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Objective. To explore the mechanism of action of Bu-Fei-Yi-Shen formula (BFYSF) in treating chronic obstructive pulmonary
disease (COPD) based on network pharmacology analysis and molecular docking validation. Methods. First of all, the
pharmacologically active ingredients and corresponding targets in BFYSF were mined by the Traditional Chinese Medicine
Systems Pharmacology (TCMSP) database, the analysis platform, and literature review. Subsequently, the COPD-related targets
(including the pathogenic targets and known therapeutic targets) were identified through the TTD, CTD, DisGeNet, and
GeneCards databases. Thereafter, Cytoscape was employed to construct the candidate component-target network of BFYSF in
the treatment of COPD. Moreover, the cytoHubba plug-in was utilized to calculate the topological parameters of nodes in the
network; then, the core components and core targets of BFYSF in the treatment of COPD were extracted according to the
degree value (greater than or equal to the median degree values for all nodes in the network) to construct the core network.
Further, the Autodock vina software was adopted for molecular docking study on the core active ingredients and core targets, so
as to verify the above-mentioned network pharmacology analysis results. Finally, the Omicshare database was applied in
enrichment analysis of the biological functions of core targets and the involved signaling pathways. Results. In the core
component-target network of BFYSF in treating COPD, there were 30 active ingredients and 37 core targets. Enrichment
analysis suggested that these 37 core targets were mainly involved in the regulation of biological functions, such as response to
biological and chemical stimuli, multiple cellular life processes, immunity, and metabolism. Besides, multiple pathways,
including IL-17, Toll-like receptor (TLR), TNF, and HIF-1, played certain roles in the effect of BFYSF on treating COPD.
Conclusion. BFYSF can treat COPD through the multicomponent, multitarget, and multipathway synergistic network, which
provides basic data for intensively exploring the mechanism of action of BFYSF in treating COPD.

1. Introduction

Chronic obstructive pulmonary disease (COPD) is a common
clinical disease characterized by respiratory system symptoms
and flow limitation [1]. It is generally induced by airway and
(or) alveolar abnormalities due to exposure to harmful parti-
cles and gases (like cigarette smoke), and its pathogenesis is
mainly related to chronic airway and pulmonary inflamma-
tion, oxidative stress (OS), protease/antiprotease imbalance,
and cell apoptosis [2–5]. COPD is associated with high mor-

bidity and mortality rates and causes tremendous socioeco-
nomic burdens, which has become an important public
health issue [6]. In China, COPD is a major chronic respira-
tory system disease that severely impairs human health [7, 8].

Modern medicine can not attain satisfactory therapeutic
effect or safety on stable COPD patients, and the limited
efficacy must be maintained by long-term inhalation of
bronchodilators and glucocorticoids [9–11]. By contrast, tra-
ditional Chinese medicine (TCM) exhibits obvious advan-
tages in the treatment of COPD, which obviously improves
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the clinical symptoms of patients according to syndrome dif-
ferentiation. In the TCM theory, COPD patients mostly suf-
fer from syndrome of deficiency of both the lung and kidney.
Therefore, tonifying the lung, strengthening the spleen, and
boosting the kidney are the basic TCM therapeutic methods
for COPD [12, 13]. Bu-Fei-Yi-Shen formula (BFYSF) is a
cipher prescription for the treatment of COPD at Huai’an
Hospital of Traditional Chinese Medicine, which is consti-
tuted by 6 Chinese herbal medicines, including Ginseng
Radix et Rhizoma Rubra (Hongshen (HS)), Astragali Radix
(Huangqi (HQ)), Epimedii Folium (Yinyanghuo (YYH)),
Corni Fructus (Shanzhuyu (SZY)), Rehmanniae Radix
(Dihuang (DH)), and Atractylodis Macrocephalae Rhizoma
(Baizhu (BZ)). It has the effects of tonifying lung and spleen
and warming and invigorating kidney yang. In clinic, BFYSF
can effectively relieve the symptoms in COPD patients,
improve the lung function, and enhance the patient exercise
tolerance and quality of life. In addition, it can alleviate the
cough severity, frequency, and expectoration amount and
improve the wheezing symptom [14, 15], but its precise
mechanism of action remains unclear so far.

