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�e success of immune checkpoint inhibitors (ICIs) in an increasing range of heavily mutated tumor types such as melanoma 
has culminated in their exploration in different subsets of patients with metastatic colorectal cancer (mCRC). As a result of their 
dramatic and durable response rates in patients with chemorefractory, mismatch repair-deficient-microsatellite instability-high 
(dMMR-MSI-H) mCRC, ICIs have become potential alternatives to classical systemic therapies. �e anti-programmed death-1 (PD-
1) agents, Pembrolizumab and Nivolumab, have been granted FDA approval for this subset of patients. Unfortunately, however, not 
all CRC cases with the dMMR-MSI-H phenotype respond well to ICIs, and ongoing studies are currently exploring biomarkers that 
can predict good response to them. Another challenge lies in developing novel treatment strategies for the subset of patients with 
the mismatch repair-proficient-microsatellite instability-low (pMMR-MSI-L) phenotype that comprises 95% of all mCRC cases in 
whom treatment with currently approved ICIs has been largely unsuccessful. Approaches aiming at overcoming the resistance of 
tumors in this subset of patients are being developed including combining different checkpoint inhibitors with either chemotherapy, 
anti-angiogenic agents, cancer vaccines, adoptive cell transfer (ACT), or bispecific T-cell (BTC) antibodies. �is review describes 
the rationale behind using immunotherapeutics in CRC. It sheds light on the progress made in the use of immunotherapy in the 
treatment of patients with dMMR-MSI-H CRC. It also discusses emerging approaches and proposes potential strategies for targeting 
the immune microenvironment in patients with pMMR-MSI-L CRC tumors in an attempt to complement immune checkpoint 
inhibition.

1. Introduction

1.1. Colorectal Cancer-Epidemiology and Prognosis. Colorectal 
cancer (CRC) is the third most common malignancy worldwide 
with about 1.4 million newly diagnosed cases per year [1, 2]. 
It is the third leading cause of cancer-related mortality in the 
United States and is responsible for around 700,000 annual 
deaths worldwide [2]. By the year 2030, the projected global 
burden of CRC is expected to increase by 60% [1].

Although preventive and screening strategies have been 
appropriately developed in several countries, around 25% of 
patients still present at late stages, and 25–50% of them present 
at an early stage but proceed to develop regional or distant 
metastasis later on [2, 3–8]. Among those presenting with late 
stage disease, 86% die within 5 years [9]. Despite advances in 
systemic therapy and liver-directed treatments, the prognosis 
of patients with metastatic CRC (mCRC) remains poor, with 
a low median survival ranging between 5 months and 2 years 

and a low median 5-year survival of only 12.5% in the United 
States [9].

As such, there is an unmet need for the development of 
more effective strategies to treat patients with various subsets 
of CRC [10]. In the past decade, immunotherapy has elicited 
tremendous excitement owing to its success in achieving dra-
matic and durable responses in refractory solid tumors. High 
tumor mutation burden has emerged as a marker of respon-
siveness to immunotherapy in several tumor types, including 
melanoma and nonsmall cell lung cancer (NSCLC) [11, 12]. 
Current evidence suggests that some CRC tumors have high 
mutational load and can also respond to immunotherapy [13].

1.2. Colorectal Cancer Carcinogenesis- Genetic Pathways. Colorectal 
carcinogenesis is characterized by malignant transformation 
that involves the stepwise accumulation of multiple genetic 
alterations, thus favoring the proliferation and growth 
of neoplastic cells [14–16]. CRCs arise from two distinct 
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molecular genetic pathways, the first involves chromosomal 
instability (CIN) and the second involves microsatellite 
instability (MSI) [17–20].

1.2.1. Chromosomal Instability Pathway. �e CIN pathway is 
responsible for the development of 75–80% of sporadic CRCs 
that are characterized by a high frequency of allelic imbalance, 
chromosomal amplifications, and translocations [14, 21, 22]. 
It results from a series of genetic alterations that involves 
the activation of proto-oncogenes such as K-RAS and the 
inactivation of tumor-suppressor genes, such as TP53, APC, 
SMAD2, and SMAD4 [14, 21–24].

1.2.2. Microsatellite Instability Pathway. Mismatch Repair 
(MMR) is an essential mechanism that cells use to repair 
damaged deoxyribonucleic acid (DNA). It recognizes and 
repairs DNA base insertions, deletions, and mismatches that 
arise as a consequence of DNA polymerase slippage during 
replication [22, 25, 26]. Mutational or epigenetic silencing of 
the four most common MMR genes, MutL homolog 1 (MLH 1), 
MutS homolog (MSH) 2, MSH6, and postmeiotic segregation 
2 (PMS 2), results in MSI [27–29]. �is is characterized by 
markedly elevated rates of intragenic mutations of short, 
tandemly repeated DNA sequences known as microsatellites 
[30, 31].

Although criteria used to define MSI have evolved, they 
remain somewhat elusive. Nevertheless, there is a consensus 
that markers, including the mononucleotide repeats, BAT25, 
BAT26, and BAT40, and the dinucleotide repeats, D5S346, 
D2S123, and D17S250, are particularly useful for the identi-
fication of MSI tumors [32, 33].

1.2.3. POLE Mutations. POLA1, POLD1, and POLE are 
polymerases encoded by the POLE gene, and they contribute 
to DNA repair and recombination processes [34, 35]. �e role 
of POLE mutations in carcinogenesis has been demonstrated 
in CRCs and endometrial cancers [35]. �ese mutations were 
initially described in the Cancer Genome Atlas study [36]. 
Around 25% of hyper-mutated CRCs were found to have 
somatic POLE mutations and missense or nonsense MMR 
gene mutations in the absence of any MSI or MLH1 hyper-
methylation. �ese were designated as ultra-mutated CRCs 
[36, 37].

Somatic POLE mutations can result in MSS ultra-mutated 
CRCs. Germline POLE and POLD1 mutations alter the exo-
nuclease domains of POLE/POLD1 that are responsible for 
adequate proofreading. �is culminates in an impaired MMR 
process during DNA replication. As such, carriers of germline 
POLE and POLD1 mutations tend to develop tumors that, 
despite being microsatellite stable (MSS), have an extremely 
high mutation frequency that can exceed a million base sub-
stitutions per genome [38]. Nevertheless, no strong correlation 
has been demonstrated between the increased mortality in 
MSS CRC patients and the presence of mutations in the proof-
reading domains of POLE/PODL1 [39].

Interestingly, MSS CRCs resulting from POLE mutations 
are distinct from the usual CRCs with an MSS phenotype in 
that the former tend to be ultra-mutated. �eir high muta-
tional load and increased expression of tumor-associated 

antigens render them potentially responsive to the anti-PD-1 
antibody, Pembrolizumab [40].

1.3. Colorectal Cancer Categories Based on the Mismatch Repair 
Status. CRC tumors can be categorized into two discrete 
groups based on their mutation patterns and the proportion 
of markers showing MSI. Cancer cells with deficient MMR 
(dMMR) have mutation rates that are 100- to 1,000-fold as 
compared to normal cells [13, 41, 42]. Because mutations 
in these tumors are mostly seen at microsatellites, dMMR 
tumors have also been termed MSI-high (MSI-H) (hence the 
term dMMR-MSI-H) [43]. As a result of their high mutation 
burden, dMMR-MSI-H CRC tumors can present neoantigens 
on major histocompatibility complex (MHC) class I molecules, 
thus priming T-cells to recognize them as foreign. On the 
other hand, tumors that have a proficient MMR (pMMR) 
signature have a much lower mutation burden with a rate of 
less than 8.24 mutations per 106 DNA bases [44, 45]. Since 
only a minority of markers in these tumors show evidence of 
MSI, pMMR malignancies have also been termed MSI low 
(MSI-L) (hence the term pMMR-MSI-L).

Approximately 15% of patients with CRC have dMMR-
MSI-H tumors [46, 47]. �is rate decreases by stage, with 
approximately 5% of patients with mCRC demonstrating the 
dMMR-MSI-H phenotype [43]. In contrast, the remaining 
95% of mCRC cases have the pMMR-MSI-L phenotype [48].

dMMR-MSI-H CRC tumors have a distinct pathologic 
phenotype when compared with other CRC phenotypes, 
including pMMR-MSI-L ones [49–51]. While the first subset 
of tumors more commonly originates in the proximal colon 
and is right-sided, the second subset is usually found at distal 
sites and is usually le�-sided [30, 52, 53]. Also, unlike pMMR-
MSI-L tumors, d-MMR-MSI-H tumors tend to be mucinous 
and poorly differentiated, with an expansile growth pattern, 
histologic heterogeneity, and increased tumor-infiltrating lym-
phocytes (TIL) [17, 53–56].

Interestingly, a significant relation was observed between 
the MSI status and patients’ age. Results from several studies 
by Huang et al. [57], Yuan et al. [58], Jenkins et al. [59], and 
Greenson et al. [60] have noted that whereas patients above 
50 years of age tend to have MSS CRC tumors, younger ones 
are more likely to have d-MMR-MSI-H ones. As such, most 
data suggest that an age under 50 years is a strong predictor 
of MSI.

1.4. Microsatellite Instability Status Identification 
Methods. Defective DNA MMR in CRC tumors can be 
detected by the lack of immuno-histochemical staining of the 
four MMR proteins, MLH1, MSH2, MSH6, or PMS2. It can 
also be identified using polymerase chain reaction (PCR) by 
testing for variation in the lengths of microsatellites between 
patients’ tumor cells on one hand, and blood or normal 
tissue samples on the other. �e latter method is based on 
consensus guidelines that recommend testing for the five 
specific microsatellites, BAT25, BAT26, D2S123, D5S346, and 
D17S250, and considering a tumor to be of dMMR-MSI-H 
phenotype when more than 30% of tested microsatellites have 
length variation compared to normal tissue [43]. In addition 
to the above-mentioned methods, the use of computational 
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analyses of tumor next-generation sequencing has also 
provided an effective approach in the detection of MSI status 
in the last 5 years [61–63].

