mito-
chondria suspensions (0.5mg protein/ml) was carried out
with 1.6μM 2′, 7′-dichlorofluorescin diacetate (DCFH-
DA) at 37°C for 10min. The fluorescence was measured with
the Perkin Elmer LS-50B Luminescence fluorescence spec-
trophotometer (California, USA) at the excitation and emis-
sion wavelength of 488 and 525mm, respectively. Then, the
mean fluorescence intensities in excitation/emission were
quantified and compared.

2.8. Mitochondrial Membrane Potential (MMP) Assay. An
MMP assay kit (Beyotime Biotech, Shanghai, China) with
fluorescent probe JC-1 was used to measure MMP of the hip-
pocampal mitochondria. Incubation of the hippocampal
mitochondria suspensions (0.5mg protein/ml) was carried
out with JC-1 reagent at 37°C for 15min. The red fluores-
cence was measured at the excitation and emission wave-
length of 525 and 590mm, and green fluorescence was
measured at the excitation and emission wavelength of 490
and 530mm with the Perkin Elmer LS-50B Luminescence
fluorescence spectrophotometer. The level of MMP was cal-
culated by the ratio of red fluorescence to green fluorescence.

2.9. Statistical Analysis. Statistical analysis was performed
with GraphPad Prism 5.0 software (http://graphpad.com,
RRID: SCR_002798). The quantitative data are presented as
themean ± SD. In vivo and in vitro PCR validations were dis-
played with the violin plots, which depict the kernel probabil-
ity density, and the width of the shaded area shows the
proportion of the data located at that expression fold.
Unpaired two-tailed Student’s t-test was used to determine
significant difference between the two groups. One-way
ANOVA with Bonferroni’s multiple comparison test was
used to analyze significant differences between multiple
groups. p < 0:05 was considered significant. The microarray
analysis was performed by Expression Console Tran-
scriptome Analysis Console Software. One-way ANOVA
was applied. p value was adjusted with FDR method (Benja-
mini-Hochberg procedure). DE-lncRNAs were screened
with p < 0:05 and ∣fold change ∣ >1:5. Unsupervised two-
way hierarchical clustering of DE-lncRNAs was illustrated
in the heat map. The significance of GO and KEGG enrich-
ment was calculated by the hypergeometric distribution and
Fisher exact test, and a lower p value indicated that the spe-
cific term was more significantly enriched.

3. Results

The aged rats were randomly assigned to sevoflurane and
control groups. The sevoflurane group received 4h sevoflur-
ane anesthesia, and the hippocampus was dissected out 3 h
after anesthesia. In the hippocampus, 25204 lncRNAs were
identified by whole transcriptome microarray analysis (Clar-
iom™D Pico Assay), which allows transcriptome profiling of
both coding and noncoding genes using multiple databases.
Since the functions and related mechanisms of lncRNAs

3BioMed Research International

https://www.thermofisher.com/order/catalog/product/902666
https://www.thermofisher.com/order/catalog/product/902666
http://graphpad.com


could be speculated according to the classification based on
the locations relative to protein-coding genes in the genome,
the classification of these lncRNAs was analyzed. The results
showed that 9654 lncRNAs (38.3%) were intergenic, 3620
lncRNAs (14.4%) were antisense, 3287 lncRNAs (13.0%)
were sense no exonic, 50 lncRNAs (0.20%) were exonic, 11
lncRNAs (0.04%) were intronic, and 8582 lncRNAs (34.1%)
were others (Figure 1(a)).

The expression level of lncRNAs in the sevoflurane group
versus that in the control group was presented as a Bland-
Altman plot based on the microarray analysis, and 514 DE-
lncRNAs were found and highlighted in red (p < 0:05,
Figure 2(a)). Hierarchical cluster analysis showed a clear
distinction in expression values of the DE-lncRNAs, in which
232 lncRNAs were found to be upregulated, and 282
lncRNAs were downregulated in the sevoflurane group
(Figure 2(b)). Based on the abovementioned classification
based on the genomic locations, the numbers of upregulated
lncRNAs belonging to intergenic, antisense, sense no exonic,
exonic, intronic, and others categories were 88, 31, 29, 1, 0,
and 83, respectively (Figure 1(b)). Meanwhile, the numbers
of downregulated lncRNAs that belong to the above six
categories were 81, 18, 62, 0, 0, and 121, respectively
(Figure 1(c)).

