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Breast cancer is the most common cancer observed in adult females, worldwide. Due to the heterogeneity and varied molecular
subtypes of breast cancer, the molecular mechanisms underlying carcinogenesis in different subtypes of breast cancer are
distinct. Recently, long noncoding RNAs (lncRNAs) have been shown to be oncogenic or play important roles in cancer
suppression and are used as biomarkers for diagnosis and therapy. In this study, we identified 134 lncRNAs and 6,414 coding
genes were differentially expressed in triple-negative (TN), human epidermal growth factor receptor 2- (HER2-) positive,
luminal A-positive, and luminal B-positive breast cancer. Of these, 37 lncRNAs were found to be dysregulated in all four
subtypes of breast cancers. Subtypes of breast cancer special modules and lncRNA-mRNA interaction networks were
constructed through weighted gene coexpression network analysis (WGCNA). Survival analysis of another public datasets was
used to verify the identified lncRNAs exhibiting potential indicative roles in TN prognosis. Results from heat map analysis of
the identified lncRNAs revealed that five blocks were significantly displayed. High expressions of lncRNAs, including
LINC00911, CSMD2-AS1, LINC01192, SNHG19, DSCAM-AS1, PCAT4, ACVR28-AS1, and CNTFR-AS1, and low expressions
of THAP9-AS1, MALAT1, TUG1, CAHM, FAM2011, NNT-AS1, COX10-AS1, and RPARP-AS1 were associated with low
survival possibility in TN breast cancers. This study provides novel lncRNAs as potential biomarkers for the therapeutic and
prognostic classification of different breast cancer subtypes.

1. Introduction

Breast cancer is the most frequently occurring cancer and the
second cause of female cancer mortality worldwide. Accord-
ing to a report from the International Agency for Research on
Cancer, breast cancer accounts for approximately 11.6% of
cancer incidences [1]. Although deaths caused by breast can-
cer have declined over time due to the development of new
diagnostic and therapeutic strategies, the molecular mecha-
nisms underlying this disease remain to be revealed. As
breast cancers are notoriously heterogeneous, clinical and
morphologic signatures are diversified. Consequently, the
exact classification of breast cancer is a challenge for clini-

cians and scientist. Variations in the expressions of the estro-
gen receptor (ER), human epidermal growth factor receptor
2 (HER2), and progesterone receptor (PR) can be used to
classify breast cancers into four major intrinsic molecular
subtypes: triple-negative (TN), luminal A, luminal B, and
HER2-positive [2]. TN breast cancers are well-known as
lacking ER and PR as well as HER2 [3]. Luminal A breast
cancers are defined as ER-positive, HER2-negative, and
“low” recurrence risk, partially expressing PR [4]. Luminal
B breast cancers are characterized by HER2-positive, ER
and PR-negative, and a high histologic grade [5]. HER2-
positive breast cancers are defined as HER2-positive and
lacking of ER and PR. Along with ER, PR, and HER2, many
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other molecular genes also have been used to subtype breast
cancers. High expression of Ki67, known as a proliferation
marker, was usually been used to define breast cancer sub-
types [6]. Molecular classifications are using multigene assays
to classify breast cancers into low- and high-risk groups for
personalized therapy [7, 8]. Many genes have been found as
signatures in the diagnosis and prognosis of breast cancer.
Decreased levels of uPA and PAI-1 are associated with lower
risk of cancer recurrence, and overexpression of Ki67, cyclin
D, cyclin E, p27, and p21 indicates uncontrolled tumor cell
proliferation [9]. The molecular interaction regulation mech-
anisms mediating heterogeneity and different molecular sub-
types of breast cancer need to be further probed.

Long noncoding RNAs (lncRNAs), which are 200
nucleotides in length and play important roles in various
biological pathways, have been shown to be oncogenic or
play important roles in cancer suppression and are used
as biomarkers for diagnosis and therapy [10, 11]. Aberrant
expressions of lncRNAs, such as MALAT1 [12], DANCR
[13], PDCD4-AS1 and [14], MIR100HG [15], are closely
associated with the occurrence and progression of breast
cancer. Overexpression of HOTAIR stimulates the inva-
sion and metastasis of breast cancer cells [16]. PIWI-
interacting noncoding RNA especially expressed in breast
cancer is a response to estrogen regulation in breast cancer
cells [17]. lncRNAs can also mediate the progression of
breast cancer by interacting with microRNAs. For exam-
ple, MEG3 acts as a suppressor to inhibit cell epithelial-
mesenchymal transition by sponging miR-421 and target-
ing E-cadherin in breast cancer [18]. Highly expressed
H19/low miR-675 and low NEAT1/high miR-204 could
differentiate breast cancer subtypes and could be consid-
ered as diagnostic and therapeutic biomarkers [19].
lncRNAs can also act as epigenetic regulators affecting his-
tone modifications and stabilize signal complexes and
nuclear structures by recruiting chromatin modification
factors [20]. Although a growing volume of lncRNAs has

been found playing varied roles in the pathogenesis of
breast cancer and drug resistance, their biological partici-
pation mechanisms are not yet fully understood.