Chinese medicine formula is the organic whole consti-
tuted by multiple traditional Chinese herbal medicines,
which has a complex chemical composition [16]. Nonethe-
less, only partial chemical components possessing favorable
pharmacokinetic properties can play therapeutic roles, and
the therapeutic efficacy of a Chinese medicine formula may
be derived from the joint action of multiple components
[17]. Due to the complexity in chemical components of
Chinese medicine and human body interaction, it is relatively
difficult to illustrate the molecular mechanism of action of
Chinese medicine formula in treating disease [18]. Network
pharmacology is one of the key technical means to investigate
the Chinese medicine formula in systems biology, which
allows to reveal the pharmacological actions of herbal medi-
cines and formulas, along with the molecular mechanisms,
based on multidisciplinary integration, such as high-
throughput omics, computer technology, pharmacology,
and network database retrieval [19, 20]. This study applied
the network pharmacology technology in predicting the
pharmacodynamic material basis and molecular mechanism
of BFYSF in treating COPD, and molecular docking technol-
ogy was used for verification, so as to provide theoretical
foundation for carrying out fundamental experiment study
and reasonable clinical application of BFYSF.

2. Materials and Methods

2.1. Screening of Potential Pharmacodynamic Compounds
and Related Targets in BFYSF. Using the Traditional Chinese
Medicine Systems Pharmacology (TCMSP, Version: 2.3,
https://tcmspw.com/index.php) database and the analysis
platform [21], the names of six Chinese herbal medicines
were input in succession to obtain the corresponding chemi-
cal compounds and related information. Then, the potential
compounds in BFYSF were screened at the thresholds of
bioavailability ðOBÞ ≥ 30% and drug likeness ðDLÞ ≥ 0:18
according to the literature reported method [22, 23]. More-
over, some compounds, such as astragaloside I, icariresinol,

cornuside, rehmaglutin D, and atractylenolide I, which did
not satisfy the criteria of bioavailability and DL values but
were reported to possess extensive pharmacological activities
or had high contents in single herbal medicine or were used
as the identification compounds of single medicine in the
Pharmacopeia [24–27], were also enrolled into the potential
compounds of BFYSF. The potential targets of active
ingredients were mined and integrated using the TCSMP
and BATMAN-TCM databases (http://bionet.ncpsb.org/
batman-tcm/) [28] according to the drug structural similarity
evaluation and reverse molecular docking, for the construc-
tion of a potential target set of BFYSF.

2.2. Mining of COPD-Related Targets. The targets related to
the COPD pathogenesis or therapeutics were obtained
through retrieving the TTD database (http://db.idrblab.net/
ttd/, Last update by June 1, 2020) [29], DisGeNet database
(https://www.disgenet.org/, v7.0) [30], GeneCards database
(https://www.genecards.org/, version: 5.0) [31], and CTD
database (http://ctdbase.org/, Last update by June, 2020)
[32] using the keyword “chronic obstructive pulmonary dis-
ease.” Specifically, drugs with abnormal status and the corre-
sponding targets were eliminated in mining against the TTD
database. In the DisGeNet database, the targets were ranked
based on the disease specificity index (DSI) value from the
highest to the lowest, and those greater than the median were
selected. In the CTD database, the top 200 genes in terms of
the Inference score were selected. In the GeneCards, targets
with the score ≥ 10 were screened. Later, targets obtained
from the above four databases were integrated to construct
the COPD-related target set.

2.3. Construction of the Candidate and Core Component-
Target Network of BFYSF in Treating COPD. First of all,
the UniProt database (https://www.uniprot.org/) [33] was
selected, the species was selected as “Homo sapiens,” and
the names of targets obtained in the above two steps were
standardized to gain the unique UniProt IDs and gene
names. Subsequently, the two target sets were input, respec-
tively, to the Venny tool (https://bioinfogp.cnb.csic.es/tools/
venny/, version: 2.1) to acquire the common targets, which
were the candidate targets of BFYSF in treating COPD.
Thereafter, the Cytoscape software (version 3.7.2) [34] was
employed to construct the candidate active component-
target network of BFYSF in treating COPD, with “active
component” being set as square, while “target” being set as
circle. Then, the cytoHubba plug-in (version 0.1) [35] was
employed to calculate and rank the degree of all nodes. After-
wards, nodes with degree greater than or equal to the median
degree values for all nodes in the network (namely, the core
active ingredients and core targets of BFYSF in treating
COPD) were selected to establish the core component-
target network. The node size in the core network was related
to the degree value.

