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Gastric cancer (GC) is associated with high incidence and mortality rates worldwide. Differentially expressed gene (DEG) analysis
and weighted gene coexpression network analysis (WGCNA) are important bioinformatic methods for screening core genes. In our
study, DEG analysis and WGCNA were combined to screen the hub genes, and pathway enrichment analyses were performed on
the DEGs. SBNO2 was identified as the hub gene based on the intersection between the DEGs and the purple module in WGCNA.
The expression and prognostic value of SBNO2 were verified in UALCAN, GEPIA2, Human Cancer Metastasis Database, Kaplan–
Meier plotter, and TIMER. We identified 1974 DEGs, and 28 modules were uncovered via WGCNA. The purple module was
identified as the hub module in WGCNA. SBNO2 was identified as the hub gene, which was upregulated in tumour tissues.
Moreover, patients with GC and higher SBNO2 expression had worse prognoses. In addition, SBNO2 was suggested to play an
important role in immune cell infiltration. In summary, based on DEGs and key modules related to GC, we identified SBNO2 as
a hub gene, thereby offering novel insights into the development and treatment of GC.

1. Introduction

Gastric cancer (GC) is associated with high incidence and
mortality rates worldwide, especially in China, Japan, and
Korea [1]. Annually, more than 1 million new cases of GC
are diagnosed globally [2], including approximately 679,000
new cases (477,000 males, 202,000 females) in China in
2015 [3]. The stage of GC significantly determines the prog-
nosis of patients. However, because of the occult and atypical
symptoms of early GC, more than 60% of patients present
with advanced disease at the time of diagnosis [4].

Although gastroscopy has greatly improved the detection
of early GC, its use remains low. Despite the availability of a
national GC screening program in Korea, only 56.3% of peo-
ple were screened via gastroscopy in 2015, and people with
severe disabilities had a markedly lower screening rate
(51.9%) [5]. Meanwhile, compared with the large population

in China, professionals and facilities dedicated to gastros-
copy are relatively sparse [6]. Therefore, it is necessary to
explore simpler, safer, and more efficient biological markers
for the clinical diagnosis and prognostic assessment of
patients with GC.

SBNO2 was found to be expressed mainly in the spleen
and bone marrow. It has been reported to play an important
role in the development of Peutz–Jeghers syndrome, an
autosomal-dominant hereditary disease with hamartoma-
tous polyps of the gastrointestinal tract that carries a higher
risk of gastrointestinal tumours [7, 8]. Meanwhile, SBNO2
is one of the susceptibility loci of Crohn’s disease and ulcera-
tive colitis [9]. In addition, SBNO2 is also linked to increased
risks of cardiovascular disease and type 2 diabetes in con-
junction with increasing body weight [10, 11].

In previous studies, most researchers focused on differen-
tially expressed genes (DEGs). However, weighted gene
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coexpression network analysis (WGCNA) is increasingly
applied to explore the relationships among genes across
microarray or RNA sequence data, making it an effective
method for screening hub genes [12]. In our study, integrated
bioinformatic analysis was used to screen the core gene and
verify its value in GC and prognosis surveillance. The combi-
nation of DEG analysis and WGCNA to screen hub genes
can be beneficial for understanding the potential molecular
mechanism of oncogenesis and tumour development. Our
study may provide new insights into the clinical diagnosis
and prognostic assessment of GC.

2. Methods

2.1. Data Acquisition and Preprocessing. The expression pro-
file of GSE54129 was downloaded from Gene Expression
Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/), which
provides comprehensive data on gene profiling and sequenc-
ing as an online database. GSE54129 contains 111 human GC
tissues and 21 noncancerous gastric tissues, which were ana-
lysed via high-density oligonucleotide microarray. Later, the
gene symbols were matched with probes after removing
redundant data (e.g., time and null value), and the “limma”
package in R software 3.4.1 was used to correct background,
normalise quantiles, and summarise quantiles.

2.2. Identification of DEGs. The “limma” package in Biocon-
ductor (http://www.bioconductor.org/) was applied to
explore the DEGs between normal and gastric tumour tis-
sues. The standard of adjusted P < 0:01 and ∣log2 fold
change ∣ >1 was set for significant DEGs according to the
normalised gene expression levels.