1.5. Indications for Microsatellite Instability Status 
Identification. Testing for MSI status in CRC tumors was 
initially used to identify patients in whom further germline 
testing for Lynch syndrome was warranted [64]. �is is mainly 
because tumors in patients with Lynch syndrome were noted 
to more likely be of the dMMR-MSI-H phenotype. Also, 
around 33% of patients with dMMR-MSI-H CRC tumors were 
found to have Lynch syndrome or hereditary nonpolyposis 
CRC [65–69]. At present, it is recommended that all mCRC 
patients undergo testing for dMMR-MSI-H status in order to 
not only identify patients with Lynch syndrome, but also to 
guide therapy approaches, including treatment with anti-PD-1 
blockade [43].

1.6. Prognostic Implications of the Different Colorectal Cancer 
Categories. It has been established that patients with dMMR-
MSI-H CRC have superior overall survival (OS) outcomes 
and are less likely to develop distant metastases than those 
with pMMR-MSI-L CRC [52, 70]. �is positive prognostic 
implication, however, is no longer valid in case a dMMR-
MSI-H CRC tumor metastasizes or relapses following initial 
treatment. In fact, it has been shown that in the previous 
scenario, the prognosis might even become worse than that 
observed in pMMR-MSI-L mCRC [46, 71, 48].

Several studies have demonstrated an improved survival 
in patients with dMMR-MSI-H CRC tumors. For instance, in 
one population-based study that included 1,026 CRC patients, 
results showed a 60% drop in CRC-related deaths in patients 
with dMMR-MSI-H tumors. Interestingly, most of the risk 
reduction took place among stage III patients [72]. Similarly, 
in the Ontario population-based study that included 607 CRC 
patients, it was concluded that dMMR-MSI-H tumors appear 
to be predictive of a relatively favorable outcome [52].

When it comes to the relation between the MSI status of 
tumors and their potential to metastasize, studies indicate that 
regardless of the depth of tumor invasion, CRCs with dMMR-
MSI-H phenotype are less likely to spread to regional lymph 
nodes or distant organs. �is might explain why stage IV 
dMMR-MSI-H CRC constitutes only 2–4% of all mCRCs. In 
addition, significant results of a pooled analysis revealed that 
stage II pMMR-MSI-L tumors are 1.6 times more likely than 
stage II dMMR-MSI-H tumors to recur [73].

Despite promising data on the improved prognosis of 
patients with dMMR-MSI-H CRC, many conflicting reports 
exist. For instance, in a study reported by investigators from 
Scotland on patients with CRC, those who were 30 years of age 
or younger were mostly found to have mucinous tumors of the 
dMMR-MSI-H phenotype. While this cohort was found to have 
a relative risk of death of 0.87, patients who were older than 30 
years of age had a lower relative risk of death of 0.11 [74].

2. Management: Systemic Therapies and 
Evolving Paradigms in Immunotherapy

Currently, the combination of cytotoxic and biologic agents is 
the standard treatment approach in mCRC. Several factors 

influence the treatment choice in patients with mCRC, includ-
ing tumor and patient characteristics [75].

2.1. Systemic �erapies—�e Predecessors of 
Immunotherapy. Compared to monotherapy, combinations 
of oxaliplatin or irinotecan and 5-fluorouracil (5-FU) or 
capecitabine have been shown to have higher response rates 
and improved progression-free survival (PFS) and OS. Several 
randomized-controlled trials have confirmed the efficacy of 
FOLFIRI, FOLFOX, FOLFIRINOX, CAPIRI, and CAPOX in 
mCRC, whether with or without vascular endothelial growth 
factor (VEGF) or epidermal growth factor receptor (EGFR) 
inhibitors [76–84]. In case cancer progression occurs while a 
patient is on an oxaliplatin-based regimen, an irinotecan-based 
regimen is recommended, and vice versa. In case of chemo-
resistance, Regorafenib, a multi-tyrosine kinase inhibitor, or 
trifluridine, an antiviral drug, can be used in combination with 
tipiracil [85, 86]. However, outcomes from the use of these 
agents remain suboptimal [87].

2.2. Immune Checkpoint Blockade. �e success of ICIs in 
an increasing range of heavily mutated tumor types such as 
melanoma has culminated in their exploration in different 
subsets of patients with mCRC. As a result of the dramatic 
and durable RRs obtained in patients with chemorefractory 
dMMR-MSI-H mCRC following treatment with ICIs, they 
have become potential alternatives to classical systemic 
therapies.

To date, the benefit of immunotherapy is mostly confined 
to a small subset of patients with dMMR CRC that only rep-
resents about 4–5% of patients with mCRC. Unfortunately, 
however, currently approved ICIs have been shown to be 
largely unsuccessful in patients with the pMMR-MSI-L phe-
notype that comprises 95% of all mCRC cases. �is highlights 
the need to develop suitable novel treatment strategies for 
these patients. Current immunotherapeutic strategies being 
evaluated include combinations of ICIs with chemotherapy, 
VEGF inhibitors, cancer vaccines, adoptive cell transfer, or 
BTC antibodies [88, 89].

2.3. Rationale for Immunotherapy in Colorectal Cancer. Since 
ICIs were first reported in 2010 and 2012, they have translated 
into a significant OS advantage in comparison to established 
therapies in metastatic melanomas and NSCLC [90]. Given 
the background of chronic inflammation in the pathogenesis 
of most gastrointestinal cancers, the use of immune-based 
treatment approaches in them might have a role in releasing 
the brakes created by the tumor on the immune system and 
in harnessing an immune response to electively kill tumor 
cells [91, 92].

As previously mentioned, one of the leading causes of 
hypermutation in CRC is a defect in the DNA MMR system, 
which results in MSI-H tumors that strongly express various 
immunological checkpoint proteins, including cytotoxic 
T-lymphocyte associated antigen 4 (CTLA-4), PD-1, and pro-
grammed-death ligand 1 (PD-L1). �ese results in tumor 
escape from the host immune response by counteracting the 
active immune microenvironment of the MSI-H tumor and 
preventing the elimination of neoplastic cells.
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2.4.1. Mutational Burden and Neoantigen Density. Results 
from studies performed on patients with metastatic melanoma 
and NSCLC have shown durable responses and improved OS 
following treatment with ICIs [104–112]. Since these tumors 
were found to have high mutation burdens, they were thought 
to present more peptide neoantigens on their MHC class I 
molecules, thus being recognized as nonself and priming 
T-cells for activation and cytotoxic killing [113, 114]. �is 
alteration in peptide sequences in these tumors was linked 
to the improved responses observed following treatment 
with Pembrolizumab [113, 115, 116]. As such, a correlation 
between mutational load and response to immunotherapy was 
described.

In CRC, the classic model of carcinogenesis is the ade-
noma carcinoma sequence [117–121]. Based on this scheme, 
malignant CRC cells have the capacity to accumulate a number 
of immunogenic mutations and become a potential target for 
immunotherapy, even though they might remain less immu-
nogenic than melanoma or NSCLC [122]. Compared with 
pMMR-MSI-L CRC tumors, those with the dMMR-MSI-H 
phenotype have a nearly 20-times-higher mutation burden, 
enabling them to generate mutant neo-epitopes and trigger 
robust host anti-tumor immune responses [123–125]. In con-
trast, the lower tumor mutation burden in the pMMR-MSI-L 
tumors results in wild-type neoantigens and less overall 
immune stimulation, thus contributing to the limited or absent 
response to single-agent ICIs [43].

Although mutational burden is an important predictive 
marker of potential response to immunotherapy, a high muta-
tional load might not be sufficient to drive such a response. 
T-cell infiltration into the tumor bed is another marker that 
has also been associated with favorable outcomes [126–128]. 
For instance, there has been a longstanding awareness of the 
unique dMMR-MSI-H CRC tumor microenvironment. 
Histologic comparisons have revealed that it is being heavily 
infiltrated by CD8+ TILs, T helper 1 CD4+ TILs, and mac-
rophages, [49, 51, 129]. In addition, immune responses gen-
erated against these tumors were described as Crohn’s-like, 

CTLA-4 receptor is exclusively expressed on regulatory 
T-cells (T-regs), naive T-cells, and activated T-cells, and it acts 
as a regulator of immune cells [93–95]. �rough its binding 
to CD80 and CD86 located on antigen presenting cells (APCs), 
it contributes to phosphatase activation and promotes the 
overall deactivation of T-regs [96–98].

PD-1 receptor belongs to the CD28 superfamily and is 
expressed on T-regs, B-cells, and myeloid-derived suppressor 
cells (MDSCs) [99]. �e PD-L1/PD-1 axis induces T-cell 
exhaustion by transmitting coinhibitory signals and limiting 
tumor-infiltrating lymphocytes (TILs) and T-cell proliferation 
in peripheral tissues. �is results in effective immune resist-
ance in the tumor microenvironment [100, 101].

In order to overcome limitations created by the PD-L1/
PD-1 interaction and to reduce the rate of tumor recurrence 
in these tumors, an immune-based treatment approach tar-
geting PD-1 and CTLA-4 on immune cells and PD-L1 on 
tumor cells may be beneficial [96, 102] (Figure 1). For instance, 
the use of anti-PD-1 therapy in patients with dMMR-MSI-H 
CRC tumors has been linked to significantly improved PFS 
and OS. Interestingly, the upregulation expression of PD-1, 
PD-L1, and CTLA4 in dMMR-MSI-H tumors that have metas-
tasized might render this subset of patients more responsive 
to immune checkpoint blockade [48, 103].

In contrast, current ICIs have shown no clinically signifi-
cant responses in patients with pMMR-MSI-L CRC tumors. 
�is highlights the clinical significance of identifying the MSI 
status and hypermutated phenotype as a predictive marker for 
response to immuno-modulating agents.

2.4. Biomarkers of Response to Immune Checkpoint 
Blockade. Presence of dMMR-MSI-H in CRC tumors, 
as well as in other solid tumors, has been shown to be an 
effective biomarker in predicting durable and possibly curative 
responses to ICIs. However, the fact that not all patients with 
CRC respond well to ICIs highlights the need to identify 
more precise and reliable predictive biomarkers in evaluating 
response to immunotherapy.