2.4. Verification of the Compound-Target Interactions. The
interactions between compounds and targets were validated
using the Autodock vina software (version: 1.1.2) [36]. The
mol2 structure of compound was downloaded from the
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TCMSP database. In addition, the 3D structures of all target
proteins were acquired based on the RCSB PDB database
(http://www.rcsb.org/) [37]. The MOE approach and Auto-
dockTools (version: 1.5.6) [38] were used to prepare ligands
and proteins before molecular docking. For target protein,
its crystal structure was subjected to pretreatments, which
included water molecule removal, protonation and 3D
hydrogenation, protein structural correction, energy optimi-
zation, and retention of target active region. Ligand structure
should satisfy the low-energy conformation. The coordinates
and box size for molecular docking were finalized according
to the ligand location. To achieve a higher computational
accuracy, we set the exhaustiveness parameter to 20. All other
parameters were set as default values unless otherwise
specified. Then, active ingredients were coupled into target
protein in a semiflexible way, and 9 conformations were gen-
erated in total. The conformation with the highest affinity
was selected as the final docking one.

2.5. GO-BP and KEGG Enrichment Analyses of Core Targets.
To further explore the biological processes (BPs) and the reg-
ulatory signaling pathways involved in the core targets of
BFYSF in treating COPD, the screened core target informa-
tion was imported, and the Omicshare online software
(https://www.omicshare.com/) was used for GO-BP and
KEGG enrichment analyses of the targets at the threshold
of p < 0:05.

3. Results

3.1. Screening of Potential Pharmacodynamic Components
and Targets in BFYSF. Through TCMSP database retrieval,
a total of 486 chemical components in the six herbal medi-
cines constituting BFYSF were collected. Thereafter, the 486
components were screened at the active ingredient thresh-
olds of OB ≥ 30% and DL ≥ 0:18, and 58 potential compo-
nents were obtained. In addition, among those eliminated
components, 13 compounds, which did not satisfy the
inclusion criteria of bioavailability and DL values but were
reported to possess extensive pharmacological activities or
had high contents in single herbal medicine or were used as
the identification compounds of single medicine in the phar-
macopeia, were also enrolled as the potential components of
BFYSF. Finally, HS, HQ, YYH, SZY, DH, and BZ had 10, 23,
2, 23, 4, and 13 active ingredients, respectively. Among them,
beta-sitosterol and stigmasterol extensively existed in multi-
ple herbal medicines. The basic information of the potential
pharmacodynamic components of BFYSF is presented in
Table S1.

Subsequently, the targets of these 71 potential components
were retrieved against the TCMSP and BATMAN-TCM data-
bases, and a total of 269 were identified (Table S2). As
observed, HS, HQ, YYH, SZY, DH, and BZ had 77, 218, 21,
129, 42, and 34 potential targets, separately. There were
obvious overlaps among those six herbal medicines, even
though the target number of every herbal medicine was
different. This suggested that the different components in
BFYSF might show heterogeneous effects through regulating
similar targets.

For the comprehensive understanding of the component-
target network within BFYSF in a systemic and holistic man-
ner, a network map was established using Cytoscape, which
included 1147 edges along with 343 nodes (Figure 1). In the
map, node degree was the number of targets or edges associ-
ated with the node according to topological analysis. Alto-
gether 145 potential components were identified with the
median ≥ 6 degrees from the constructed network. Among
them, quercetin, kaempferol, beta-sitosterol, 7-O-methyliso-
mucronulatol, stigmasterol, and formononetin exerted func-
tions on 158, 72, 55, 47, 42, and 39 targets, respectively, which
might be the significant active ingredients in BFYSF.

3.2. Mining of the Core Targets of BFYSF in Treating COPD.
COPD is a polygenic genetic disease, and its pathogenesis
can be potentially illustrated by studying the gene-gene or
gene-environment associations [39]. Through retrieving the
TTD, DisGeNet, CTD, and GeneCards databases, altogether,
276 COPD-related targets (Table S3) were obtained. In
addition, 65 out of the identified targets for the potential
components of BFYSF were identified as the COPD- or
therapeutic-related targets, suggesting that BFYSF showed
certain therapeutic efficacy on COPD (Figure 2(a) and
Table S4). These 65 targets were all candidate targets of
BFYSF in treating COPD, while the corresponding active
ingredients in BFYSF (n = 48) were the candidate active
compounds of BFYSF.