TN breast cancer is a heterogeneous subtype of breast
cancers with poor prognosis and is beginning to be refined
by molecular characteristics. Based on gene expression
profiles, six TN breast cancer subtypes were classified
[21]. As the high heterogeneous of TN breast cancer, it is
necessary to disclose its molecular characteristics and iden-
tify effective clinical strategy to improve the therapeutic
approach. A series of lncRNAs has been found dysregulated
in TN breast cancer [22]. lncRNAs are involved in the reg-
ulation of most mammalian protein coding genes, which
are responsible for various cellular processes such as cell
differentiation, development, proliferation, and apoptosis.
Exploitation of the function of dysregulated lncRNAs will
provide potential clinical applications for TN’s diagnosis
and treatment. WGCNA can be used to identify key
lncRNAs associated with multiple cancer pathogenesis and
progression [23–26]. Survival analysis verified the identified
lncRNAs possessing potential indicative roles in TN prog-
nosis. These survival expectation indictors associated with
coexpressing coding genes formed coexpressed axes, which
could act as attractive therapeutic targets for the treatment
of TN breast cancer. The workflow of this study is summa-
rized in Figure 1.

2. Materials and Methods

2.1. Breast Cancer Expression Profiles Downloaded from Gene
Expression Omnibus. The public datasets GSE45827 and
GSE58812 were downloaded from the NCBI Gene Expres-
sion Omnibus (GEO). GSE45827 includes 41 TN, 30 HER2,
29 luminal A, and 30 luminal B breast cancer patients and
11 normal tissue samples [27]. GSE58812 includes 107
triple-negative breast cancer patients [28]. Normal tissue
samples were used as a control to identify differentially
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Figure 1: Flow diagram of this study. First, breast cancer expression profiles were downloaded from Gene Expression Omnibus. Second, the
pipeline of lncRNA classification was utilized to identify lncRNA expression. Third, constructed and analysis breast cancers associated
network-based on WGCNA. Finally, validation of the prediction roles of identified lncRNAs in TN breast cancers was performed by
survival analysis.
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expressed coding genes (DEGs) and differentially
expressed lncRNAs (DElncRNAs). In order to reduce the
bias of different data resources, datasets adopted in this
study were both based on the same GPL570 platform.
The type of microarray was Affymetrix Human Genome
U133 plus 2.0 Array. All raw data preprocessing was con-
ducted in the R software environment. The Affy package
was adopted to process the initial datasets [29]. A robust
multiarray average function was used to detect and nor-
malize the expression of probes. The Limma package was
used for differential expression analysis [30]. The Benja-
mini and Hochberg method was used to control the false
discovery rate (FDR). The adjusted p values were used to
control the FDR. The FDR ratio was set as 5%. Adjusted
p values < 0.05 and log ðfold changeÞ > 1 were selected
as the thresholds for DEGs and DElncRNAs.

2.2. lncRNA Classification Pipeline. The pipeline of lncRNA
classification was utilized to identify lncRNA expression as
previously described [31], with minor modifications. The
Affymetrix HG-U133 plus 2.0 probe set ID was mapped to
the latest NetAffx annotation files. First, we extracted the
probe sets with RefSeq IDs labelled as “NR_”. For the selected
probe sets annotated with Ensembl gene IDs, we annotated
with lncRNA, processed the transcript noncoding and anti-
sense according to Homo_sapiens.GRCH38.96.gtf. The last
probe sets without Ensembl gene IDs were filtered using
pseudogenes, rRNAs, microRNAs, snoRNA, and tRNAs
according to NetAffx annotation files. Finally, we obtained
2,553 Affymetrix probe IDs, which were annotated as
lncRNA transcripts (1,870 annotated lncRNAs).

2.3. Construction of a Weighted Gene Coexpression Network
and Identification of Modules Associated with Different
Subtypes of Breast Cancer. WGCNA was adopted to identify
coexpression modules [32]. The signed weighted correlation
network was constructed by the first creating a matrix of
pairwise correlations between all pairs of genes [33]. The
power of seven was interpreted as a soft threshold of the cor-
relation matrix. Depending on the resulting adjacency
matrix, we calculated the topological overlap matrix, which
measures the interconnectedness of the coexpression net-
work. Then, genes with highly similar coexpression rela-
tionships were grouped together by hierarchical clustering
based on the topological overlap matrix. The Dynamic
Hybrid Tree Cut algorithm was adopted to define mod-
ules, meaning the coexpression genes. Module eigengenes
were defined as the first principal component to represent
each module. Finally, modules were merged based on cor-
relation above 0.85. After identifying the coexpression
modules, we associated modules with each sample type.
Modules with correlation > 0:5 (p < 0:01) were picked up
as respective subtypes of breast cancer.