Resistant
dMMR-MSI-H 

CRC cell

Inhibited 
CD8+T-cell

B7

Without
immunotherapy

CTLA-4

TCR

PD-1
PD-L1

MHC-1

(a)

Sensitive
dMMR-MSI-H

CRC cell 

Activated 
CD8+T-cell

B7

With
immunotherapy

Anti-PD1

Anti-CTLA4
CTLA-4

TCR

PD-1
PD-L1

MHC-1

Anti-PDL1

(b)

Figure 1: As a means to evade the immune-mediated killing, dMMR-MSI-H tumor cells tend to upregulate the expression of T-cell inhibitory 
ligands, including B7 (CD80, CD86) and PDL1, which bind to the co-inhibitory CTLA4 and PD1 receptors on immune cells, respectively. In 
order to overcome these limitations and to reduce the rate of tumor recurrence in this subset of CRCs, an immune-based treatment approach 
targeting CTLA4 and PD-1 or PD-L1 might be of help in harnessing an immune response to effectively kill tumor cells. As such, IICIs exploit 
the pre-existing inflamed microenvironment of dMMR-MSI-H CRC tumors to antagonize their T-cell inhibitor signals and result in their 
cytotoxic destruction.
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CTLA4 immunoglobulin G2 antibody, resulted in a partial 
response (PR) in one individual whose MMR status was 
unknown [145].

On the basis of the knowledge of the immunogenic 
microenvironment of dMMR-MSI-H CRC tumors and the 
observed impressive tumor response, the interest in the use of 
immunotherapy in CRC grew, and several studies were initi-
ated to explore the therapeutic potential of anti-PD-1 therapy 
in advanced CRC [13, 136, 146, 147].

In a study involving 19 patients with refractory cancers, 
treatment with the anti-PD-1 agent, Nivolumab, was initiated 
and no responses were initially reported [148]. Interestingly, 
however, one patient with dMMR-MSI-H CRC had a PR at 21 
months and achieved a complete response (CR) that lasted 
more than three years a�er retreatment [149, 150].

In the open label phase II CheckMate 142 trial 
(NCT02060188), a cohort of 74 cases of dMMR-MSI-H mCRC 
was included and treated with Nivolumab monotherapy [146]. 
At a median follow-up duration of 12 months, an objective 
response (OR) was noted among 31% of patients, and disease 
control for 3 months or longer was observed in 69% of them. 
At the time the study was reported, all patients who responded 
to treatment were alive, and eight had responses lasting 12 
months or longer with a Kaplan–Meier 12-month estimate of 
86%. Response to immunotherapy was independent from 
tumor PD-L1 expression as a similar percentage of patients in 
the PD-L1 positive group (29%) and PD-L1 negative one 
(28%) responded to Nivolumab. Similarly, the presence of a 
history of Lynch syndrome or the BRAF or KRAS mutation 
did not seem to affect response to immunotherapy. �e median 
PFS was 14.3 months, and the 12-month PFS was 50%. �e 
12 month OS was 73%.

When it comes to data on the safety of Nivolumab treat-
ment, all-cause adverse events (AEs) were reported in 99% of 
patients, with 55% developing grades 3 and 4 events and 5% 
dying due to AEs that were not therapy-related. For instance, 
fatigue, diarrhea, pruritus, rash, and hypothyroidism were the 
most common grades 1 and 2 AEs, while pancreatitis, colitis, 
hepatitis and adrenal insufficiency were the most common 
grades 3 and 4 ones.

Based on the efficacy and safety results from the CheckMate 
142 trial, the FDA has granted an accelerated approval for 
Nivolumab in July 2017 as a second line treatment option in 
adult and pediatric patients with dMMR-MSI-H mCRC that 
has progressed following treatment with a fluoropyrimidine, 
oxaliplatin, and irinotecan [146, 147, 151].

A similar positive effect in patients with dMMR chemore-
fractory mCRC was observed with the use of another 
anti-PD-1 antibody, Pembrolizumab. In the NCT01876511 
phase II trial, cohorts of patients with dMMR-MSI-H CRC, 
pMMR-MSI-L CRC, and dMMR-MSI-H nonCRC were 
treated with Pembrolizumab [13]. Follow-up at 20 weeks 
revealed that 4 of the 10 patients with dMMR-MSI-H CRC 
had a PR and 5 had stable disease (SD). Updated results were 
presented during the 2016 American Society of Clinical 
Oncology (ASCO) Annual Meeting, and they described some 
response and disease control in 50% and 89% of the 28 patients 
with dMMR-MSI-H tumors, respectively. �ey also reflected 
no response in the 18 patients with pMMR-MSI-L CRC. In 
the dMMR-MSI-H cohorts, the 24 months PFS was 61%, and 

especially with the accompanying elevation in neutrophil and 
platelet counts on the one hand and C-reactive protein and 
type I interferon (IFN) levels on the other [55, 56, 103, 126, 
129–135]. �is robust immune response is likely responsible 
for the favorable outcome of patients with primary resected 
dMMR CRC. In contrast the lower levels of TILs and the 
weaker immune response generated by tumors with pMMR-
MSI-L tumors have been thought to be mechanisms of 
immune resistance and linked to the worse outcomes in this 
subset of patients [126, 136] (Figure 2).

On the basis of these data, further studies have used the 
approach of assigning an immunoscore based on the density 
and the location of tumor-infiltrating CD3+ CD8+ T-cells. 
�is has been shown to be prognostic of improved clinical 
outcome in patients with early-stage CRC [126, 137, 138]. It 
has also culminated in reports of high immunoscores in 
patients with pMMR-MSI-L CRC. �is raises the question of 
whether immune-phenotyping might enable prediction of 
immunotherapy response.

Hence, combining the microsatellite instability status with 
both, the immunogenic features of the tumor microenviron-
ment and the mutational burden, might serve a better role in 
predicting response to immunotherapy.

2.4.2. Beta 2-Microglobulin and Janus Kinase 
Mutations. Various biomarkers of response to anti-PD-1 
therapy are currently being explored. While PD-L1 expression 
was found to be associated with ameliorated response and 
survival in patients with gastric cancer, gastro-esophageal 
junction cancer, and NSCLC [139, 140], this does not hold 
true in those with CRC [13, 141]. For instance, response to 
Nivolumab immunotherapy was shown to be independent 
from tumor PD-L1 expression in one study, with a similar 
percentage of responding patients seen in both, the PD-L1 
positive and negative groups.

Although acquired mutations in Janus Kinase (JAK) 1, 
JAK2, and beta 2-microglobulin (B2M) are markers of resist-
ance to PD-1 blockade in melanoma [142], their role in 
patients with CRC is not yet well defined. Truncating muta-
tions in B2M result in impaired MHC class I antigen presenta-
tion and failure to elicit a T-cell response. Results from studies 
evaluating the use of Pembrolizumab in CRC tumors revealed 
that tumors developing resistance to this therapy had acquired 
B2M-mutations [136]. Surprisingly, patients with B2M-
mutant dMMR-MSI-H CRCs have been shown to have a 
favorable prognosis [143]. As for inactivating mutations in 
JAK1 or JAK2, these have been also linked to resistance to 
anti-PD-1 therapy in melanoma [142, 144], but more research 
to evaluate their response to anti-PD-1 agents in CRC.

2.5. Current �erapies for Mismatch Repair-Deficient 
Microsatellite Instability-High Colorectal Cancer Tumors

2.5.1. Single Agent Checkpoint Inhibitors. �e tremendous 
survival benefit seen with ICIs among many patients with 
cancer has led to their widespread adoption in CRC [43]. 
ICIs initially demonstrated very limited clinical activity in 
nonselected CRC patients in early studies done between 
2010 and 2013. For instance, in a study done on 45 patients 
with refractory CRC, treatment with Tremelimumab, an anti-
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In the phase I Keynote 016 clinical trial, the efficacy and 
safety of Pembrolizumab monotherapy were evaluated in 10, 
9, and 18 patients with dMMR-MSI-H mCRC, dMMR-MSI-H 
nonCRC, and pMMR-MSI-L mCRC tumors [13, 136]. �e 
initial report demonstrated that patients with dMMR-MSI-H 
mCRC had a 40% RR, while those with pMMR-MSI-L mCRC 
had a 0% RR. Updated results on 40 dMMR-MSI-H mCRC 

the OS was 66% [152]. In the pMMR-MSI-L cohort, however, 
the 5 months PFS was 2.2 months and the OS was 5.0 months. 
Response to immunotherapy was shown to be significantly 
correlated with the number of somatic mutations in the cor-
responding tumor [136]. Further analysis of this study con-
firmed the efficacy of Pembrolizumab in twelve types of 
dMMR tumors regardless of the tissue of origin [136].

Macrophage

dMMR-MSI-H 
CRC cell

CD4+T-cell

CD8+T-cell

IFN-gamma

CTLA-4

PD-1
T-cell receptor

PD-L1
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PD-1
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PD-L1
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Figure 2: dMMR-MSI-H and pMMR-MSI-L CRCs have distinct tumor microenvironments. (a) dMMR-MSI-H tumor cells are characterized by 
their high rates of mutations that result in the presentation of mutated peptides on their MHC class I molecules. �ese are in turn recognized as 
foreign neoantigens by immune cells, resulting in high densities of cytotoxic CD8+ T-cell and T helper 1 CD4+ T-cell infiltration and elevated 
levels of IFN-gamma secretion. Tumor growth and progression is also influenced by the abundant tumor-associated macrophages present in the 
tumor microenvironment. As a means to evade the immune-mediated killing, dMMR-MSI-H tumor cells tend to upregulate the expression of 
T-cell inhibitory ligands, including B7 (CD80, CD86) and PDL1, which bind to the co-inhibitory CTLA4 and PD1 receptors. (b) By contrast, 
pMMR-MSI-L tumors generate wild-type peptides that are not immune-stimulatory and are thus characterized by much lower density of TILs.