Taking ∣fold change ∣ >1:5 as the cutoff, four lncRNAs
were filtered out. Among them, NONMMUG000308, NON-
MMUG001518, and NONMMUG005150 were upregulated,
and NONMMUG020388 was downregulated. These four
lncRNAs all fell into the lincRNA category.

To validate the microarray analysis results of four
lncRNAs (NONMMUG000308, NONMMUG001518, NON-
MMUG005150, and NONMMUG020388), qPCR was
employed. The aged rats were also assigned to sevoflurane
and control groups. The sevoflurane group received 4h sevo-
flurane anesthesia. Given that the expression of postoperative
neurotoxicity and relative RNA transcription emerged at 3h
after surgery and could persist for 24h [27, 28], the hippocam-
pus was dissected out at 3h and 24h after anesthesia, respec-
tively. Violin plots were used to illustrate the PCR results
(n = 6, Figures 3(a)–3(h)). The violin plot diagrams depict
the kernel probability density, and the width of the shaded
area shows the proportion of the data located at that expres-
sion fold. The qPCR results were consistent with microarray
results in the three candidate lncRNAs (NONMMUG000308,
NONMMUG001518, and NONMMUG005150). For NON-
MMUG000308, the expression increased significantly at 3h
(2:04 ± 0:50 vs. 1:00 ± 0:44, p < 0:05), but not at 24h
(1:72 ± 0:54, p > 0:05) after anesthesia. For NON-
MMUG001518, the expression increased significantly at both
3h and 24h after anesthesia (2:87 ± 1:20 and 2:99 ± 1:32 vs.
1:00 ± 0:21, p < 0:05). For NONMMUG005150, the expres-
sion increased significantly at both 3h (2:78 ± 1:25 vs.
1:00 ± 0:28, p < 0:05) and 24h (4:03 ± 1:39, p < 0:001) after
nesthesia. However, qPCR validation did not show a signif-
icant change for NONMMUG020388 (0:98 ± 0:29 and
1:03 ± 0:19 vs. 1:00 ± 0:23, p > 0:05). Furthermore, we per-
formed an in vitro qPCR validation to confirm the uniformity
of lncRNAs performance across a range of experimental
conditions. The in vitro experiment was conducted in C6 rat

glioma cells with control conditions and 4h sevoflurane expo-
sure. The results provided confirmatory evidence that NON-
MMUG000308 (1:98 ± 0:84 vs. 1:00 ± 0:45, p < 0:05),
NONMMUG001518 (2:12 ± 0:58 vs. 1:00 ± 0:42, p < 0:01),
and NONMMUG005150 (2:48 ± 1:05 vs. 1:00 ± 0:42, p <
0:01) in C6 cells are significantly upregulated after sevoflurane
exposure, but no significant difference of NONMMUG020388
expression were found between two groups. Thus, the qPCR
validation demonstrated good consistency between in vivo
and in vitro models. As data quality parameters such as array
p values and fold change may exert influence on the consis-
tency of the two methods, we assume PCR validations across
different experimental conditions are more reliable according
to previous studies [29].

Considering the three candidate DE-lncRNAs are all
lincRNAs, which can positively or negatively adjust the
expression of target genes, the expression of protein-coding
genes in the hippocampus of aged rats was also detected by
whole transcriptome microarray analysis. 772 DE-protein
coding genes were identified after sevoflurane anesthesia
(p < 0:05) with 608 genes upregulated and 164 downregu-
lated. Then, Gene Ontology (GO) functional annotation
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis were conducted for DE-
protein coding genes using Database for Annotation, Visual-
ization, and Integrated Discovery (DAVID, https://david.
ncifcrf.gov). GO enrichment analysis contains three catego-
ries: biological process, molecular function, and cellular com-
ponent. Hypergeometric distribution was used to determine
whether a GO term is overrepresented after anesthesia. A
lower p value indicated that the GO or KEGG term was more
significantly enriched, and the results of DAVID GO analysis
revealed that 44 GO terms of biological process, 16 terms of
molecular function, and 18 terms of cellular component were
significantly enriched after sevoflurane treatment (p < 0:05),
respectively. A bubble plot to visualize enriched GO terms
is shown in Figure 4(a). GO term circle in the upper part of
the figure represents a relatively lower p value, while a circle
with larger diameter indicates more genes were involved in
a specific GO term. The top significantly overrepresented
terms, sorted by p values in ascending order for biological
process (green) were response to hypoxia, aging, cellular
response to hypoxia, intracellular receptor signaling path-
way, and regulation of cell cycle (p < 0:05); for molecular
function (blue) were protein binding, RNA polymerase II
transcription factor activity, identical protein binding, and
Wnt-activated receptor activity (p<0.05); for cellular compo-
nent (red) were mitochondrion, cytosol, extracellular exo-
some, and cytoplasm (p < 0:05).