2.3. Pathway Enrichment Analyses. Gene Ontology (GO) is a
common method for annotating genes and their underlying
biological phenomena. The ontology covers three domains:
biological process, cellular component, and molecular func-
tion. The Kyoto Encyclopedia of Genes and Genomes
(KEGG) is an integrated database resource for the large-
scale molecular datasets generated via genome sequencing
and other high-throughput experimental technologies [13].
The significant GO terms and pathways were identified using
Fisher’s exact test [14], and the adjusted P value was obtained
using the Benjamini and Hochberg false discovery rate algo-
rithm. GO and KEGG pathway analyses were performed on
the DEGs using the “clusterProfiler” package in R. Further-
more, GOCluster analysis [15] was performed to generate a
circular dendrogram of the data clustering via the default
Euclidean distance and average linkage.

2.4. Establishment of WGCNA and Identification of Modules.
The coexpression network was constructed using the freely
accessible “WGCNA” package in R via the one-step network
construction and module detection function. First, gene and
sample data were imported into R software, and obvious
outliers were removed. Second, the coexpression network
was constructed via the automatic network construction
function, and the soft-thresholding power of 9 was selected
according to the scale-free topology criterion. Third, the
hierarchical clustering dendrogram was applied to detect

modules with different colors using minModuleSize and
CutHeight values of 30 and 0.99, respectively. Fourth, the
modules were correlated with clinical traits using module-
trait associations, and genes were related to clinical traits based
on module membership (MM) and gene significance (GS).
Fifth, the connectivity of eigengenes in different modules was
revealed via the topological overlap matrix method [16].

2.5. Module Preservation Evaluation. Zsummary is composed
of four statistics related to density and three statistics related
to connectivity [17]. As the value of Zsummary increases, the
strength of evidence that the module is preserved in a certain
condition/treatment becomes greater. However, Zsummary
tends to increase with increasing module size. Therefore,
when comparing the preservation statistics of modules with
different sizes, it is important to observe the connectivity pat-
terns among hundreds of nodes. In this case, medianRank
can be used because it is based on the observed preservation
statistics and is not affected by module size [18]. In our study,
because the blue module contained far more genes than the
purple module, medianRank was adopted. A module with a
lower medianRank is more preserved than that with a higher
medianRank.

2.6. Principal Component Analysis (PCA) and t-Distributed
Stochastic Neighbour Embedding (t-SNE). PCA was per-
formed using “gmodels” and “scatterplot3d.” The genes
in the purple module were examined to display the degree
of overlap between samples in each of the normal and
tumour samples. In addition, t-SNE was applied as a non-
linear dimensionality reduction method [19, 20], and it
exhibited the ability to distinguish tumour tissue from
normal tissue.

2.7. The Hub Genes Generated from DEGs and the Purple
Module in WGCNA. A Venn diagram program (Supplemen-
tary Figure (available here)) was employed to reflect the
intersection between DEGs and the purple module in
WGCNA, which included 25 genes. Furthermore, the top
10 genes were screened as the hub genes based on GS, includ-
ing SBNO2, THRB, LOC102724788, BDH2, LIF, GNG12,
KIAA0232, TEAD4, CXCL2, and RTEL, in that order. Then,
SBNO2 was further explored in our study.

2.8. Protein-Protein Interaction (PPI) Network Construction.
PPI pairs between SBNO2 and its related genes were identi-
fied using the String database (https://string-db.org/) [21],
and the PPI network was illustrated and visualised using
Cytoscape software (version 3.5.0) [22, 23].

2.9. UALCAN, GEPIA2, and Human Cancer Metastasis
Database (HCMDB) Analysis. SBNO2 expression in GC and
normal tissues was detected using the UALCAN (http://
ualcan.path.uab.edu/) web portal, which is a user-friendly
and interactive interface [24]. The expression data for SBNO2
were obtained using the “Expression Analysis”module, and P
was calculated. Furthermore, SBNO2 expression was verified
in the GEPIA2 database (http://gepia2.cancer-pku.cn/) [25]
and HCMDB (http://hcmdb.i-sanger.com/index). HCMDB
is an integrated database designed to analyse expression data
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and metastasis data of cancers collected from 124 previously
published transcriptome datasets [26].