2.4. Construction and Analysis of lncRNA-mRNA
Coexpression Network. Based on the Pearson correlation
coefficient of lncRNA-mRNA, we constructed breast
cancer-related lncRNA-mRNA coexpression networks. The
threshold of selection for lncRNA-mRNA pairs was set at

an absolute value of the Pearson correlation coefficient above
0.6. Topological analysis of the coexpression network was
performed using the Cytoscape (version 3.7.1) software
[34]. Hub genes were determined using high connectivity
of genes by summing the connection strengths with other
module genes.

2.5. Gene Ontology Analysis. Gene ontology analysis of
identified modules and core genes was performed using
DAVID 6.8 [35]. The corrected FDR of a p value < 0.05
was selected as the threshold for enrichment of the GO_
FAT terms.

2.6. Validation of Identified lncRNA Roles in TN Cancer
Classification. The dataset GSE58812 was used to verify the
important roles of identified DElncRNAs. Preprocessing of
GSE58812 was conducted in the R software as described
above. After obtaining the expression matrix of the datasets,
these TN cancer samples were classified into groups based
on principal component analysis. The clustering was per-
formed by package ggfortify of R [36]. As the raw reference
of GSE58812 classified the 107 TN breast cancer samples into
three subtypes, we set the cluster number as 3. According to
the clinical data of these TN cancer samples, survival analysis
was performed using survminer package [37]. The median of
DElncRNA expressions among different TN cancer sample
groups was adopted to display the panel of predicting sur-
vival expectation.

3. Results

3.1. DEGs and DElncRNAs in Different Subtypes of Breast
Cancer Patients. After applying lncRNA classification, we
annotated the microarray with 17,242 coding genes and
1,870 lncRNAs. We identified 3,514 coding genes and 96
lncRNAs, 3,181 coding genes and 87 lncRNAs, 2,198 coding
genes and 60 lncRNAs, and 2,841 coding genes and 70
lncRNAs differentially expressed in TN, HER2, luminal A,
and luminal B breast cancers compared to normal tissues
(Figure 2). The four different subtypes of breast cancer shared
37 common differentially expressed lncRNAs (Figure 3(a)).
Most of the 37 common differentially expressed noncoding
RNAs were downregulated in the four different subtypes of
breast cancers compared to normal tissues (Table 1). This
means that the downregulated lncRNAs may be the tumor
suppressor genes in the normal tissues. Only five lncRNAs
(HOTAIR, DLEU2, THAP9-AS1, POLR2J4, and
LINC01614) were upregulated (Figures 3(e)–3(f)). LncRNA
HOTAIRhas been proven to play a significant role in promot-
ing invasion of breast cancer cells [38]. DLEU2 was reported
to play a role in response to estrogen regulation in human
breast cancer cell line [39]. POLR2J4 has also been used to
predict recurrence-free survival in hepatocellular carcinoma
[40]. Knockdown of LINC01614 inhibits lung adenocarci-
noma cell progression [41]. THAP9-AS1 was the first time
observed to be associated with breast cancer.

3.2. WGCNA Analysis of the Coding Genes and lncRNAs. The
combination of these differentially expressed coding genes
and lncRNAs formed a matrix dataset including 6,414 genes
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and 134 lncRNAs among 141 samples. The network was con-
structed with the soft threshold power of 7 (Figure 4(a)). We
identified 15 gene modules based on a minimummodule size
of 30 merged modules with eigengene correlation above 0.85.
Modules related to different breast cancer subtypes are
shown in Figure 4(b). A gene dendrogram was obtained
using average linkage hierarchical clustering. The color row
was painted according to the expression values of genes in
the dendrogram. The turquoise module was highly associated
with TN, and midnight blue was related to HER2 and lumi-
nal B breast cancers. Luminal B breast cancer was highly
associated with the grey modules compared to other subtypes
of breast cancers. Luminal A has three relatively high mod-
ules including black, green, and magenta. Luminal A and
luminal B have the same relationship with the green modules
(Figure 4(c)). These related modules will provide more infor-
mation for subtyping of different breast cancers. In addition,
the brown and blue modules were, respectively, positively

and negatively correlated with normal tissue samples. The
15 gene modules eigengenes were classified into three groups
using hierarchical clustering (Figure 4(d)).

3.3. Construction of Breast Cancer-Related lncRNA-mRNA
Coexpression Networks. Based on the Pearson correlation
coefficients of lncRNA-mRNA, we constructed breast
cancer-related lncRNA-mRNA coexpression networks using
WGCNA. The threshold for the selection of lncRNA-mRNA
pairs was set at an absolute value of the Pearson correlation
coefficient above 0.6. The TN-related lncRNA-mRNA coex-
pression network derived from the turquoise module consists
of 19 lncRNAs and 218 DEGs (Figure 5(a)). Maternally
expressed gene 3 (MEG3) was the hub of lncRNA in the con-
structed network with 219 interaction links. Previous studies
showed that MEG3 was downregulated in various types of
cancers including breast cancer. Meta-analysis demonstrated
that low expression of MEG3 is associated with poor survival
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Figure 2: Identification of differentially expressed coding genes and lncRNAs among the four molecular subtypes of breast cancers.
Hierarchical analysis showed differentially expressed coding genes and lncRNAs compared to normal tissue samples. The upper chart was
for DEGs and the bottom for DElncRNAs (a–d). TN breast cancers identified 3,514 DEGs and 96 DElncRNAs (a). HER2 breast cancers
identified 3,181 DEGs and 87 DElncRNAs (b). Luminal A breast cancers identified 2,198 DEGs and 60 DElncRNAs (c). Luminal B breast
cancers identified 2,841 DEGs and 70 DElncRNAs (d).
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in cancer patients [42]. GO analysis of MEG3 linked 219
genes, which enriched cell adhesion, cell proliferation,
immune system processes, and other processes. The network
could provide useful information for the mechanism of
MEG3. CEP55, MELK, and KIF11 were the top 3 degree
DEGs in the network. CEP55 is a determinant of cell fate dur-
ing perturbed mitosis in breast cancer [43].