Later, the Cytoscape software was employed to construct
the candidate component-target network of BFYSF in treat-
ing COPD (Figure 2(b)). To further screen the core compo-
nents and core targets of BFYSF in treating COPD, the
cytoHubba plug-in was employed to calculate and sort the
topological parameters (degree) of the nodes in the above-
mentioned network (Table S5). Then, the median degree of
all nodes was calculated, and nodes with values greater than
or equal to the median (degree = 2) of all nodes were
selected as the core components and core targets of BFYSF
in treating COPD, respectively. Subsequently, the core
component-target network (thirty-seven core targets and
thirty core components) was constructed (Figure 2(c),
Tables 1 and 2). Among all the core components, quercetin,
kaempferol, beta-sitosterol, stigmasterol, and formononetin
ranked the top five in terms of degree, which were derived
from the HQ, HS, SZY, and DH in BFYSF, respectively.
Some of them have been verified in previous studies to delay
the course of COPD and improve symptoms [40, 41]. In
addition, among all targets, PTGS2, PPARG, and NOS2 were
the top three sorted by degree.

3.3. Verification of the Core Compound-Target Network. The
associations of components with targets were assessed
through molecular docking study, which reduced the
network complexity and improved the accuracy. Virtual
screening performed to determine the binding affinity
between protein models and 9 core active compounds (the
top three active ingredients in the order of degree value in
the network and the outside core compounds with the top
1 degree value in each single Chinese herbal medicine
constituting BFYSF), namely, atractylenolide I, quercetin,
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formononetin, kaempferol, beta-sitosterol, stigmasterol,
gallic acid-3-O-(6′-O-galloyl)-glucoside, icariresinol, and
ginsenoside rh2. Upon molecular docking, 4 targets (PTGS2,
PPARG, NOS2, and NR3C1) together with 9 compounds
were identified (Table 3 and Figure 3).

PTGS2, PPARG, NOS2, and NR3C1 were searched
against the PDB protein database, separately, to obtain the

3D structures of 5kir, 3wmh, 4nos, and 4p6w proteins. As
seen from the binding free energy results shown in Table 1,
all the 9 core compounds had relatively tight bond to the 4
core targets. Among them, the compounds that showed most
closely bound to PTGS2, PPARG, NOS2, and NRC31 were
quercetin, gallic acid-3-O-(6′-O-galloyl)-glucoside, querce-
tin, and stigmasterol, respectively (Figure 3). Quercetin has
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different herbal medicines were linked with corresponding targets to construct the pharmacodynamic ingredient-target network, where a
node indicates an active compound (the different colors of squares stand for different herbal medicines) and the target (green circles).
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Figure 2: Excavation of core components and targets of BFYSF in treating COPD. (a) The Venn diagram showed that 65 potential targets in
BFYSF were the same as the known pathological course-related targets of COPD. (b) The candidate component-target network of BFYSF in
treating COPD. (c) The core component-target network of BFYSF in treating COPD.
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been reported to decrease the expression and activity of COX-
2 induced by ischemia reperfusion or arsenite [42, 43]. In
addition, quercetin inhibited inflammatory response induced
by LPS through iNOS/FAK/paxillin or p38/iNOS/NF-kappaB
signaling pathway [44–46]. In the virtual docking (Figures 3(a)
and 3(c)), quercetin was demonstrated to form hydrogen
bonds with amino acid TYR355, PHE518, SER353, and GLN192

of COX-2 and VAL352, TYR347, and GLN263 of iNOS. At the
same time, quercetin also formed a strong hydrophobic
interaction with residues LEU352 and VAL523 of COX-2 and
π-anion bonds with residues GLU377. The gallic acid-3-O-

(6′-O-galloyl)-glucoside-PPARγ complex might be stabilized
through H-bond as well as π-cation bonds with CYS285,
TYR327, SER289, and LYS367 (Figure 3(b)). Similarly, the
stigmasterol-NR3C1 complex was stabilized by one H-bonds
with residue CYS643 and hydrophobic interaction with resi-
dues MET560, CYS736, and LEU566 (Figure 3(d)).