2.10. Kaplan–Meier (KM) Plotter Database Analysis. The
online KM plotter (http://kmplot.com/analysis) database
was employed to evaluate the prognostic impacts of SBNO2
on overall survival (OS), and data for 876 patients with GC
are contained in this database [27]. For KM analysis, all cases
were ranked according to the expression level of SBNO2 and
then divided into two groups based on the median expression
of SBNO2.

2.11. TIMER Database Analysis. The TIMER database
(https://cistrome.shinyapps.io/timer/) [28] was used to ana-
lyse the association between SBNO2 expression and the abun-
dance of infiltrating immune cells, including B cells, CD8+ T
cells, CD4+ T cells, macrophages, neutrophils, and dendritic
cells. Meanwhile, the distributions of SBNO2 expression levels
in different cancers were also evaluated.

3. Results

3.1. DEG Identification and Pathway Enrichment Analyses.
After preprocessing, 1974 DEGs were identified in GC tis-
sues compared with their expression in normal tissues. As
presented in the volcano plot, 1076 of these genes were
upregulated in tumours, whereas 898 were downregulated
(Figures 1(a)–1(c)). Meanwhile, GO analysis suggested that
the DEGs may play important roles in extracellular structure

organisation, leukocyte migration, granulocyte chemotaxis,
extracellular matrix structural constituent, and other pro-
cesses (Figures 1(d) and 1(e)). KEGG pathway enrichment
of the DEGs was conducted, revealing that the focal adhe-
sion, viral protein interaction with cytokine and cytokine
receptor, and amoebiasis pathways were highly enriched in
DEGs (Figure 1(f)).

3.2. WGCNA, PCA, and t-SNE. A gene coexpression network
was constructed using a weighted expression correlation. The
clustering was based on the expression data of GSE54129,
which contains 111 human GC tissues and 21 normal gastric
tissues (Figure 2(a)). The soft-thresholding power of 9 was
set to ensure a scale-free network (Figures 2(b) and 2(c)).
All 22,878 genes were assigned to 28 modules, which were
associated with GC in WGCNA (Figure 2(d)). In total, 282
genes were assigned to the purple module, and 3620 genes
were assigned to the blue module. These two modules were
both significantly related to clinical traits (blue: correlation
coefficient = −0:92, P < 0:001; purple: correlation coefficient
= 0:81, P < 0:001; Figure 2(e)). Furthermore, the results
of GS indicated that module significance (MS) was higher
for the blue and purple modules than for the other mod-
ules (Figure 2(f)). However, the blue and purple modules
were derived from different metamodules (branches) in
the clustering of module eigengenes (Figure 2(g)). Because
the blue module contained much higher number of genes
than the purple module, Zsummary was not stable for
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Figure 1: Identification of DEGs and pathway enrichment analyses. (a) Box plot of gene expression data before normalization of GSE54129.
(b) Box plot of gene expression data after normalization of GSE54129. (c) Volcano plot of DEGs. (d) GOCluster analysis was performed to
generate a circular dendrogram of the data clustering via default Euclidean distance and average linkage. (e) GO is used to annotate genes and
their underlying biological phenomena. (f) KEGG is used for enrichment analyses of DEGs.
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comparing the blue and purple modules, and medianRank
was adopted [18]. The result illustrated that the purple
module had a lower medianRank, and it was identified
as the key module (Figures 3(a) and 3(b)). The correlation
coefficient between MM and GS was 0.78 (P < 0:001) for
the purple module (Figure 3(c)). Furthermore, in eigen-