7BioMed Research International

with the combination of the first-line chemotherapy regimen, 
FOLFOX, plus the VEGF antagonist, Bevacizumab, or with 
the combination of both treatments. �e primary trial end 
point is PFS, and secondary end points include OS and OR 
rate [154].

�e randomized phase III NCT02912559 trial has been 
developed in an effort to determine the potential efficacy of 
Atezolizumab in combination with folinic acid, fluorouracil, 
and oxaliplatin as an adjuvant therapy in 700 patients with 
stage III dMMR-MSI-H CRC [43, 155, 156]. In the experi-
mental arm, patients receive Atezolizumab plus FOLFOX for 
6 months followed by Atezolizumab monotherapy for 6 
months. Disease-free survival (DFS) and OS constitute the 
primary trial end points, and the incidence of AEs comprise 
its secondary end points.

2.5.3. Combination of Immune Checkpoint Inhibitors. �ese 
results, suggesting additional clinical benefit with a 
combinatorial approach for patients with dMMR-MSI-H 
CRC tumors, have laid the groundwork for the exploration 
of additional combination therapies in this subset. Combining 
two immunotherapeutic agents is an alternative approach that 
might be of help in patients with mCRC. Results from a phase 
Ib trial suggested that the anti-PD-L1 antibody, Durvalumab, 
and the anti-CTLA-4 antibody, Tremelimumab, can be 
combined safely in this population with improved outcomes 
[157].

�e phase II randomized trial, known as the CCTG CO.26 
trial, was among the first studies to demonstrate that combined 
PD-L1 and CTLA-4 inhibition prolongs survival in patients 
with advanced refractory CRC. In this trial, 180 patients with 
advanced refractory CRC who were unselected for MSI were 
included between August 2016 and June 2017 [158]. �ey were 
then randomized in a 2 : 1 ratio to receive either best support-
ive care (BSC) alone or in addition to the immunotherapy 
combination of Durvalumab and Tremelimumab. Results 
revealed that patients in the combination group had signifi-
cantly prolonged OS and preserved quality of life compared 
to those receiving only BSC. In fact, a�er a median follow-up 
of 15.2 months, patients receiving the immunotherapy com-
bination had a median OS of 6.6 months, while patients receiv-
ing only BSC had a median OS of 4.1 months with a stratified 
hazard ratio (HR) of 0.72. Also, patients in the immunotherapy 
combination plus BSC arm and those in the BSC arm had a 
median PFS of 1.8 and 1.9 months, respectively, with an HR 
of 1.01 [157]. Interestingly, the OR for the disease control rate 
was 4.16 and was in favor of the immunotherapy combination 
arm. �is was mainly reflected by the fact that the majority of 
patients in the first arm had SD and a higher disease control 
rate of 22.7% as compared to only 6.6% in the second arm.

When it comes to safety data on the combination of 
Durvalumab and Tremelimumab, results showed that AEs 
were more frequent in patients receiving this immunotherapy 
combination and included abdominal pain, fatigue, lympho-
cytosis, and eosinophilia. Whereas 64% of patients in the 
Durvalumab and Tremelimumab plus BSC group had an 
adverse event of grade 3 or higher, only 20% in those in the 
BSC group did [157]. When it comes to quality of life (QOL), 
however, patients receiving the immunotherapy combination 

patients reported a RR of 52% and an estimated 2-year PFS 
rate of 53%, with higher somatic mutation loads being corre-
lated with prolonged PFS. Updated results on 86 patients with 
dMMR-MSI-H tumors belonging to one of twelve different 
types such that the most common one was dMMR CRC 
(46.5%) were also reported. Patients with CRC had an overall 
RR of 52%, and those with dMMR nonCRC had an overall RR 
of 54%. A 53% objective radiographic RR and a 21% CR rate 
were also observed in a subgroup of patients with dMMR tum-
ors [136]. 1- and 2-year PFS were estimated to be 64–53%, 
respectively. For instance, of the 18 patients who discontinued 
therapy at 2 years a�er being treated per protocol, none have 
had a recurrence at a median follow-up of approximately 8 
months. �ese results suggest that in addition to its efficacy 
in patients with dMMR CRC, Pembrolizumab monotherapy 
seems to have durable responses that may result in cures.

When it comes to data on the safety of Pembrolizumab 
treatment, grade 3–4 or severe AEs were reported in 14% of 
patients in the Keynote 016 study. �ese included pancreatitis, 
colitis, thrombocytopenia, leukopenia, and anemia. Other less 
severe but major AEs were pruritus, arthralgia, thyroid dys-
function, anorexia, and fatigue.

Based on the efficacy and safety results from the Keynote 
016 study, the FDA has granted an accelerated approval for 
Pembrolizumab in May 2017 as a second line treatment option 
in adult and pediatric patients with unresectable or metastatic 
dMMR-MSI-H solid tumors that have progressed on or a�er 
prior treatment with fluoropyrimidine, oxaliplatin, and irino-
tecan and who have no satisfactory alternative therapy options 
[151].

At present, a number of ongoing studies are evaluating the 
use of anti-PD-1 or anti-PD-L1 inhibitors in patients with 
dMMR-MSI-H mCRC. For instance, the efficacy of 
Pembrolizumab as a first-line treatment in stage IV dMMR-
MSI-H CRC is currently being assessed in the phase III 
Keynote-177 trial (NCT02563002) with primary end points 
of PFS and OS, and a secondary end point of OR rate [153]. 
Also, the use of the anti-PDL1 antibodies, Atezolizumab, 
Avelumab, and Durvalumab, in the first-line metastatic setting 
is being explored by several clinical trials [10, 43].

2.5.2. Combination of Chemotherapy and Immunotherapy or 
Anti-Angiogenic Agents. In order to improve outcomes in 
patients with mCRC, current strategies being investigated 
include combining one of the above-mentioned newly 
approved therapies with the current standard of care biologics 
and chemotherapy regimens such as FOLFOX, FOLFIRI, 
or FOLFIRINOX. By directly imparting damage to cancer 
cells and releasing antigens, cytotoxic agents could enhance 
the immune response against CRC tumors, thus further 
ameliorating the effects of immunotherapy. �is approach, 
however, might be accompanied by cumulative AEs and 
negative interactions between systemic chemotherapy and 
immunotherapy.

�is sheds light on the importance of initiating clinical 
studies that assess the safety and efficacy of combining immu-
notherapy with chemotherapy or biologics [10]. For instance, 
in the underway NCT02997228 trial, 347 CRC patients will 
be treated in the first-line setting with either Atezolizumab or 
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pruritus (17%), fever (17%), hypothyroidism (13%), hyper-
thyroidism (11%), and hepatitis (7%). While 20% of patients 
who received Nivolumab monotherapy experienced grades 
3–4 AEs, 32% of those treated with Nivolumab and Ipilimumab 
combination developed such events. �ese mainly included 
hepatitis (11%), pancreatitis (4%), anemia (3%), and colitis 
(3%) [147].

Despite the fact that single and dual checkpoint blockade 
were more effective for dMMR-mCRC than chemotherapy, 
ambiguity remains concerning their economic impact. 
According to the decision analytic model by Chu et al., ICIs 
were not found to be cost-effective when compared with 
chemotherapeutic agents, largely because of their elevated 
drug costs [162].

In spite of the compelling data in dMMR-MSI-H CRCs, 
to date, no drug or combination has been granted approval by 
the European Medicines Agency (EMA), pending results of 
ongoing trials (Tables 1 and 3).

2.6. Response of Mismatch Repair-Proficient Microsatellite 
Instability-Low Colorectal Cancer Tumors to Current 
Immunotherapeutic Agents. Unlike in patients with dMMR-
MSI-H CRC, single agent immunotherapy has demonstrated 
limited or no clinical benefit in patients with pMMR-MSI-L 
CRC, who comprise around 95% of patients with mCRC [163]. 
In the pivotal Pembrolizumab study, no response was observed 
in patients with pMMR-MSI-L disease [13].

In the Check Mate 142 study, limited responses were seen 
in pMMR-MSI-L tumors, with one of 20 patients responding 
to the combination of PD-1 and CTLA4 blockade [147]. 
Similarly, in the ongoing single-arm trial on patients with 
resectable, early-stage CRC treated with the combination of 
Nivolumab and Ipilimumab that was presented at the 2018 
ESMO meeting, no major pathological responses were noted 
among the 8 patients with pMMR-MSI-L tumors although 
significant increases in their TILs was noted [164].

2.7. Potential Strategies that Might Render Mismatch Repair 
Colorectal Cancers More Responsive to Immunotherapy. �e 
challenging process of developing suitable immunologic 
treatment approaches for patients with pMMR-MSI-L CRC 
is highlighted by the stark contrast in rates of disease control 
and tumor regression between patients with dMMR-MSI-H 
CRC on one hand, and those with pMMR-MSI-L CRC on 
the other hand following treatment with anti-PD-1 therapy. 
As such, understanding differences in tumor molecular 
patterns, immune cell content, and cytokine expression that 
render dMMR-MSI-H tumors more responsive to treatment 
is of utmost importance. Doing so, for instance, would enable 
the replication of favorable immune manipulations within 
pMMR-MSI-L CRC tumors, hence rendering them more like 
dMMR-MSI-H CRC tumors [43].

Gene expression profiling has recently demonstrated sig-
nificant differences between both categories of tumors in terms 
of their effects on the immune system. For instance, in their 
comparison of the genes expressed in primary dMMR-MSI-H 
and pMMR-MSI-L CRC tumors, Mlecnik et al. noted that the 
majority of the differentially regulated ones were descriptive 
of CD8+ cytotoxic and CD4+ T-helper 1 cell types [137, 156].

had numerical advantage in terms of global health status and 
deterioration in physical function over those receiving only 
BSC based on the EORTC QLQ-30 questionnaire [157].