Luminal A- and luminal B-related lncRNA-mRNA coex-
pression network derived from the green module consists of
9 lncRNAs and 144 DEGs. LINC01116, LINC01087,
AC110619, FOXP4-AS1, and TP53TG1 were the top nodes

in this network, while MLPH, AGR2, SMIM4, FOXA1,
INPP4B, MAGED, P4HTM, and AGR3 mediated the con-
nection of the whole network.

Normal tissue-related lncRNA-mRNA coexpression
network derived from the brown module consists of 23
lncRNAs and 405 DEGs. The top nodes in this network were
ADMTS9-AS2, HSD11B1-AS1, LINC01697, MIR497HG,
LINC01140, and CARMN. BTNL9 and TNS1 were the top
degree DEGs in the constructed network. TNS1 modulated
the activation of Cdc42 to regulate cell invasion in breast
cancer [44]. The nonnormal-related lncRNA-mRNA
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Figure 3: Venn diagram of DElncRNAs among the four molecular subtypes of breast cancer. Venn diagram shows the interactions of
DElncRNAs among the four different molecular subtypes of breast cancer (a). The expression of five upregulated DElncRNAs in the four
different subtypes of breast cancer and normal tissues was plotted by ggstatsplot (b–f). The expression values of upregulated DElncRNAs
were shown as HOTAIR (b), DLEU2 (c), THAP9-AS1 (d), POLR2J4 (e), and LINC01614 (f).
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coexpression network derived from the blue module was
negatively related with normal samples. This cancer-related
lncRNA-mRNA coexpression network consists of 38
lncRNAs and 496 DEGs. LINC00408, AC099342.1,
LINC02053, LINC01720, and AC245123.1 were the top
nodes in this network, while DEFB106A, LECT2, TRIM49,

BOLL, OPHN1, ZNF835, and EPPIN were the top degree
DEG nodes in the network.

3.4. Function Annotation of Breast Cancer-Related lncRNAs.
We performed function annotation of these constructed
lncRNA-mRNA coexpression networks using the DAVID

Table 1: The fold changes of core 37 DElncRNAs in breast cancer compared to normal tissue.

lncRNA symbol lncRNA Ensembl ID
TN Her2 positive Luminal A positive Luminal B positive