gene adjacency heat map, the purple module was grouped
together with the red module (Figure 3(d)). Additionally, the
results of PCA and t-SNE both displayed satisfactory con-
nectivity and the ability to distinguish purple module genes
in response to tumour and normal tissues (Figures 3(e) and
3(f)).
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Figure 2: WGCNA analysis. (a) Sample dendrogram and trait heat map. (b) Analysis if the scale free fit index for various soft-thresholding
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3.3. The Overall Expression Levels and Prognostic Values of
SBNO2 in Patients with GC.We first evaluated SBNO2 levels
in tumour and normal tissues using TIMER and found that
SBNO2 expression was significantly elevated in GC
(P < 0:001), as well as bladder urothelial carcinoma, cholan-
giocarcinoma, oesophageal carcinoma, and head and neck
squamous cell carcinoma (Figure 4(a)). Then, GEPIA2, UAL-
CAN, andHCMDBwere used to verify the significantly higher
expression of SBNO2 in patients with GC, and the expected
conclusion was obtained (all P < 0:001; Figures 4(b)–4(d)).
However, there were no significant differences in SBNO2
expression between patients with metastatic and primary GC
(P > 0:05; Figure 4(e)). To assess the prognostic value of
SBNO2, the KM curve was plotted. High SBNO2 expression
was notably associated with worse OS in 876 patients with
GC (hazard ratio ðHRÞ = 1:54, 95% confidence interval (CI)
1.30–1.82, P < 0:001; Figure 4(f)). In addition, the PPI net-
work was analysed to further comprehend SBNO2 and its
relative genes (Figure 4(g)).

3.4. Subtype Analysis of Expression Levels and Prognostic
Value of SBNO2 in Patients with GC. The differences in
SBNO2 expression according to gender, age, individual can-
cer stage, tumour grade, histological subtypes, andHelicobac-
ter pylori infection status were explored in patients with GC.
SBNO2 mRNA expression was higher in men (P < 0:001)
and women with GC (P < 0:001) than in healthy people
(Figure 5(a)). SBNO2 expression was higher in patients older
than 40 years (P < 0:001; Figure 5(b)). Compared with the
findings in normal tissues, SBNO2 mRNA levels were higher

in stage 1-4 GC (P < 0:001), and expression was the highest
in stage 2 lesions (Figure 5(c)). SBNO2 expression was higher
in grade 1–3 GC (P < 0:001) than in normal tissues, and
expression was the highest in grade 3 lesions (Figure 5(d)).
SBNO2 expression was higher in signet ring cell carcinoma
than other GC pathological types (P < 0:001; Figure 5(e)).
SBNO2 expression was significantly higher in GC tissues than
in normal tissues irrespective ofH. pylori infection (P < 0:001;
Figure 5(f)).

Furthermore, subtype analysis of the prognostic value of
SBNO2 was performed. Increased SBNO2 mRNA expression
was associated with poor OS in both men (HR = 1:68, 95%
CI = 1:36 – 2:09, P < 0:001) and women with GC (HR =
1:70, 95%CI = 1:20 – 2:42, P = 0:003; Figures 5(g) and 5(h)).
Similarly, subtype analysis of gastric pathology was per-
formed, and increased SBNO2mRNA expression was associ-
ated with intestinal GC (HR = 2:31, 95%CI = 1:67 – 3:21,
P < 0:001) but not with diffuse GC (HR = 1:29, 95%CI =
0:92 – 1:82, P = 0:14; Figures 5(i) and 5(j)).

3.5. Correlation of Immune Cell Infiltration and SBNO2 in
Patients with GC. Tumour-infiltrating lymphocytes have
emerged as predictors of the sentinel lymph node status
and survival in cancers [29]. Therefore, a comprehensive
exploration of the correlation between SBNO2 expression
and immune cell infiltration was conducted using the TIMER
database. SBNO2 expression was negatively correlated with B
cell infiltration (correlation coefficient = −0:145, P < 0:05)
and positively correlated with CD8+ T cell (correlation
coefficient = 0:117, P < 0:05) and dendritic cell infiltration
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(correlation coefficient = 0:130, P < 0:05) (Figure 5(k)). These
results strongly suggested that SBNO2 plays an important
role in regulating immune cell infiltration in GC.