Promising preliminary results of an ongoing single arm 
trial evaluating the use of the combination of Nivolumab and 
the anti-CTLA-4 agent, Ipilimumab, in patients with resecta-
ble, early-stage CRC were presented at the 2018 European 
Society for Medical Oncology (ESMO) meeting [159]. 
Recruited patients were operated on a�er six weeks of signing 
the informed consent. Safety and feasibility constituted the 
primary trial end points, and pathological response comprised 
its secondary end point. Interestingly, a major pathological 
response was observed in all of the seven patients with dMMR-
MSI-H tumors, with 57% of them having CRs. Also, significant 
upregulation in TILs was noted in patients with dMMR-
MSI-H with a significant �-value of 0.0009. �ese results raise 
a controversial question of whether curative surgical resection, 
which has long been the mainstay of treatment in patients with 
early-stage CRC, might be safely evaded in a subset of dMMR-
MSI-H CRC.

In the previously mentioned CheckMate 142 trial that 
included a single-agent Nivolumab cohort, the efficacy and 
safety of combining Nivolumab with Ipilimumab were also 
explored in a cohort of 119 previously untreated patients with 
stage 4 dMMR-MSI-H CRC [147]. Results on the first 45 
recruited patients were reported at the 2018 ESMO Annual 
Meeting [160]. A�er a median follow-up of 13.8 months, the 
objective RR was 60%, the disease control rate was 84%, and 
the CR rate was 7%. At 12 months, the PFS and OS values were 
77% and 83%, respectively [160].

Updated results on the complete cohort of 119 patients 
receiving the immunotherapy combination further demon-
strated improved outcomes with this treatment plan over 
Nivolumab monotherapy. For instance, a�er a median fol-
low-up duration of 13.4 months, the OR rate and the tumor 
burden reduction from baseline were seen in 55% and 77% of 
patients, respectively [147, 161]. Among the 58 patients who 
responded, 5 had CRs and 53 had PRs. Also, the response in 
the majority of responders (83%) lasted for 6 months or longer. 
Interestingly, an analysis on a subgroup of 82 patients who had 
progressed on a fluoropyrimidine-, oxaliplatin-, and irinote-
can-containing regimen yielded an OR rate of 46%. �is is the 
setting in which the combination of Nivolumab and 
Ipilimumab is approved [147]. Results also showed improve-
ment in survival, with a 9-month and 12-month PFS of 76% 
and 71%, respectively, and a 9-month and 12-month OS of 
87% and 85%, respectively.

As a result of these results suggesting additional clinical 
benefit and durable responses with Nivolumab and Ipilimumab, 
the FDA granted its approval to this combinatory approach in 
patients with refractory CRC (rCRC) that has progressed on 
a fluoropyrimidine-, oxaliplatin-, and irinotecan-containing 
regimen in July 2018 [151].

Although the combination of anti-PD-1 and anti-CTLA-4 
agents proved to be a synergistic combination and showed 
promise over anti-PD-1 monotherapy, it resulted in an 
increased rate of major treatment-related adverse effects. For 
instance, 73% of patients in the combination arm reported 
any-grade AEs including diarrhea (22%), fatigue (18%), 
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to dMMR-MSI-H CRC tumors in terms of both, the levels of 
T-helper 1 cells, cytokines, and chemokines and the extent of 
cytotoxic gene expression, and a second group that lacked 
these profiles. Results showed that the prognosis of patients 
in the first group was similar to that observed with dMMR-
MSI-H tumors and was notably better than that seen in the 
second group.

Although pMMR CRC tumors are characterized by their 
lower mutational and neoantigen burden, they express cancer 
germline antigens and harbor mutated KRAS or p53 proteins 
against which T-cell responses have been identified [169, 170]. 
In addition, isolation of T-cells that recognize pMMR CRC 
tumor antigens have been reported [171]. No matter how 
much low the frequency of TILs in the pMMR CRC tumor 
microenvironment is prior to any therapy, their presence pro-
vides some insight concerning the role of the cancer immunity 
cycle activation phase to prime antigen-specific CD4+ and 
CD8+ T-cells.

�erefore, it is possible for pMMR CRC to have a dMMR-
like immune phenotype; however, whether these dMMR-like 
pMMR CRCs will experience responses to checkpoint block-
ade or any other immunotherapy that mirrors the clinical 
responses of dMMR CRC is unknown [43]. As a result, there 
has been considerable interest in combining immune check-
point blockade with other immune-modulating agents in an 
attempt to potentially increase the efficacy of immunotherapy 
in pMMR-MSI-L tumors by further promoting T-cell accu-
mulation in tumors, limiting T-cell exhaustion, and improving 
tumor immune recognition by increasing MHC class I expres-
sion. Despite promising results in an early phase I trial, a 

As mentioned before, compared to patients with pMMR-
MSI-L CRC, those with dMMR-MSI-H CRC had higher levels 
of immuno-stimulatory cytokines and chemokines including 
IFN-gamma, interleukin (IL) 15, CCL3, and CXCL16 and 
lower levels of the monocyte chemotactic agent, CXCL14. 
Also, while the high degree of intestinal anti-tumor T-cell 
infiltration in dMMR-MSI-H CRC has been linked to 
improved activity of PD-1/PD-L1 blockade [96], the greater 
extent of immuno-inhibitory T-regs and MDSCs infiltration 
within pMMR-MSI-L tumors may explain their resulting poor 
immune response [166].

As previously mentioned, one genomic explanation for 
this limited ability to recruit anti-tumor immune cells in 
pMMR-MSI-L mCRC tumors is related to their low muta-
tional burden that is responsible for their low frequency of 
neoantigens [166]. In fact, the neoantigen load has been linked 
to the extent of TILs in CRC tumors including those that are 
of dMMR-MSI-H and pMMR-MSI-L phenotype [167]. Since 
the cutoff corresponding to the neoantigen load associated 
with increased T-cell infiltration is well above that seen in most 
pMMR-MSI-L, the need to develop strategies that will target 
an immune response against the antigens displayed by the 
malignancy and enhance T-cell infiltration in pMMR tumors 
with lower mutational burden is essential [166].

�is has been supported by other studies showing a cor-
relation between the extent of TILs and improved outcomes 
in pMMR-MSI-L CRC patients similar to that seen in dMMR-
MSI-H CRC ones [126, 168]. Interestingly, in the analysis done 
by Mlecnik et al., pMMR-MSI-L CRC malignancies were fur-
ther categorized into a first group that was relatively similar 

Table 1: List of ongoing studies evaluating the use of combination treatments in mismatch repair-deficient microsatellite instability-high 
colorectal cancers.

∗FOLFOX: 5-fluorouracil, leucovorin, and oxaliplatin. ∗∗LAG3: lymphocyte activation gene 3 protein. Data partially from [235, 249]. Clinical trial details can 
be accessed at ClinicalTrials.gov database.

Trial type Trial NCT identifier Disease burden Immune checkpoint inhibitor Study treatment groups

Phase III

NCT02912559 Stage III CRC Atezolizumab Adjuvant atezolizumab + FOL-
FOX∗ versus FOLFOX alone

NCT02997228 First-line mCRC Atezolizumab

Atezolizumab versus atezoli-
zumab + FOLFOX + bevacizum-

ab versus FOLFOX + bevaci-
zumab

NCT02563002 First-line mCRC Pembrolizumab Pembrolizumab versus standard-
of-care chemotherapy

Phase II

NCT02460198 mCRC: refractory or ≥1 prior 
therapy Pembrolizumab Pembrolizumab

NCT03150706 mCRC: >1 prior therapy Avelumab Avelumab

NCT02060188 Refractory CRC Nivolumab ± ipilimumab
Nivolumab ± ipilimumab or 

daratumumab or anti-LAG3∗∗ 
antibody

Phase I NCT01633970 Locally advanced or metastatic 
solid tumors Atezolizumab

Atezolizumab + Bevacizum-
ab Atezolizumab + Bev-

acizumab + FOLFOX 
Atezolizumab + carboplatin + pa-

clitaxel atezolizumab + carbo-
platin + pemetrexed atezolizum-
ab + carboplatin + nab-paclitaxel 

atezolizumab + nab-paclitaxel
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activation and infiltration into CRCs and decrease the 
immune-inhibitory cell population (Tables 2 and 4).

2.7.1. Radiotherapy, Chemotherapy, or Antiangiogenic 
Agents. Radiotherapy (RT), chemotherapy, and anti-
angiogenic agents are current standard therapies that may 
enhance immune activation by destroying tumor cells and 
releasing TAAs in the process. As a result, combining them 

confirmatory phase III trial evaluating the use of the anti-
PD-L1 agent, Atezolizumab, with and without the mitogen 
activated protein kinase (MEK) 1/2 inhibitor, Cobimetinib, 
failed to replicate the benefit over the multi-tyrosine kinase 
inhibitor, Regorafenib, in unselected patients with chemother-
apy refractory pMMR-MSI-L mCRC [172].

�e remainder of this section will focus on combination 
strategies under development to enhance effector T-cell 

Table 2: List of ongoing studies evaluating the use of combination treatments in mismatch repair-proficient microsatellite instability-low 
colorectal cancer.

Data partially from [235,  249]. Clinical trial details can be accessed at ClinicalTrials.gov database.

Trial NCT identifier Checkpoint inhibitor Trial type Disease burden Combination treat-
ment Target (s)

NCT02876224

Atezolizumab

Phase I mCRC Cobimetinib + bevaci-
zumab

MEK + VEGFA, 
respectively

NCT02873195 Phase II Refractory CRC Cobimetinib + bevaci-
zumab

MEK + VEGFA, 
respectively

NCT02788279 Phase III mCRC Cobimetinib + re-
gorafenib

MEK + Multi-kinase, 
respectively

NCT02291289 Phase II First-line metastatic 
CRC Cobimetinib MEK

NCT02484404 Durvalumab Phase I/II Refractory CRC Cediranib VEGFR and KIT
NCT02888743

Durvalumab ± tremeli-
mumab

Phase I mCRC Radiation .....
NCT03122509 Phase II mCRC Radiation or ablation .....
NCT03007407 Phase II mCRC Radiation .....
NCT03428126 Durvalumab

Phase II mCRC Trametinib MEK
NCT02811497 Phase II mCRC Azacitidine DNMT
NCT02327078

Nivolumab

Phase I/II CRC and solid tumors Epacadostat IDO1

NCT02948348 Phase I/II Locally advanced 
rectal cancer Chemoradiation .....