Fold change P.Val Fold change P.Val Fold change P.Val Fold change P.Val

DLEU2∗ ENSG00000231607 2.17 2:84E‐06 2.04 2:43E‐05 2.21 1:32E‐05 2.10 2:39E‐06
HOTAIR∗ ENSG00000228630 3.14 4:22E‐03 7.90 5:11E‐09 2.51 2:61E‐02 5.13 6:74E‐06
LINC01614∗ ENSG00000230838 5.10 2:32E‐07 11.35 3:48E‐11 11.18 5:68E‐10 16.97 1:30E‐11
POLR2J4∗ ENSG00000214783 3.44 5:91E‐10 3.17 6:65E‐10 3.13 7:34E‐11 2.87 2:66E‐09
THAP9-AS1∗ ENSG00000251022 2.68 1:17E‐06 2.44 2:61E‐05 2.81 1:58E‐07 2.43 8:58E‐06
AC005064.1 ENSG00000234715 -3.03 2:72E‐09 -3.08 1:10E‐07 -2.05 1:41E‐03 -2.90 2:47E‐08
AC099342.1 ENSG00000226097 -4.04 2:82E‐14 -4.00 2:79E‐11 -3.79 2:66E‐10 -3.74 1:84E‐10
AC245123.1 ENSG00000277526 -2.21 2:04E‐12 -2.18 1:69E‐10 -2.28 1:34E‐10 -2.23 3:34E‐10
ACVR2B-AS1 ENSG00000229589 -3.05 2:04E‐15 -3.22 1:69E‐13 -2.88 1:17E‐10 -3.02 2:71E‐12
ADAMTS9-AS2 ENSG00000241684 -5.70 1:03E‐16 -5.03 5:99E‐13 -3.06 6:45E‐07 -5.24 2:51E‐14
AP001816.1 ENSG00000254531 -2.42 1:90E‐11 -2.10 4:98E‐06 -2.09 8:57E‐09 -2.05 1:05E‐06
AP002518.1 ENSG00000256195 -2.10 4:86E‐09 -2.20 8:35E‐08 -2.16 1:76E‐07 -2.20 1:34E‐07
AP003110.1 ENSG00000255084 -2.03 1:19E‐07 -2.02 1:98E‐06 -2.10 1:27E‐07 -2.04 1:60E‐06
CARMN ENSG00000249669 -6.18 4:66E‐15 -4.67 2:23E‐11 -3.02 7:51E‐09 -4.10 1:78E‐11
FGF14-AS2 ENSG00000272143 -2.23 2:36E‐06 -2.90 1:26E‐13 -2.41 2:13E‐09 -2.57 9:86E‐10
FZD10-AS1 ENSG00000250208 -2.62 7:84E‐14 -2.66 3:70E‐14 -2.08 7:17E‐09 -2.57 7:81E‐12
GAS1RR ENSG00000226237 -2.38 6:27E‐09 -2.68 3:76E‐10 -2.18 1:95E‐08 -2.43 6:91E‐09
GLIDR ENSG00000278175 -2.89 5:85E‐11 -3.65 1:61E‐11 -2.02 3:05E‐07 -2.99 1:61E‐11
HOTAIRM1 ENSG00000233429 -3.59 4:33E‐08 -3.80 9:15E‐09 -3.39 2:07E‐09 -3.89 8:96E‐12
HSD11B1-AS1 ENSG00000227591 -5.50 3:99E‐13 -5.87 1:55E‐10 -5.65 6:09E‐10 -5.94 1:42E‐10
LINC00358 ENSG00000229578 -2.25 7:11E‐11 -2.27 1:52E‐08 -2.19 6:90E‐08 -2.21 6:47E‐08
LINC00408 ENSG00000226250 -6.38 1:23E‐22 -6.15 2:14E‐18 -4.85 9:77E‐14 -5.02 6:61E‐15
LINC00968 ENSG00000246430 -2.17 1:36E‐06 -2.20 1:63E‐05 -2.18 2:13E‐05 -2.21 1:29E‐05
LINC01140 ENSG00000267272 -3.15 2:57E‐07 -3.20 3:98E‐06 -2.15 1:27E‐03 -2.65 8:56E‐06
LINC01192 ENSG00000241369 -2.38 2:37E‐08 -2.42 6:29E‐07 -2.51 4:75E‐07 -2.57 2:07E‐07
LINC01697 ENSG00000232079 -5.65 7:26E‐18 -5.65 7:39E‐15 -4.53 1:53E‐09 -5.73 7:03E‐15
LINC01720 ENSG00000231175 -2.05 1:58E‐11 -2.06 1:88E‐09 -2.02 3:89E‐09 -2.03 1:08E‐09
LINC02053 ENSG00000241696 -5.70 6:69E‐18 -5.53 1:07E‐13 -5.59 6:05E‐13 -5.07 2:61E‐12
LINC02535 ENSG00000234155 -2.09 8:56E‐11 -2.13 5:70E‐09 -2.15 6:59E‐09 -2.12 1:07E‐08
MEG3 ENSG00000214548 -6.39 3:25E‐15 -3.67 3:67E‐06 -2.37 9:12E‐05 -3.64 1:20E‐07
MIR497HG ENSG00000267532 -2.69 2:77E‐17 -2.82 1:69E‐14 -2.34 1:84E‐11 -2.68 3:47E‐13
PGM5-AS1 ENSG00000224958 -2.35 2:44E‐06 -3.22 4:17E‐09 -2.18 5:62E‐07 -2.35 4:72E‐06
PRICKLE2-AS3 ENSG00000226017 -2.26 2:07E‐09 -2.13 6:53E‐07 -2.15 1:11E‐06 -2.31 9:74E‐08
SNHG29 ENSG00000175061 -3.47 5:31E‐10 -4.40 5:21E‐09 -2.37 2:28E‐07 -3.57 5:97E‐09
TRHDE-AS1 ENSG00000236333 -2.68 3:80E‐08 -2.87 1:82E‐08 -2.63 1:08E‐07 -2.68 3:80E‐08
WARS2-AS1 ENSG00000231365 -2.21 1:39E‐11 -2.49 1:46E‐12 -2.18 5:92E‐09 -2.31 4:35E‐09
ZNF436-AS1 ENSG00000249087 -2.88 1:03E‐10 -3.10 2:83E‐10 -2.57 6:59E‐09 -2.75 2:95E‐09
The five DElncRNAs upregulated in all the four breast cancer subtypes were marked with “∗”.
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system. The TN-related lncRNA-mRNA coexpression net-
work was involved in cell cycle control and cell proliferation
(Figure 6(a)). The current result is consistent with results
from previous studies, which showed that overexpression of
MEG3 suppresses the proliferation of breast cancer cells
[45]. The luminal A- and luminal B-related lncRNA-
mRNA coexpression network was involved in carboxylic acid
and organic acid transport or metabolic processes and the
response to hormone stimulus (Figure 6(b)). That may be
the reason why prognosis of these two subtypes of breast can-
cer is better than that of others. GO analysis of the normal-
related lncRNA-mRNA coexpression network enriched
blood vessel development and morphogenesis and the angio-

genesis term (Figure 6(c)). That means the brown module is
essential for normal tissue maintenance. GO analysis of the
normal negative-related lncRNA-mRNA coexpression
networks enriched protein transport terms such as Golgi
vesicle transport and vesicle organization (Figure 6(d)).
These lncRNAs interact with coding genes and mediate
cancer cell protein transport and cellular morphology dur-
ing tumorigenesis.