Then, KEGG pathway analysis was employed to reveal
involved molecular interaction, reaction, and relation net-
works after sevoflurane anesthesia. Figure 4(b) highlighted
18 significantly enriched signaling pathways in our annota-
tion using –log p > 1 as a threshold, including certain signal-
ing pathways such as adipocytokine, estrogen, regulating
pluripotency of stem cells, Wnt, MAPK, glucagon, and
AMPK; as well as metabolic-related pathways such as meta-
bolic pathways, lysine degradation, inositol phosphate
metabolism, and biosynthesis of amino acids. Adipocytokine
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signaling pathway was the top significantly overrepresented
pathway, and term metabolic pathways were associated with
the most DE genes (55 DE-genes).

The mitochondrial membrane potential (MMP) is a fac-
tor determining the viability of mitochondria, thus plays a

significant role in mitochondrial homeostasis [30]. It is also
a driving force for ATP synthesis, and the loss of MMP could
be the sign for apoptosis [31]. Thus, the MMP was assessed,
and the results showed that compared with the control
group, the level of MMP significantly decreased in the
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sevoflurane group (p < 0:05, Figure 4(c)). Mitochondrial dys-
function is the major cause of oxidative stress and reactive
oxygen species (ROS) generation [32], so we measured the

ROS level in the hippocampus of aged rats as well. The results
showed that compared with the control group, the level of
ROS increased significantly in the sevoflurane group
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Figure 4: (a) Bubble plot of GO analysis of differentially expressed genes after sevoflurane anesthesia using the DAVID database. y-axis: the
negative logarithm of p value. x-axis: z score of GO terms. The green, blue, and red bubbles indicate biological process, molecular function,
and cellular component. Z score = ðup − downÞ/√count. Up is the number of assigned genes upregulated ðlog 2 ðFCÞ > 0Þ in the data, and
down is those downregulated ðlog 2 ðFCÞ < 0Þ. (b) KEGG enrichment analysis of differentially expressed genes. y-axis: KEGG term
descriptions. The numbers of differentiated genes enriched in each KEGG term were displayed in brackets. x-axis: the negative logarithm
of p value of different KEGG terms. (c) MMP levels decreased after sevoflurane anesthesia, indicated by the ratio of red fluorescence to
green fluorescence. (d) ROS levels increased after sevoflurane anesthesia, indicated by increased fluorescence intensity. ∗p < 0:05 indicated
differentiated samples compared with the control condition.
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(p < 0:05, Figure 4(d)). These results indicated that mito-
chondrial dysfunction, MMP decrease, and oxidative stress
were involved in the pathophysiological processes after sevo-
flurane anesthesia, which are correlated with GO and KEGG
analysis results.

GO enrichment analysis revealed different patterns of
potential target genes of the three upregulated lncRNAs after
sevoflurane anesthesia. The results were ranked according to
the negative logarithm p value, and the terms with -log p > 2
of each category were displayed. For the potential target
genes of NONMMUG000308, response to hypoxia, protein
binding, and mitochondrion were top significant enriched
terms in biological process, molecular function, and cellular
component, respectively (Figure 5(a)). Protein binding is an
unspecific annotation which suggested target genes may
interact with proteins like p53 or with one or more sites on
receptor molecules like signaling receptors. For NON-
MMUG001518, drug metabolic process and protein binding
were the top significant enriched terms in biological pro-
cess and molecular function, and top cellular component
term included membrane, ribosome, and mitochondria
(Figure 5(b)). This indicated that products of the target
genes may be found in cellular membrane, ribosome, or
mitochondria. For NONMMUG005150, cellular response
to hypoxia, BH domain binding, and Bcl-2 family complex
were the top significant enriched terms in three categories
(Figure 5(c)). Thus, potential target genes of three upregu-
lated lncRNAs after sevoflurane anesthesia were enriched in
oxidative stress, mitochondrion, metabolism, apoptosis, etc.