NCT0280546 Phase II Refractory CRC TAS-102 .....

NCT02060188

Nivolumab ± ipili-
mumab

Phase II Refractory CRC Cobimetinib + daratu-
mumab

MEK + CD38, respec-
tively

NCT03271047 Phase I/II Pretreated mCRC Binimetinib MEK
NCT03104439 Phase II CRC arm Radiation .....
NCT03377361 Phase I/II Pretreated mCRC Trametinib MEK
NCT03442569 Phase II RAS-wild-type CRC Panitumumab EGFR
NCT03026140 Phase II Stage I-III CRC Celecoxib COX2

NCT02512172

Pembrolizumab

Phase I Pretreated mCRC Oral Azacitidine + ro-
midepsin

DNMT + HDAC1 and/
or HDAC2, respec-

tively

NCT03374254 Phase Ib mCRC Binimetinib ± FOL-
FOX or FOLFIRI MEK for Binimetinib

NCT02856425 Phase I/II mCRC Nintedanib VEGFR, PDGFR, and 
FGFR

NCT02959437 Phase I/II Refractory CRC and 
NSCLC

Azacitidine + epaca-
dostat

DNMT + IDO1, 
respectively

NCT02713373 Phase Ib/II Pretreated mCRC Cetuximab EGFR

NCT01174121 Phase II GI tumors and CRC 
arm

TILs, IL-2, cytoxan, 
and fludarabine .....

NCT03374254 Phase II mCRC Binimetinib, FOLFOX 
and FOLFIRI MEK for Binimetinib

NCT03176264 PDR001
Phase I First-line metastatic 

CRC
FOLFOX + bevaci-

zumab
VEGFA for Bevaci-

zumab
NCT03081494 Phase I Pretreated mCRC Regorafenib Multikinase
NCT03258398 Avelumab Phase II ..... eFT508 MNK
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combination with either anti-PD-1, anti-PD-L1, EBRT, or RFA 
in mCRC [43].

Other standard of care therapies in CRC include anti-an-
giogenic agents that might also demonstrate synergy when 
combined with immune therapies. For instance, Cetuximab, 
an anti-EGFR antibody, can activate antibody-dependent cel-
lular cytotoxicity and Bevacizumab, an anti-VEGF antibody, 
can reduce the immuno-inhibitory effects of VEGF by reduc-
ing its free levels [180]. As such, several ongoing studies are 
currently assessing the immunomodulatory potential of com-
bining anti-angiogenic agents with immunotherapy and 
chemotherapy, and preliminary results are promising.In a trial 
on metastatic melanoma patients being treated with the either 
Ipilimumab alone or a combination of Bevacizumab and 
Ipilimumab, the addition of Bevacizumab in the second arm 
resulted in a remarkable increase in tumor-infiltrating CD8+ 
T-cell as compared to the first arm [181]. Such promising 
results were also reported in CRC. In the ongoing 
NCT01633970 phase Ib trial that investigated the combination 
of Atezolizumab plus Bevacizumab with or without FOLFOX 
in patients with refractory pMMR-MSI-L CRC tumors, pre-
liminary results on 14 patients showed that 7% of them had 
ORs and 64% of them had SD [182, 183]. Further correlative 
analysis reflected some upregulation in CD8+ T-cell infiltra-
tion and PDL1 expression in mCRC tumors following chemo-
therapy administration with or without Atezolizumab and 
Bevacizumab [184].

2.7.2. Targeted �erapy. �e RAS–MAPK pathway plays an 
important signaling role in CRC and its activation has been 
linked to direct pro-proliferative effects on tumor cells and to 
decreased levels of tumor-infiltrating T-cells. As such, the effect 
of inhibiting MEK, a downstream effector of this pathway, 
was evaluated in several preclinical models. Results of these 
studies showed that Cobimetinib, a MEK inhibitor, induces 
IFN-gamma-dependent MHC1 and PD-L1 upregulation on 
tumor cells, thus augmenting anti-tumor activity by enhancing 
intra-tumoral CD8+ T-lymphocyte activation and synergizing 
with immune checkpoint blockade [185, 186]. As a result, 
the inhibition of the MEK-dependent intracellular signaling 
pathway was viewed as an effective approach in sensitizing 
pMMR-MSI-L mCRC for immunotherapy.

�ese promising results with the use of synergistic com-
bination led to the initiation of the NCT01988896 phase Ib 
dose-escalation and dose-expansion trial that included a 
cohort of patients with refractory KRAS-mutant CRC, includ-
ing pMMR-MSI-L CRC but no dMMR-MSI-H CRC, who were 
treated with the combination of Cobimetinib and Atezolizumab 
[187]. Escalating doses of the Cobimetinib (20 mg, 40 mg, and 
60 mg) were administered on a daily basis for 21 days on, 7 days 
off, and an 800 mg dose of intravenous Atezolizumab was given 
every two weeks. Preliminary results were reported on 23 
recruited patients in 2016 and revealed an overall RR of 17%, 
with four patients developing a PR with at least 30% decrease 
in tumor size and five patients having a SD. �ese responses 
ranged from 4 months to more than 15 months in duration, 
and they were still ongoing in two out of the four partial 
responders. �e baseline PD-L1 status did not appear to affect 
response. Interestingly, however, three of the four responding 

with checkpoint blockade and other immunotherapies may 
play an essential role in improving outcomes in pMMR-MSI-L 
mCRC tumors.

Since RT causes DNA damage and primes T-cells through 
generating an enlarged neoantigen repertoire and since its 
abscopal effects in metastatic cancers have been repeatedly 
reported, it has become an active area of investigation [173, 
174]. In this respect, the NCT02437071 trial was initiated to 
evaluate the use of Pembrolizumab in combination with either 
radiofrequency ablation (RFA) or external beam radiation 
therapy (EBRT) in patients with CRC [175]. Interim results 
were reported in 2016, and they showed that none of patients 
receiving RFA and one of the 22 patients receiving EBRT had 
some response. �e combination of RT and dual immune 
checkpoint blockade of CTLA4 and PDL1 has been linked to 
improved outcomes and tumor regression in patients with 
melanoma [176]. In the ongoing NCT03122509 trial, the effi-
cacy of combining RT or radiofrequency ablation with dual 
immune checkpoint blockade of CTLA4 and PDL1 is being 
investigated [177].

Chemotherapy also induces immunogenic cell death and 
activates tumor-associated dendritic cells (DCs) and effector 
lymphocytes [178]. Several preclinical studies on lung cancer 
models have demonstrated the role of chemotherapy in sensi-
tizing tumors to checkpoint blockade, and this supports the 
initiation of studies to evaluate this combination in other malig-
nancies, including mCRC [179]. For instance, many ongoing 
studies are currently investigating the use of chemotherapy in 

Table 3: Summary of current strategies being investigated in mis-
match repair-deficient microsatellite instability-high colorectal can-
cers.

Current  
strategies Agent (s) Target (s)

FDA 
approval 

Date

Single-agent 
ICIs

Tremelimumab 
[143] CTLA-4 .....

Nivolumab [144, 
146–148]

PD-1
July 2017

Pembrolizumab 
[42, 134] May 2017

Atezolizumab [10, 
43]

PD-L1

.....

Avelumab [10, 43] .....
Durvalumab [10, 

43] .....

ICI + chemo-
therapy

Bevacizum-
ab + FOLFOX 

[152]

VEGF for 
Bevacizumab .....

Atezolizum-
ab + FOLFOX [13, 

153, 154]

PD-L1 for 
Atezolizum-

ab
.....

Combinations 
of ICIs

Durvalum-
ab + Tremelimum-

ab [157, 158]

PD-
L1 + CTLA-
4, respec-

tively

.....

Nivolumab + Ipili-
mumab [147, 159]

PD-
1 + CTLA-4, 
respectively

July 2018
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current standard of care treatment, Regorafenib monotherapy, 
in pretreated patients with refractory CRC [191]. Of note, 95% 
of recruited patients had pMMR-MSI-L tumors, while the 
remaining 5% had dMMR-MSI-H ones. Unfortunately, results 
reported at the ESMO 18th World Congress on Gastrointestinal 
Cancer showed that the study failed to meet its primary end-
point and demonstrated that unlike Regorafenib monotherapy, 
both, the Atezolizumab and Cobimetinib combination therapy 
and the Atezolizumab monotherapy, did not result in a statis-
tically significant OS [172].

Several ongoing studies are currently investigating the 
combination of immunotherapy and targeted therapy in 
patients with pMMR-MSI-L CRC. �ese include the phase Ib 
NCT02876224 trial evaluating the Cobimetinib, Atezolizumab 
and Bevacizumab combination and the phase II NCT02060188 
study of combined Cobimetinib, Nivolumab, and Ipilimumab 
treatment [192, 193]. Also, the combination of MEK inhibition 
with PD-1-blockade and chemotherapy is currently being 
assessed by several trials.

In addition, combinations of other MEK and checkpoint 
inhibitors are under evaluation [188]. For instance, loss of 
PTEN and PIK3CA mutations is common in CRC, and this 
activates the PI3K pathway that in turn is linked to checkpoint 
upregulation [194]. As a result, combining the PI3K pathway 
blockade with checkpoint blockade might also have promising 
results and is currently under study.

2.7.3. Tumor Vaccines. By supplying tumor antigens, tumor 
vaccines constitute an active form of immunotherapy that 
activates a host’s immune response against cancer. Various 
types of tumor vaccines have been studies in patients with 
mCRC, and these include autologous and peptide vaccines, 

patients had confirmed pMMR-MSI-L CRC, and the survival 
was as high as 13 months among those with confirmed pMMR 
CRC. No serious therapy-related AEs were reported at this 
stage of analysis in any patient.