3.5. DElncRNAs Act as Survival Expectation Indictors Verified
Using Public Datasets. The TN breast cancer samples of data-
set GSE58812 were classified into three clusters based on the
expression of these DElncRNAs (Figure 7(a)). According to
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Figure 4: Fifteen gene modules were identified based on differentially expressed coding genes and lncRNAs. Selection of soft thresholding
powers for WGCNA (a). Red line corresponds to 0.9. As the lowest power satisfies the approximate scale-free topology criterion, number
7 was interpreted as a soft threshold of the correlation matrix (a). Heat map of gene dendrogram assigned to the four different subtypes of
breast cancer. The color row was painted according to expression values of genes in the dendrogram (b). Relationships of module
eigengenes and different breast cancer subtypes showed in these datasets. Each row in the table corresponds to the identified 15 gene
modules, and each column corresponds to the sample types. The correlations of the corresponding module eigengenes, samples, and
p values were labelled in the table. The colors of the tables were painted corresponding to the correlation between gene modules
and samples (c). 15 gene module eigengenes were classified into three groups by hierarchical clustering (d).
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the clinical data of these TN cancer samples, survival analysis
of the three clusters displayed different survival probabilities.
The KM curves with a p value of pairwise comparisons for
the three clusters are shown in Figure 7(b). The survival
probability of cluster 3 was 50% lower than those of cluster
1 or 2 (75%). Five blocks that acted as signature predictors
of survival in TN breast cancer patients were significantly
displayed using heat map analysis (Figure 7(c)). This means
that different DElncRNAs play different roles in TN breast
cancer progression by promoting or inhibiting cancer pro-
gression. The DElncRNAs THAP9-AS1, MALAT1, TUG1,
CAHM, FAM2011, NNT-AS1, COX10-AS1, and RPARP-
AS1 were lowly expressed in cluster 3 compared with those
of cluster 1 and 2 samples. The analysis of the TCGA data-
base showed that higher expression of TUG1 was associated
with better prognosis in breast cancer patients [46]. This is
consistent with our bioinformatics prediction. LINC00911,
CSMD2-AS1, LINC01192, SNHG19, DSCAM-AS1, PCAT4,
ACVR28-AS1, and CNTFR-AS1 were highly expressed in
cluster 3. The relative expression values of DElncRNAs can
be used as a predictor for survival expectation.

In order to detect the prediction roles of identified 97
lncRNAs individually, we performed survival analysis of sin-
gle gene expression and TN breast cancer prognosis. The pre-
diction with significant p values between high and low
expression values is displayed in Figure 8. High expression
of LINC00911 (Figure 8(a)), H19 (Figure 8(b)), and
MIRLRT7BHG (Figure 8(c)), respectively, predicted poor
survival in TN breast cancer. High expression of MIR155HG
(Figure 8(d)), CHAM (Figure 8(e)), and FAM13A-AS1
(Figure 8(f)), respectively, were associated with higher sur-
vival probability. This was consistent with the above panel
prediction. The individual expression of LINC00911, H19,
and MIRLRT7BHG can be used as a predictor for poor prog-
nosis. MIR155HG, CHAM, and FAM13A-AS1 can be used
as a positive predictor for survival probability.

3.6. The Coexpressing Coding Genes of Survival Expectation
Indictors Extracted from the Above lncRNA-mRNA
Coexpression Networks. From the above identified TN,
luminal A, luminal B, and normal tissue-associated
lncRNA-mRNA coexpression networks, useful interaction

(a) (b)

(c) (d)