KEGG pathway analysis revealed the signaling pathways
of potential target genes of the three DE-lncRNAs after sevo-
flurane anesthesia. The results were ranked according to the
negative logarithm of p value, and the terms with -log p > 1
were displayed. The signaling pathways of potential target
genes of NONMMUG000308 and NONMMUG001518 are
similar. Biosynthesis of antibiotics, signaling pathways of
adipocytokine, and regulating pluripotency of stem cells,
metabolic pathways were significantly enriched. Metabolic
pathways including energy, carbohydrate, lipid, nucleotides,
and amino acid metabolism were associated with the most
potential target genes (63 DE-mRNAs, Figures 6(a) and
6(b)). For NONMMUG005150, the top enriched terms were
basal cell carcinoma and Fanconi anemia pathway
(Figure 6(c)). Pathways of carcinoma and anemia are charac-
terized by abnormal proliferation and impaired response to
DNA damage.

To explore the potential regulatory mechanism of the
DE-lncRNAs, correlation analysis was carried out between
the DE-lncRNAs and DE-protein coding genes. The DE
protein-coding genes with Pearson correlation coefficient
ðPCCÞ > 0:85 and p < 0:05 were considered as the potential
target genes of DE-lncRNAs. Pearson correlation is a tra-
ditional statistical metric widely used by previous studies
to predict the function of lncRNAs by using information
from coexpressed mRNAs [15, 33], and coexpressing genes
are involved in related processes. Furthermore, the coexpres-
sion network of DE-lncRNAs and their potential target genes
was established. Cytoscape 3.6.1 (http://www.cytoscape.org,
RRID:SCR_003032) was used in network visualization, and

the correlations with PCC > 0:85 for lncRNA-mRNA (pro-
tein-coding gene) pairs and PCC > 0:95 between mRNA-
mRNA (protein-coding gene) pairs were selected.

The RNAs were displayed with nodes (three DE-
lncRNAs and 296 mRNAs). Positive coexpression repre-
sented by red edges, negative correlation represented by
green edges, and lower transparency of edges mean higher
PCC. 342 positive and 53 negative lncRNA-mRNA pairs
were displayed. NONMMUG000308 was coexpressed with
224 mRNA transcripts, 193 upregulated and 31 downregu-
lated. NONMMUG001518 was coexpressed with 113 mRNA
transcripts, 99 upregulated and 14 downregulated. And
NONMMUG005150 was coexpressed with 58 mRNA tran-
scripts, 50 upregulated and 8 downregulated. According to
the above functional annotation, DE-lncRNAs were associ-
ated with oxidative stress and mitochondrial dysfunction,
metabolic pathways, DNA damage, and apoptosis after sevo-
flurane anesthesia. Thus, the enriched term response to hyp-
oxia, mitochondrion, and aging (with relatively lower p
value) was selected as the representative terms. lncRNA coex-
pressed genes in these three terms were highlighted in blue,
green, and yellow nodes, and other terms were highlighted
in orange nodes. Genes that are highly correlated to each
other are likely to be involved in the same pathway, and con-
nections between protein-coding genes were also outlined to
represent protein-protein interaction (Figure 7(a)).

Genes from term response to hypoxia, mitochondrion,
and aging with relative high PCC with at least two lncRNAs
were screened out. They included Plat, Epas1, Prkcd, Agtrap,
Tnfrsf1a, Hif3a, and Tgfbr3 in term response to hypoxia;
Gjb6, Prkcd, Nfel2l2, and Fgf2 in aging; as well as 16 genes
(Prkcd, Oxa1l, etc) in term mitochondrion. Then, three rep-
resentative DE-protein coding genes were selected and vali-
dated by qPCR (Hif3a from term hypoxia, Prkcd from term
mitochondria, and Nfe2l2 from term aging). Compared with
control conditions, the expression of Hif3a (1:82 ± 0:52 vs.
1:00 ± 0:21, p < 0:01), Prkcd (1:58 ± 0:31 vs. 1:00 ± 0:44,
p < 0:05), and Nfe2l2 (1:66 ± 0:52 vs. 1:00 ± 0:41, p < 0:05)
in the hippocampus increased significantly at 3 h after anes-
thesia (n = 6, Figures 7(b)–7(d)). These results also indicated
a good consistency between qPCR and microarray analysis
results.