At the 2018 ASCO Gastrointestinal Cancers Symposium, 
updated results on 84 included patients were presented and 
showed an overall RR of 8% and a disease control rate of 31%. 
�ese responses were durable, with a median duration of 
response of 14.3 months. Of note, 4 of the 7 responders had 
MSS and 1 had MSI-low mCRC, while the remaining 2 had 
unknown MSI status [163, 188]. Among all patients, the 
6-month PFS and the 12-month OS rates were 18% and 43%, 
respectively. When only the subset of patients with MSS dis-
ease were considered, the 6-month PFS and the 12-month OS 
rates were decreased to 27% and 51%, respectively. �ese sur-
vival data are promising, especially that the 12-month OS rate 
obtained with the current standard of care multi-tyrosine 
kinase inhibitor, Regorafenib, is 24%.

As for safety data, the combination therapy was associated 
with a manageable AE profile, with most of the reported AEs 
being secondary to Cobimetinib. For instance, the most com-
mon treatment-related grades 3-4 AEs reported were rash, 
diarrhea, fatigue, and increased blood creatine phosphokinase. 
On the basis of data from this phase Ib trial, the combination 
of anti-PD-L1 immunotherapy and an MEK inhibitor repre-
sents the first potential immune-modifying therapy that might 
increase response to immunotherapy in patients with MSS 
mCRC who comprise 95% of CRC patients [189, 190].

�ese promising results culminated in the initiation of the 
phase III NCT02788279 IMblaze 370 (COTEZO) randomized 
trial that compares the efficacy of the above-mentioned com-
bination therapy versus Atezolizumab monotherapy with the 

Table 4: Summary of potential combination strategies in mismatch repair-proficient microsatellite instability-low colorectal cancer.

Potential combination strategies Target (s)

ICIs + RT
RFA or EBRT + pembrolizumab [175] PD-1 for Pembrolizumab

RFA + durvalumab + tremelimumab [177]
PD-L1 for Durvalumab

CTLA-4 for Tremelimumab

ICIs + chemotherapy + anti-angiogenic agents Atezolizumab + bevacizumab ± FOLFOX [182–184]
PD-L1 for Atezolizumab
VEGF for Bevacizumab

ICIs + MEK inhibitors

Atezolizumab + cobimetinib [187, 191]
PD-L1 for Atezolizumab

MEK for Cobimetinib

Nivolumab + ipilimumab + cobimetinib [193]
PD-1 for Nivolumab

CTLA-4 for Ipilimumab
MEK for Cobimetinib

ICIs + MEK inhibitors + anti-angiogenic agents Atezolizumab + cobimetinib + bevacizumab [192]
PD-L1 for Atezolizumab

MEK for Cobimetinib
VEGF for Bevacizumab

ICIs + BTC engaging antibody therapies Atezolizumab + CEA-BTC antibody [88, 224, 225, 227]
PD-L1 for Atezolizumab

CEA for CEA-BTC antibody

ICIs + IDO1 inhibitor
Pembrolizumab + indoximod [235]

PD-1 for Pembrolizumab
IDO1 for Indoximod

Nivolumab + epacadostat [235]
PD-1 for Nivolumab

IDO1 for Epacadostat

ICIs + anti-CSF1R antibody Durvalumab + pexidartinib [238] PD-L1 for Durvalumab
CSF1R for Pexidartinib
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that disease control was observed in 67% of recruited patients 
and that the 1-year survival rate was 47.2%.

In contrast, results from a randomized phase II clinical 
trial in which the nonreplicating canary pox virus expressing 
CEA and B lymphocyte antigen B7 (ALVACCEA/B7-1) vac-
cine was combined with the irinotecan-based chemotherapy 
in the treatment of 118 patients with mCRC showed no 
improvement in clinical or immune responses [89].

As a result of these conflicting results, oncolytic therapies 
remain experimental and have not become part of clinical 
practice to date [10, 205, 206]. �e modest activity obtained 
with cancer vaccine monotherapy in the setting of minimal 
disease has resulted in several attempts to include them as part 
of combination therapies in an attempt to increase tumor-in-
filtrating CD8+ T-cells and decrease T-regs [207, 208].

Several ongoing trials are currently combining oncolytic 
viruses, peptide vaccines, or DC antigens with chemotherapy 
or ICIs with the aim of ameliorating tumor immunogenicity 
in the adjuvant and metastatic settings in CRC and other solid 
tumors.

2.7.4. Adoptive Cell Transfer. Adoptive cell therapy (ACT) 
is an emerging modality for treating CRC. In this approach, 
cytotoxic T-cells are collected from patients’ tumors, lymph 
nodes, or peripheral blood, and they are then infused into 
their blood stream with the goal of recognizing and destroying 
tumor cells and achieving a sustained response [209, 210].

Natural Killer (NK) cells obtained from umbilical cords 
of preclinical mouse models demonstrated positive outcomes 
in RAS and BRAF mutated neoplasms as well as Cetuximab-
resistant ones [211, 212]. Promising results were also obtained 
in clinical studies on human subjects, whereby IL-2 or IL-15 
incubated NK cell transplants have been proven to have some 
benefit in patients with refractory mCRC and a mutated EGFR 
status [213]. �is approach is still under development and 
remains a young branch of immunotherapy.

Chimeric antigen receptors (CAR) T-cell immunotherapy 
constitutes T-cells that are engineered to express immu-
no-stimulatory ligands including lipid nanoparticles contain-
ing the IL-15, IL-12, or IL-7 receptor [214, 215]. By selectively 
binding to cancer cells, CAR T-cells enhance the tumor cells 
killing process. �e efficacy of this therapy has been demon-
strated in preclinical mouse models of mCRC [216]. Several 
groups have investigated the overly expressed marker in CRC, 
CEA, as a target for ACT [217–219]. In a small study, CAR 
T-cells targeting CEA were administered to three patients with 
mCRC [217]. One of the patients had an OR in lung and liver 
metastases, and serum CEA levels declined in all of them. 
However, all three patients developed severe colitis as a 
dose-limiting toxic effect. In another study, 7 of 10 patients 
with heavily treated mCRC had SD 4 weeks a�er CAR T-cell 
infusion, and 2 patients experienced tumor shrinkage [218]. 
At 30 weeks, 2 patients continued to have SD. In this study, 
treatment was well tolerated, with no reports of colitis.

Despite the fact that CAR T-cell therapy has been success-
fully used in the treatment of B cell malignancies [220, 221], 
its applicability in solid tumors, such as CRC, remains unde-
termined [222, 223]. �e affordability and feasibility of such 

DC transplants, and oncolytic viral vectors encoding tumor 
antigens [195].

(a) Autologous Vaccines. Autologous vaccines contain 
overexpressed or mutated tumor-associated antigens 
(TAAs) from cancer patient as a means to trigger host 
T-cell responses against them [196]. �ese vaccines have 
been mostly evaluated in the preventive setting in CRC 
and have sometimes been modified by a nonlytic strain 
of the Newcastle disease virus [197, 198]. Since minimal 
benefit has been reported, this approach is still not used 
in clinical practice.
(b) Peptide Vaccines. Peptide vaccines contain antigenic 
epitopes derived from TAAs, with the most commonly 
targeted peptides being carcinoembryonic antigen (CEA), 
EGFR, and mucin 1 [199]. In a phase II trial, only a limited 
benefit was observed when 96 patients with chemother-
apy-resistant mCRC were treated with an oxaliplatin-based 
chemotherapy regimen combined with a vaccine contain-
ing 5 human leukocyte antigen (HLA)-A∗2402-restricted 
peptides of which 3 were from oncoantigens and 2 were 
from VEGF receptors [200].
(c) Dendritic Cell Transplants. �e typical approach in 
tumor vaccination includes autologous transplantation of 
DCs which are potent TAA-presenting cells in association 
with MHC class I and trigger T-cell immunity. In a rand-
omized phase II clinical trial, an autologous tumor lysate 
DC vaccine was compared to the BSC [201]. Although 
results showed a tumor-specific immune response in the 
vaccinated arm, they failed to demonstrate improved 
disease control or survival as compared to the BSC arm. 
Nevertheless, evidence that supports the safe use of DC 
transplants in patients with advanced malignancies exists 
[202].
(d) Oncolytic Viral Vector Vaccines. �e intra-tumoral or 
intravenous administration of competent oncolytic viruses 
constitutes another approach that generates a stronger 
immune response against tumor antigens than do peptide 
vaccines. Oncolytic viral vector vaccines are modified anti-
cancer viruses that express immunomodulatory genes and 
make use of a viral vector system to deliver TAAs. �ey 
are capable of selectively infecting and lysing malignant 
cells without damaging normal tissue. During this process, 
TAAs are released and create an inflammatory milieu that 
enables innate immune responders such as DCs to process 
and present antigens to T-cells.

Although oncolytic virus therapy has proven to be effica-
cious in solid tumors such as melanoma, limited data concern-
ing their efficacy in mCRC exists. Early studies evaluated the 
use of oncolytic Newcastle disease virus, Ad11/Ad3 chimeric 
group B adenovirus, reovirus, and herpes simplex virus in 
patients with CRC, and preliminary results were somewhat 
promising [203].

Positive safety and efficacy outcomes were also obtained 
from a phase I/II study that investigated the use of the genet-
ically engineered oncolytic herpes simplex virus, NV1020, in 
patients with previously treated mCRC [204]. Results revealed 
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�e main clinical interest of IDO1 inhibitors has been in 
combination with anti-PD-1 agents [233], especially that pre-
clinical in vivo studies demonstrated significant synergy and 
increased tumor shrinkage with this combination as compared 
to anti-PD-1 monotherapy. �e phase III ECHO-301/
KEYNOTE-252 trial randomized 706 patients with unresect-
able or metastatic melanoma patients to either Epacadostat 
and Pembrolizumab or Pembrolizumab and placebo [234]. 
Results revealed no difference in PFS and OS rates at 12 
months (37% and 74% in both arms, respectively). Also, the 
OR rate in the combination arm was very similar to that 
obtained with Pembrolizumab alone (34.2% and 31.5%, 
respectively). In addition, 21.8% of patients with the combi-
nation and 17% with Pembrolizumab alone encountered grade 
3 or higher treatment-related AEs. Since OS was not expected 
to reach statistical significance and since the trial did not meet 
its primary endpoint of PFS, the external data monitoring 
committee agreed to discontinue the study.