Figure 5: Results of different breast cancer subtype-related lncRNA-mRNA coexpression networks. The coexpression networks of TN-
related module—turquoise (a), luminal A- and luminal B-related module—green (b), normal-related module—brown (c), and normal
negative-related module—blue (d). Nodes with a V shape arrow are lncRNAs. Nodes with ellipse are mRNAs. Key lncRNAs and mRNAs
in the network are, respectively, highlighted in yellow and red colors. The size of the nodes corresponds to their degrees.
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information of lncRNAs, and coding genes could be
found. LncRNAs LINC00911, LINC01192, PCAT4, and
CNTFR-AS1 were listed in the normal samples that were
negatively related to the blue module. Extraction of the
lncRNA-mRNA interaction network is displayed in
Figure 9(a). The four highly expressed lncRNAs associated
with 31 coding genes formed a coexpression network. The
top degree coding genes were painted with red colors.
Several coding genes have been found playing important
roles in recurrence, poor diagnosis, and low survival probabil-
ities. Multivariable analyses revealed that LECT2 as one of the
predictors for both breast carcinoma recurrence and mortality
among smokers [47]. Differentially expressed ZNF835 was
associated with ethnicity in colorectal cancer patients [48].
The positive of oligophrenin-1 was significantly correlated
with a high Gleason score in prostate cancer [49]. Methyl-
DNA binding domain capture technique identified Kcnv1 as
a diagnostic marker for early noninvasive detection and subse-
quent breast cancer surveillance [50]. Brain-derived neuro-
trophic factor (BDNF) is a potent neurotrophic factor that
has been shown to stimulate breast cancer cell growth and

metastasis via tyrosine kinase receptors. The methylation
of BDNF gene may be a biomarker for suicidal thoughts
in patients with breast cancer [51]. BDNF/TrkB pathways
activated microRNAs to act as prognostic and predictive
biomarkers for detecting patients at a high risk of develop-
ing breast cancer [52]. This suggested that lncRNA inter-
acted with Kcnv1 modification methylation levels to
mediate survival in TN breast cancer. Increasing expression
of SCD5 promoted tumor cell survival in breast cancer
[53]. Phosphorylation of hnRNPK S379 participates in the
regulation of the migration of triple-negative MDA-MB-
231 cells via the EMT signaling pathway [54]. Although
there is no information about the function of YWHA, but
upregulation of one member of YWHAZ (also known as
14-3-3ζ) had been found associated with poor clinical out-
come in breast cancer [55].

Cluster 3 lowly expressed lncRNAs, THAP9-AS1 and
TUG1, were also listed in the normal samples negatively
related to the blue module. Extraction of the lncRNA-
mRNA interaction network displayed that the splicing factor
SRSF10 bridged those two lowly expressed lncRNAs to
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Figure 7: Verification of the inductive roles of identified DElncRNAs based on public datasets. The TN cancer samples were classified into
three clusters (a). Survival analysis of the three clusters showed different survival probability (b). The panels of identified 97 lncRNAs act as
signature predictors of survival of TN breast cancer patients (c).
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mediate the coexpression network (Figure 9(b)). SRSF10, as a
splicing factor, has been found playing important roles in
colon and cervical cancer oncogenesis by mediating alterna-
tive splicing [56, 57]. Whether SRSF10 plays a similar role
in breast cancer or not requires more experimental confirma-
tion. The survival expectation indictors associated with coex-
pressing coding genes formed coexpressed axes, which could

act as attractive therapeutic targets for the treatment of TN
breast cancer.

4. Discussion

Although deaths from breast cancer have declined over time,
its molecular mechanism remains to be revealed. Owing to
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Figure 8: The prediction with significant p values between high and low expression values with TN breast cancer prognosis. High expression
of LINC00911 (a), H19 (b), andMIRLRT7BHG (c) predicts poor survival in TN breast cancer. High expression of MIR155HG (d), CHAM (e)
and FAM13A-AS1 (f), respectively, is associated with higher survival probability.
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the notorious heterogeneity of breast cancers, it is meaning-
ful to not only classify them based on clinical and morpho-
logic characteristics but also consider intrinsic molecular
signatures. Compared with other breast cancers, TN breast
cancer was characterized as young onset, high malignancy,
easy recurrence, and low survival rates [58]. In addition,
TN breast cancer lacks ER and PR as well as HER2 receptor.
There are no effective targets of endocrine therapy and tar-
geted therapy for TN breast cancer. It is necessary to identify
new molecular targets for TN breast cancer therapy. In our
work, we aimed to identify key lncRNAs associated with
TN, HER2, luminal A, and luminal B breast cancers. In total,
6,414 coding genes and 134 lncRNAs were found to be dys-
regulated in different subtypes of breast cancers. A core of
37 lncRNAs was found to be dysregulated in all the four sub-
types of breast cancers. Subtypes of breast cancer special
modules and lncRNA-mRNA interaction networks were
obtained usingWGCNA. Moreover, survival analysis of pub-
lic datasets (GSE58812) verified the identified lncRNAs,
which could act as indicators for triple-negative breast cancer
prognosis.