3.4. Core Target Enrichment Analysis of BFYSF in Treating
COPD. To further understand the multitarget and multipath-
way mechanism of BFYSF in treating COPD, this study uti-
lized the Omicshare online tool for the GO-PB and KEGG
enrichment analyses of core targets, so as to mine the biolog-
ical processes and signaling pathways involved in BFYSF in
treating COPD (p < 0:05, FDR < 0:05). The most signifi-
cantly enriched GO-BP items were response to biological
and chemical stimuli, multiple cellular biological process, cell
proliferation, immunity, metabolism, exercise, and biological
regulation (Figure 4(a)). The above-mentioned core targets
were mainly enriched into multiple KEGG pathways
(Figure 4(b)), which revealed that these pathways exerted
vital roles in BFYSF in treating COPD: (1) eleven immune-
related pathways, including interleukin- (IL-) 17, FCζRI,
RIG-I-like receptor, C-type lectin receptor, Th17 cell differ-
entiation, NOD-like receptor, Toll-like receptor, T and B-
cell receptor, Th1 and Th2 cell differentiation, and TNF; (2)
four oxidative stress (OS) and inflammation related path-
ways, including the hypoxia-inducible factor 1 (HIF1), Fork
head transcription factor O (FoxO), TNF, and JAK-STAT;
(3) one protease/antiprotease imbalance related pathway,
which was the transforming growth factor β (TGF-β) signal-
ing pathway; (4) two pathways which were related to airway
remodeling and airway mucus hypersecretion, including the
MAPK and VEGF signaling pathway; and (5) one pathway
which was related to cell growth and death, which was cell
apoptosis.

4. Discussion

BFYSF is a cipher prescription used in the Department of
Respiration at our hospital to treat COPD, which is most
suitable for patients with lung and kidney deficiency. In the
clinical treatment for COPD, BFYSF has significant thera-
peutic efficacy, but its active ingredients and mechanism
remain unclear, which has hindered the further development
and utilization of this prescription.

Network pharmacology is a new strategy of drug design
and development proposed based on the rapid development
of systems biology and polypharmacology. Hopkins first
put forward this concept in 2007 [47]; in 2008, he proposed
to transform the original new drug discovery pattern
of “disease-single target-single drug” to the pattern of
“disease-multiple targets-multiple drugs.” This thinking
coincides with the “holistic view” in TCM [20, 48]. Therefore,
applying the network pharmacology approach contributes to
providing some research thinking for illustrating the BFYSF
mechanism in the treatment of COPD.

It was discovered in this study that all the six single herbal
medicines in this formula contained large amounts of com-
ponents, and the components acted on multiple targets, or

Table 1: Degree values of core targets for BFYSF against COPD.

Targets name Degree

PTGS2 29

PPARG 24

NOS2 24

NOS3 19

NR3C1 17

MAPK14 15

JUN 5

CASP3 5

BCL2 5

HTR2A 4

TGFB1 3

RELA 3

PON1 3

PLAU 3

IL1B 3

IFNG 3

ALOX5 3

ALB 3

VEGFA 2

VCAM1 2

TP53 2

TNF 2

STAT1 2

SELE 2

NFKBIA 2

MPO 2

MMP1 2

IL6 2

ICAM1 2

HMOX1 2

GSTP1 2

GSTM2 2

GSTM1 2

CYP1A2 2

CYP1A1 2

CHRM5 2

AKT1 2

6 BioMed Research International



multiple components acted on the same target, which
reflected the multicomponent and multitarget synergistic
features of BFYSF. At the same time, the targets might be reg-
ulated by single herbal medicine or multiple herbal medicines
of BFYSF, which showed that in a formula, both the unique
contribution of single herbal medicine and the synergy of
multiple herbal medicines existed. As discovered from the
component-target network of BFYSF in treating COPD, 48
components in this prescription might act on 65 targets to
exert the therapeutic effect. Furthermore, based on the topo-
logical parameters of nodes in the component-target net-
work, it was speculated that PTGS2, PPARG, NOS2, and
NR3C1 were the core targets for BFYSF in treating COPD.
Besides, the interactions between core components and core
targets were verified through molecular docking study. The
subsequent GO-BP and KEGG enrichment analyses revealed
that these targets mainly participated in regulating inflam-
matory immune response, OS, suppressing protease/antipro-
tease imbalance, improving airway remodeling and airway

Table 2: 30 core pharmacologically active ingredients of BFYSF in the treatment of COPD.