As lncRNA NONMMUG000308, NONMMUG001518,
and NONMMUG005150 were differentially expressed after
sevoflurane anesthesia and might play regulatory roles
through oxidative stress and mitochondrial dysregulation,
aging-related metabolic alterations, DNA damage, apopto-
sis, and neurodegenerative features according to the present
results, we namedNONMMUG000308, NONMMUG001518,
and NONMMUG005150 as sevoflurane associated noncoding
RNA (Sancr) 1, 2, and 3, respectively.

4. Discussion

The present study screened three significantly DE-lncRNAs
and multiple DE-protein coding genes in the hippocampus
of aged rats after sevoflurane anesthesia by microarray anal-
ysis. In vitro and in vivo experiments verified the analysis
results. Functional annotation with GO and KEGG databases
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showed that the top target overrepresented terms of lncRNAs
included response to hypoxia, aging, and mitochondrion. A
network of DE-lncRNAs and their potential target genes
were established, and these DE-lncRNAs are named as Sancr
1, 2, and 3, respectively.

As previous studies indicated that the hippocampal path-
ophysiological changes play important roles in the processes
of POCD [13, 34], the hippocampus was selected for the
present study. Cell culture [35], animal [36], and human
[37] data indicate that inhaled anesthetics could accelerate
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Figure 5: GO analysis of potential target genes of differentially expressed lncRNA NONMMUG000308 (a), NONMMUG001518 (b), and
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the development of aging and related neurodegenerations
including apoptosis, Aβ generation, and tau phosphoryla-
tion. Combined with the present results, we infer that anes-
thesia also plays a role in the development of aging and
related pathophysiological processes.

Accumulating evidences indicate the role of lncRNAs in
the setting of oxidative stress, altered metabolism, and aging
process, and they act as transcriptional factors or bind with
target genes to exert functions. Several lincRNAs were differ-
entially expressed in the hippocampus of both transgenic
models and patients of AD [38, 39], and the dysregulation of
lincRNAs played key roles in the intricate regulation of CNS
development and disorders [40, 41]. For example, lncRNA
BC200 is a transcript found in the brain with a function of
inhibiting translation initiation. BC200 levels in cortical areas
are reduced by above 60% in normal aging, in contrast, they
are significantly upregulated in AD and paralleled with the
deterioration of the disease [42]. lncRNA BACE1-AS concen-
trations were increased in AD subjects. It could change the
secondary or tertiary structure of BACE1 through a mecha-
nism affecting RNA duplex formation and so that increases
its stability [17], and BACE1 is a crucial enzyme responsible
for oligomer production in AD. Thus, we assumed that NON-
MMUG000308, NONMMUG001518, NONMMUG005150,
and NONMMUG020388 regulate the expression level of
target genes, which participates in the mechanism of
sevoflurane-associated brain function modulation.

Since monitoring during anesthesia indicated that the
rats did not suffer from hypoxia, and hippocampal MMP loss
and ROS generation were observed during sevoflurane anes-
thesia, and emerging evidence revealed that HIFs expression
can be induced by aberrant factors independent of oxygen
levels [43, 44]. Hif3a and Epas1 (also called Hif2a) coding
proteins are members of hypoxia-inducible factor (HIF) fam-
ily, which are crucial modulators of transcriptional response
to hypoxic stress [45, 46]. We assumed that Sancrs regulated
perioperative oxidative stress and related genes, such as
Epas1 and Hif3a, transcriptional level, like lncRNA Neat2
[47]. Previous studies showed Hif3a mRNA expression can
be regulated at the transcriptional level via hypoxia response
elements [48] or posttranscriptional level via miRNA [49].
Gene Ontology annotations related to Hif3a include DNA-
binding transcription factor activity and transcription coacti-
vator activity, which are included in protein binding and
consistent with the enriched terms in molecular function
annotation of Sancr target genes.