Several ongoing trials are evaluating the use of the IDO1 
inhibitors, Indoximod and Epacadostat in combination with 
ICIs including Pembrolizumab in various solid malignancies 
including pMMR-MSI-L mCRC [235].

2.7.7. Depleting T-Regs and MDSCs. As a result of the high 
infiltration of pMMR-MSI-L CRC tumors with MDSCs and 
T-regs, it was thought that one way of making these tumors 
more responsive to immunotherapy could be achieved by 
depleting these cell types.

Results from preclinical studies on CRC mouse models 
showed that the use of an anti-CSF1R antibody could delay 
tumor growth by decreasing levels of tumor-infiltrating 
MDSCs. Similarly, other preclinical models have demon-
strated synergy between anti-CSF1R antibodies and ICIs [236, 
237]. Ongoing trials are currently exploring the use of com-
bination of Nivolumab and the anti-CSF1R antibody, 
Cabiralizumab, in solid tumors on the one hand, and the com-
binations of Durvalumab and the anti-CSF1R antibody, 
Pexidartinib, in CRC [238].

Also, the observation that the anti-CCR4 antibody, 
Mogamulizumab, depletes CCR4 positive inhibitory T-regs in 
patients with cancer has paved the way for its evaluation in 
combination with other immune therapies for malignancies 
that are highly infiltrated with T-regs, including pMMR-MSI-L 
CRCs [239].

Regorafenib is a potent inhibitor of angiogenic and onco-
genic kinases that has been shown to decrease the density of 
tumor-associated macrophages in murine models [240]. �e 
fact that combining it with anti-PD-1/PD-L1 agents has fur-
ther ameliorated its tumor growth suppression effects com-
pared to either treatment alone has set the foundation for the 
NCT 03406871 trial [241, 242]. �is ongoing trial aims at 
assessing the safety and efficacy of the combination of 
Regorafenib and Nivolumab in patients with previously 
treated, advanced gastric cancer or CRC. 25 gastric cancer and 
25 CRC patients were recruited until October 2018, and they 
were exposed to both, Regorafenib (dose-escalation: 
80–160 mg; frequency: once-daily at a 21 days on/7 days off 
schedule) and Nivolumab (dose: 3 mg/kg; frequency: once 
every 2 weeks).

highly sophisticated cell manipulation approach present a 
major challenge.

2.7.5. Bispecific T-Cell Engaging Antibody �erapy. Other 
strategies to target TAAs include bispecific T-cell- (BTC-) 
engaging antibodies that are a new class of engineered agents 
that simultaneously binds T-cells and tumor cells. �is results 
in a large number of T-cells capable of recognizing and 
attacking tumor cells.

Preclinical data support the combination of ICIs and BTC–
engaging antibodies targeting CEA antigen on tumors and 
CD3 on T-cells [224]. As such, this CEA-BTC antibody, also 
known as RG7802 or RO6958688, was evaluated in CRC [139]. 
For instance, in a study that assessed the use of the CEA-BTC 
antibody, alone or in combination with Atezolizumab, in 
patients with CEA positive solid tumors, 45% of the 31 patients 
with mCRC who received monotherapy had either a PR or SD 
[88]. 36% of the 25 who were treated with the combination 
therapy showed either a PR or SD.

Preliminary results from an ongoing phase I study that is 
investigating the use of the CEA-BTC antibody, alone or in 
combination with Atezolizumab, demonstrated upregulation 
in TILs and improvement in clinical responses in the combi-
nation therapy arm [225]. Nevertheless, patients in this arm 
experienced more adverse effects, with higher rates of infusion 
reactions, fever, and diarrhea. Two other ongoing phase I trials 
are currently exploring the use of CEA-BTC as a monotherapy 
(NCT02324257) [226] and in combination with Atezolizumab 
(NCT02650713) in patients with metastatic MSS CRC [227]. 
Encouraging results were reported in March 2017, whereby 
an improvement in clinical activity was observed in patients 
receiving the CEA-BTC monotherapy on the one hand, and a 
further enhancement in activity was noted when patients 
received the combination therapy with Atezolizumab on the 
other hand [228]. Of note, patients in the combination therapy 
arm had an overall disease control rate of 82% and an overall 
RR of 18%, with 64% of them having a SD. Overall, toxic effects 
were manageable. As such, CEA-BTC is among the first BTC 
antibodies to show efficacy in solid tumors in general and MSS 
CRC in particular [228].

2.7.6. Indoleamine 2,3-Dioxygenase 1 Inhibitors. �e enzyme 
Indoleamine 2,3-dioxygenase 1 (IDO1) is overexpressed by 
cancer cells and DCs and metabolizes tryptophan into the 
metabolite kynurenine [229]. T-cells will be deprived of 
tryptophan and suppressed by the effect of kynurenine on 
DCs [230]. In this way, IDO1 enzyme suppresses the immune 
response against cancer cells.

Blocking this immunosuppressive effect of IDO1 was 
thought to improve outcomes in cancer patients. Following 
the success of PD-1 and CTLA-4 checkpoint inhibitors in mel-
anoma, attention has turned to other checkpoint proteins such 
as IDO1. Several early phase trials have evaluated the use of 
IDO1 inhibitors such as Epacadostat, Indoximod, and BMS-
986205 [231], but results failed to reflect their efficacy as mon-
otherapies. For instance, in a phase I trial in which 52 patients 
with various metastatic solid tumors were treated with 
Epacadostat no objective tumor responses were observed 
[232].



15BioMed Research International

pMMR-MSI-L phenotype that comprises 95% of all metastatic 
CRC cases. Many questions remain with regard to the optimal 
way to harness immunotherapy in this subset, especially that 
no response to single agent checkpoint inhibitors was noted 
in most studies. As such, more research is required to further 
understand the potential mechanisms that make most pMMR 
tumors resistant to current immunotherapies. In addition, 
there is a need for further insight into the best strategies that 
would alter the tumor environment in pMMR-MSI-L tumors 
in a way that would render it similar to that of dMMR-MSI-H 
ones, thus rendering them potentially more responsive to cur-
rent immunotherapy regimens.

With the progress in several scientific and medical fields 
and the growing surge in knowledge about CRC and its tumor 
microenvironments, new pharmacological strategies are being 
developed in an attempt to improve outcomes in patients with 
pMMR-MSI-L CRC tumors. Current approaches aiming at 
overcoming resistance of tumors in this subset of patients 
include combining different ICIs with either chemotherapy, 
VEGF inhibitors, cancer vaccines, adoptive cell transfer, or 
BTC antibodies. Despite the myriad of strategies being tested, 
further studies are needed to confirm their efficacy among 
patients with pMMR-MSI-L tumors that comprise the major-
ity of mCRC disease. We look forward to the results of the 
ongoing clinical trials presented in this review in hopes that 
outcomes can be improved for all patients with CRC.
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Promising preliminary results were presented at the 2019 
ESMO and ASCO meetings. Interestingly, 18 out of the 19 
patients with an objective tumor response had MSS tumors (7 
MSS CRC, 11 MSS gastric cancer, and 1 MSI-H CRC). Also, 
of the 7 gastric cancer patients who were pretreated with an 
anti-PD1 agent, 3 attained a partial response. In addition, a 
significant drop in the density of T-regs in pre- and post-treat-
ment tumor samples was noted at tumor response. 
Consequently, it was concluded that combining Nivolumab 
with 80 mg of Regorafenib is safe and has an adequate anti-tu-
mor activity in MSS CRCs and gastric cancers. Nevertheless, 
investigations in larger cohorts are warranted to better evalu-
ate this combination therapy in MSS CRC patients.

In addition, adenosine that is generated from adenosine 
triphosphate in the tumor microenvironment results in immu-
nosuppressive effects a�er binding to the A2A adenosine 
receptor expressed by immune cells. �ese include the inhi-
bition of the proliferation of natural killer T-cells and the 
enhancement of the proliferation of T-regs and MDSCs [243–
245]. Results from preclinical studies on murine CRC models 
have shown activity with the use of an anti-CD73 antibody 
alone or in combination with checkpoint blockade [245]. �is 
led to the initiation of several trials evaluating the use of the 
anti-CD73 antibody, MEDI-9447, in combination with 
Durvalumab, in patients with different types of cancers, mainly 
lung cancer.

2.7.8. Epigenetic Modulators. It has been noted that tumors 
exposed to an immune attack can downregulate tumor 
antigens, immuno-stimulatory IFNs, and MHC proteins. One 
proposed mechanism was through epigenetic regulation. As 
such, epigenetic modulators were developed to upregulate 
the above-mentioned immunomodulatory pathways and 
synergize with standard immunotherapies [246, 247]. Ongoing 
clinical trials on CRC are exploring different combinations of 
epigenetic modifiers and ICIs.

3. Conclusion

ICIs currently constitute the main domain of immunotherapy 
in patients with an increasing range of malignancies [10]. �eir 
success in heavily mutated tumor types such as melanoma has 
culminated in their exploration in different subsets of patients 
with mCRC. �rough boosting the host’s immune response 
against tumor cells with limited collateral damage and through 
their dramatic and durable RRs among patients with chemore-
fractory dMMR-MSI-H mCRC, ICIs have become potential 
alternatives to classical systemic therapies. In this respect, the 
two anti-PD-1 agents, Pembrolizumab and Nivolumab, have 
been granted FDA approval for this subset of patients [248]. 
Unfortunately, however, since not all CRC cases with the 
dMMR-MSI-H phenotype respond well to ICIs, further stud-
ies are ongoing to better understand both, the mechanisms 
that render some of these tumors resistant to immunotherapy 
and the biomarkers that provide them with positive prognostic 
implications.

Another challenge lies in developing suitable novel treat-
ment strategies for the other subset of patients with the 
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