4. Discussion

In our study, the expression profile of GSE54129 was ana-
lysed, and DEGs were identified in GC tissues in compari-
son with normal tissues. Moreover, the key GC-related
pathways of the DEGs were analysed via GO and KEGG
pathway analyses. Moreover, we used WGCNA to identify
the core modules that were closely associated with GC. Fur-
thermore, we identified 10 hub genes derived from the inter-
section between DEGs and the purple module in WGCNA,
and the expression and prognostic value of SBNO2 for GC
were evaluated.

GO analysis suggested that DEGs play an important role
in the extracellular structure organisation, leukocyte migra-
tion, granulocyte chemotaxis, and extracellular matrix struc-
tural constituent pathways, which has been proven by many
studies [30–32]. KEGG pathway enrichment analysis of the
DEGs was also conducted, and the focal adhesion, viral pro-
tein interaction with cytokine and cytokine receptor, and
amoebiasis pathways were highly enriched in DEGs. The IL-
17 signalling pathway also plays an important role in GC [33].

SBNO2 was further explored in several terms. Through
repeated verification in multiple databases, SBNO2 is highly
expressed in GC, and it has significant values in the follow-
up of patients with GC. Takano et al. found that SBNO family
genes included one SBNO1 homologue and two SBNO2
homologues (SBNO2a and SBNO2b) via whole-mount in situ
hybridisation [34]. There is a conserved set of genes sur-

rounding SBNO2 in humans and other vertebrates, indicat-
ing an archetypal organisation within this region. They also
reported that SBNO2 is mainly expressed in blood cells and
bone, whereas SBNO1 is expressed in the developing brain.
Furthermore, SBNO2 has been reported to play an important
role in the gastrointestinal system. SBNO2 is one of the sus-
ceptibility loci of Crohn’s disease, ulcerative colitis, and
Peutz–Jeghers syndrome [7, 9], which may be closely related
to many types of tumorigenesis. Meanwhile, Grill et al.
reported that SBNO2 is a novel inflammatory response fac-
tor. It is predominantly but not exclusively expressed by
astrocytes in the central nervous system [35]. Our study fur-
ther proved that SBNO2 is associated with B cell, CD8+ T cell,
and dendritic cell infiltration.

Furthermore, higher SBNO2 expression is associated with
BMI. The leucocyte epigenome-wide association study of 60
lean and 60 obese young women was performed using the
Illumina Infinium HumanMethylation450 BeadChip [36],
and SBNO2 was found to be closely associated with obesity.
Maruyama et al. [37] also reported that SBNO2−/− mice
exhibited slightly lower body weight at 10 weeks of age than
their wild-type counterparts. Recently, the SEER database
was used to illustrate that among people older than 50 years,
GC resection was associated with increased obesity over the
period of 2002–2013 [38]. Meanwhile, Jang et al. [39] demon-
strated that compared with people in the reference BMI range
(22.6–25.0 kg/m2), those with higher BMI (>27.5 kg/m2) had
an increased risk of GC (odds ratio = 1:48, 95%CI = 1:15 –
1:91). In our study, SBNO2 was found to be closely related
to GC, and higher SBNO2 expression was liked to a higher risk
of GC and worse prognosis. Therefore, we believe that SBNO2
expression is higher in people with GC, and one possible cause
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Figure 4: The overall expression levels and prognostic values of SBNO2. (a) The expression levels of SBNO2 in tumour and normal tissues
were evaluated in the TIMER database. (b) The expression levels of SBNO2 were evaluated in the GEPIA2 database. (c) The expression levels
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of its increased expression is elevated BMI. Some studies
reported that SBNO2 increases the risk of cardiovascular dis-
ease and type 2 diabetes by increasing BMI [10, 11], but the
mechanism by which SBNO2 leads to GC has not yet been
revealed.We believe that our research has provided new direc-
tions for exploring this issue.

5. Conclusions

Our research identified DEGs and key modules contributing
to GC and clarified the expression levels and prognostic value
of SBNO2, thereby offering novel insights into the develop-
ment and treatment of gastric cancer.
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Figure 5: The subtype analysis of expression levels and prognostic values of SBNO2. (a–f) The different expressions of SBNO2 in gender, age,
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