The results indicated thatNfe2l2,Mthfd1l,Akt1, and Atg5
were possible targets of three DE-lncRNAs in metabolic
pathways. In GO term aging, Nfe2l2 was identified as a regu-
lator of autophagy in degrading intraneuronal aggregates
[50]. Nfe2l2 encoded transcription factor NRF2, which is
the chief regulator to defense against stress in mammalian
cells. NRF2 activation alleviates cognitive deficits of AD
models through modulation of oxidative stress [51].
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Figure 6: KEGG enrichment analysis of potential target genes of differentially expressed lncRNA NONMMUG000308 (a),
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MTHFD1L, an enzyme in the folate cycle that is transcrip-
tionally activated by NRF2, plays an essential role in main-
taining proper mitochondria function [52]. AKT1 could
induce mitophagy due to reactive oxygen species [53]. Inhibi-
tion of mitochondrial permeability transition pore opening
decreases ROS and increases MMP [54], and superoxide dis-
mutase, glutathione peroxidase, and catalase levels could be
affected during the process. The results also indicate that
metabolism-related gene terms are affected by anesthesia.
Combined with the present results, we propose that Sancrs
interact with target genes and affect the metabolic process
in the brain.

Sancrs were correlated to Prkcd expression, which was
associated with the transcriptional regulation of p53 in
response to DNA damage [55]. Dysregulation of DNA dam-
age response is associated with neurodegenerative disorders
[56], and the linkage between lncRNAs and neuron apoptosis
has also been investigated in neurodegenerative diseases [57].
Both PKCδ and p53 are associated with the apoptotic mech-
anisms in the mitochondria through Bcl-2 family proteins
modulation and to provide mitochondrial outer membrane
permeabilization [58]. Damage-induced lncRNA can create

a feedback loop to amplify DNA damage signaling or interact
with DNA damage RNAs through RNA-RNA pairs [59].
Thus, it is possible that Sancrs regulate genes like Prkcd or
interact with other RNAs in this process and induced cell
death. Our functional annotation results show that BH
domain binding and the intrinsic mitochondrial apoptotic
pathway Bcl-2 family complex are top significant enriched
terms, which indicates Sancrs could be involved in intrinsic
apoptosis in the hippocampus after anesthesia [60].

Our results show that Sancrs were highly coexpressed
with Plat, and they could play a crucial role in periopera-
tive ischemia-related diseases. Tissue plasminogen activa-
tor (encoded by Plat) is involved in the breakdown of
blood clots. Genetic variants of Plat and plasminogen acti-
vator inhibitor type-1 combinations have been suggested
to be the risk factors for stroke [61], and gene interactions
could change the susceptibility of the disease. Disorders
like amyotrophic lateral sclerosis, AD, and Parkinson’s dis-
ease have also been linked to reduced NRF2 levels [62,
63]. Combined with the results, we speculate that Sancrs
bind with Nfe2l2, then accelerate stroke and neurodegener-
ative processes [64].
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Figure 7: (a) LncRNA-mRNA coexpression network in the aged hippocampus after sevoflurane anesthesia. The purple nodes represent
lncRNAs. The blue, green, yellow, and orange nodes represent gene-annotated GO terms response to hypoxia, mitochondrion, aging, and
others. Coexpression pairs of lncRNA-mRNA whose Pearson correlation coefficient ðPCCÞ > 0:85 and mRNA-mRNA pairs whose PCC >
0:95 were connected by straight lines. Positive correlations are shown in red lines, and negative correlations in green lines. Lower
transparency of edges means higher PCC. qPCR validation for representative differentially expressed genes (b) Hif3a from term hypoxia,
(c) Prkcd from term mitochondrion, and (d) Nfe2l2 from term aging. n = 6, ∗p < 0:05, and ∗∗p < 0:01 indicated differentiated samples
compared with the control condition.
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5. Conclusion

In the present investigation, we identified three DE-
lncRNAs, Sancr 1, 2, and 3 in the hippocampus of aged rats
after sevoflurane anesthesia. Sancrs regulate mitochondrial
dysfunction and oxidative stress, aging-related metabolism
alterations, DNA damage, and apoptosis, as well as stroke
and neurodegenerative features in the hippocampus, which
play roles in anesthesia-related cognitive function modula-
tion during perioperative context. And similar to the
mechanism of AD, a complex network of deregulated and
multitasking lncRNAs together interacts with these patho-
physiological mechanisms. These results provide evidence
for the lncRNA regulation network in anesthesia-related
brain function modulation, which could be the understand-
ing from an epigenetic perspective. However, detailed regula-
tion pathways and correlated factors are unclarified. Further
work should therefore investigate the accurate mechanisms
and provide brain protection strategies through epigenetic
perspective during the process.
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