Studies on lncRNAs in breast cancer are still in the early
stages, and the roles of lncRNAs in breast cancer remain to be
elucidated. In the notorious heterogeneity of breast cancers,
there is still a core of 37 lncRNAs which dysregulated in all
the four major subtypes of breast cancers. Most of the core
37 lncRNAs were downregulated compared to the normal
tissues. Only five lncRNAs were upregulated in breast cancer.
This indicates that the downregulated lncRNAs may be the
tumor suppressor genes in normal tissues. For example,
MEG3 is listed in the 32 downregulated core lncRNAs as

being downregulated in various types of cancers including
breast cancer. Meta-analysis demonstrated that low expres-
sion of MEG3 is associated with poor survival in cancer
patients [42]. The TN-related lncRNA-mRNA coexpression
network derived from the turquoise module displayed
MEG3 coexpression pairs. CEP55, MELK, and KIF11 were
the top three high degree DEGs in the network. CEP55 is a
determinant of cell fate during perturbed mitosis in breast
cancer [43]. MELK acts as a potential therapeutic target for
TN breast cancer and other aggressive malignancies [59]. A
recent study demonstrated that MELK can be upregulated
by LINC02418 in colorectal cancer [60]. Recently, a few
lncRNAs were reported to function as scaffold molecules
recruiting chromatin-modifying complexes to regulate gene
expression [61]. lncRNAs can also act as miRNA sponge to
reverse miRNA suppression of its target genes [62]. Con-
structions of breast cancer-related lncRNA-mRNA coexpres-
sion networks could provide useful information for lncRNA-
mRNA interaction mechanism in breast cancer progression.
In this study, we found SRSF10 bridged THAP9-AS1 and
TUG1 to mediate the coexpression network. As the splicing
factor function of SRSF10, the low expression of THAP9-
AS1 and TUG1 in cluster 3 may be related to alternative
splicing.

lncRNAs may serve as biomarkers for diagnostic and
prognostic purposes and also as potential therapeutic targets
in cancer. Several studies have provided insights into the
potential clinical implications of lncRNAs in breast cancer.
For example, DSCAM-AS1 mediates tumor progression
and tamoxifen resistance [63] and HOTAIR reprograms the
polycomb repressive complex binding pattern in breast

(a) (b)

Figure 9: The coexpressing coding genes of survival expectation indictors extracted from the identified lncRNA-mRNA coexpression
networks. The four highly expressed lncRNAs associated with 31 coding genes to form a coexpression network (a). Top degree coding
genes were painted with red color. The splicing factor SRSF10 bridged those two lowly expressed lncRNAs THAP9-AS1 and TUG1
mediated coexpression network (b). SRSF10 was painted with yellow color.
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cancer [64]. The relative expression values of DElncRNAs
can be used as predictors for survival expectation in TN
breast cancer. Interestingly, the expressions of THAP9-AS1
and DLEU2 were relatively lower in cluster 3 and were the
only five upregulated lncRNAs in breast cancer samples.
There is a paradox between panel lncRNAs and individual
lncRNAs prediction of survival probability. H19 and
MIRLRT7BHG lined in the last block which means high
expression predict high survival probability. High expression
of H19 and MIRLRT7BHG was significant related with poor
prognosis, since H19 is an estrogen-inducible gene and plays
a key role in cell survival and especially in estrogen-induced
cell proliferation such as MCF-7 cells [65]. The expression
pattern of H19 in TN breast cancers may be different from
ER-positive breast cancer. Disclosing the expression pattern
of H19 will provide clues for TN breast cancer diagnosis
and progression.

Considering the notorious heterogeneity of breast can-
cers, exact classification needs more molecular markers. In
addition, more efforts are needed to detect the relationship
between the expressions of these lncRNAs and breast cancer
progression. Jiang and colleagues developed a reliable tool to
predict tumor recurrence and the benefit of taxane chemo-
therapy based on an integrated mRNA-lncRNA signature
in TN breast cancers [66]. Moreover, further validation in
prospective clinical trials of those identified lncRNAs could
provide new therapy strategy for the treatment of TN breast
cancers. In addition, a huge number of microarray expres-
sion profiles of cancer samples are deposited in the public
database. With the improvement of annotation information
especially, more and more noncoding genes have been found
playing important roles in carcinogenesis; mining of those
microarray datasets is necessary and would provide novel
knowledge about cancer diagnosis and treatment.

We should also point out that there were some limita-
tions in this study. First, the datasets used to identify the
differentially expressed DEGs and DElncRNAs were down-
loaded from a public database and were not validated by
quantitation experiments. Second, due to the limit of the
sample size, the KM curves with a p value of pairwise com-
parisons for the three TN breast cancer clusters were not sta-
tistically different enough. Therefore, further validation of
the roles of these lncRNAs would be required in future
experiments.

5. Conclusions

In conclusion, we identified 134 lncRNAs to be closely
related to different subtypes of breast cancers. Based on
WGCNA analysis, we constructed breast cancer-related
lncRNA-mRNA coexpression networks. The constructed
lncRNA-mRNA coexpression networks provided useful
information for uncovering the mechanism of lncRNAs in
breast cancer genesis. Bioinformatics analysis revealed that
lncRNA-mRNA coexpression networks were involved in cell
cycle checkpoint, carboxylic acid and organic acid transport,
metabolic processes, response to hormone stimulus, Golgi
vesicle transport, and vesicle organization. The survival anal-
ysis of public datasets verified the identified lncRNAs, which

acted as indicators for TN breast cancer prognosis. These
survival expectation indictors are associated with coexpres-
sing coding genes to form coexpressed axes, which could
act as attractive therapeutic targets for the treatment of TN
breast cancer.
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