Compound no. Degree in core network Compound name

MOL000098 57 Quercetin

MOL000422 24 Kaempferol

MOL000358 21 Beta-sitosterol

MOL000449 13 Stigmasterol

MOL000392 8 Formononetin

MOL000378 7 7-O-Methylisomucronulatol

MOL000354 6 Isorhamnetin

MOL005344 6 Ginsenoside rh2

MOL008457 6 Tetrahydroalstonine

MOL000043 5 Atractylenolide I

MOL000371 5 3,9-Di-O-methylnissolin

MOL000554 5 Gallic acid-3-O-(6′-O-galloyl)-glucoside
MOL000239 4 Jaranol

MOL000296 4 Hederagenin

MOL000380 4 (6aR,11aR)-9,10-Dimethoxy-6a,11a-dihydro-6H-benzofurano[3,2-c]chromen-3-ol

MOL000417 4 Calycosin

MOL000442 4 1,7-Dihydroxy-3,9-dimethoxy pterocarpene

MOL000908 4 Beta-elemene

MOL004426 4 Icariresinol

MOL005530 4 Hydroxygenkwanin

MOL000049 3 3β-Acetoxyatractylone

MOL000022 3 14-Acetyl-12-senecioyl-2E,8Z,10E-atractylentriol

MOL000044 3 Atractylenolide II

MOL000072 3 8β-Ethoxy atractylenolide III

MOL000359 2 Sitosterol

MOL000387 2 Bifendate

MOL001494 2 Mandenol

MOL001495 2 Ethyl linolenate

MOL002883 2 Ethyl oleate (NF)

MOL005503 2 Cornudentanone

Table 3: Virtual docking of core bioactive ingredients and core
targets for BFYSF in treating COPD.

Core ingredients
Binding energy/(kcalmol-1)

PTGS2 PPARG NOS2 NR3C1

MOL000043 -7.2 -6.9 -7.8 -7.8

MOL000098 -9.6 -8.4 -9.1 -8.4

MOL000358 -4.8 -5.4 -6.9 -9.3

MOL000392 -7.3 -8.3 -8.3 -7.2

MOL000422 -9.5 -8.3 -8.6 -8.2

MOL000449 -5.2 -6.2 -7.4 -9.5

MOL000554 -6 -8.7 -9 -7.8

MOL004426 -6 -6.8 -7.5 -7.6

MOL005344 -8.9 -6.2 -7.5 -4.3
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mucus hypersecretion, energy metabolism, and modulating
the related signaling pathways.

Airway and pulmonary inflammation, protease/anti-
protease imbalance, and oxidation/antioxidation imbalance
are the major pathogenic mechanisms of COPD. As
suggested in research, the Th17 cell proportion and
COX-2 expression in the lung tissue and peripheral blood
of COPD patients significantly increase, the inflammatory
cytokine TNF-α levels in blood and airway elevate, the
neutrophil elastase level in serum elevates, α1-AT level
decreases, and the protease/antiprotease balance is
destroyed [49–53]. In the COPD model mice induced by
cigarette smoke stimulation, the body produces OS
response, which then activates the Nrf2 nuclear transcrip-
tion and suppresses its target gene HOMX1 expression
[54]. Regulating the SIRT3/FoxO pathway and suppressing
HIF-1 expression and release can improve the inflamma-
tory and OS statuses in COPD [55, 56]. It is reported in
plenty of articles that multiple core active ingredients of
BFYSF in treating COPD can treat COPD through

improving airway and pulmonary inflammation or the
antioxidant activity. For instance, isorhamnetin can sup-
press the TNF-induced airway inflammatory response;
astragaloside and gallic acid can alleviate inflammation to
suppress the cigarette-induced COPD; and quercetin and
kaempferol can treat COPD through its antioxidation
and anti-inflammatory activities [41, 57].

Airway remodeling and airway mucus hypersecretion are
the major pathological features of COPD, which are mainly
manifested as airway wall structural changes, luminal steno-
sis, and flow limitation [58, 59]. Research suggests that
MAPK activation is related to the airway remodeling in
COPD [60]. Reducing the VEGF and COX-2 expression
levels in COPD rats can suppress airway remodeling, thus
improving COPD [61, 62]. PPAR activation can inhibit the
inflammatory and OS reactions and participate in regulating
the mucus hypersecretion in COPD patients [63]. Quercetin,
the core ingredient in BFYSF, has been verified to improve
pulmonary function and treat COPD through protecting
from airway remodeling.
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Figure 3: Virtual docking of core components and core targets of BFYSF in treating COPD. The virtual docking of quercetin with PTGS2 (a)
and NOS2 (c), respectively. (b) The docking of PPARG with gallic acid-3-O-(6′-O-galloyl)-glucosid. (d) The virtual docking of stigmasterol
with NRC31.
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5. Conclusion

To sum up, the mechanism of action by which BFYSF treats
COPD may be related to the regulation of immune
inflammatory response, antioxidation, suppression of pro-
tease/antiprotease imbalance, and improvement of airway
remodeling and airway mucus hypersecretion.
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