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Abstract

In this paper, we propose a fractional reaction-diffusion model in
order to better understand the mechanisms and dynamics of hepatitis
B virus (HBV) infection in human body. The infection transmission
is modeled by Hattaf-Yousfi functional response and the fractional
derivative is in the sense of Caputo. The global stability of the model
equilibria is analyzed by means of Lyapunov functionals. Finally, nu-
merical simulations are presented to support our analytical results.

Keywords: HBV infection, diffusion, fractional partial differential equa-
tions, global asymptotic stability.

1 Introduction

In the recent years, fractional calculus has attracted the attention of many
researchers. Hattaf [1] proposed a new fractional derivative with non-singular
kernel which generalizes many forms existing in the literature such as the
Caputo-Fabrizio and Atangana-Baleanu fractional derivatives. Further, there
are some new methods used to solve numerically fractional models considered
to explain deeper investigations of real world problems [2–6].

On the other hand, hepatitis B is a dangerous infectious disease caused
by the hepatitis B virus (HBV). It affects the lives of 257 million people and
responsible for the deaths of 56000 people every year according to World
Health Organization (WHO) estimates [7]. Therefore, several mathematical
models have been proposed and developed to describe the dynamics of HBV

1



dynamics. For instance, Manna and Chakrabarty [8] proposed and analyzed
the dynamics of HBV infection by taking into account the spacial mobility
of both HBV DNA-containing capsids and viruses. Their work was an ex-
tension of that presented in [9]. Guo et al. [10] studied a nonlinear system of
partial differential equations (PDEs) for HBV infection with three time de-
lays, general incidence rate and spatial diffusion only in the viruses. Hattaf
and Yousfi [11] developed a mathematical HBV infection model with two
modes of transmission, and allows the movement of HBV DNA-containing
capsids and viruses, and three distributed delays. Since fractional order mod-
els possess property of memory, Bachraoui et al. [12] proposed a mathematical
model governed by fractional differential equations (FDEs) to more explore
the dynamic characteristics of the HBV infection. They have improved and
generalized the ordinary differential equation (ODE) models [9, 13] and also
the FDE models [14–16] by using the Hattaf’s incidence rate [17] that in-
cludes the common types such as the bilinear incidence rate, the saturated
incidence rate and the Beddington-DeAngelis functional response [18, 19].

In this study, we present an extension of our model presented in [12] by
considering the mobility of capsids and viruses. So, we propose the following
mathematical model formulated by fractional partial differential equations
(FPDEs) to better describe the dynamics of HBV infection under the effects
of diffusion and memory:



















∂α
t U = σ − δU(x, t)− F (U(x, t), V (x, t))V (x, t) + ǫI(x, t),

∂α
t I = F (U(x, t), V (x, t))V (x, t)− (ρ+ ǫ)I(x, t),

∂α
t C = dC∆C + κI(x, t)− (ρ+ η)C(x, t),

∂α
t V = dV∆V + ηC(x, t)− νV (x, t).

(1)

The state variables U(x, t), I(x, t), C(x, t) and V (x, t) are respectively the
concentrations of uninfected liver cells, infected liver cells, HBV DNA-containing
capsids and virions at location x and time t. Uninfected liver cells are pro-
duced at constant rate σ, die at rate δU and become infected by virus at rate
F (U, V )V . The parameters ǫ, ρ κ, η and ν are respectively the cure rate of
infected liver cells, the death rate of infected liver cells and capsids, the pro-
duction rate of capsids from infected liver cells, the rate at which the capsids
are converted to virions, and the viral clearance rate. The positive constants

dC and dV are the diffusion coefficients of capsids and virus. ∆ =

n
∑

i=1

∂2

∂x2
i

is
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the Laplacian operator. The incidence function of (1) is described by Hattaf-
Yousfi functional response [17] of the form F (U, V ) = bU

α0+α1U+α2V+α3UV
,

where the nonnegative constants αi, i = 0, 1, 2, 3, measure the saturation,
inhibitory or psychological effects, and the positive constant b is the infec-
tion rate. This functional response covers several specific cases available in
the literature such as the bilinear and saturation incidences, the Beddington-
DeAnglis and Crowley-Martin functional responses, and the specific func-
tional response introduced by Hattaf et al. [20]. Finally, ∂α

t is the Caputo
fractional derivative of order α ∈ (0, 1]. The choice of this type of fractional
derivative is motivated by the fact that the fractional derivative of a constant
is equal to zero, and α was chosen in the interval (0, 1] to have the same ini-
tial conditions as those of the PDE systems. Further, a recent study in [21]
has shown that the fractional order model gives better predictions than that
of the integer model about the plasma virus load of the patients.

Throughout this paper, we consider system (1) with initial conditions

U(x, 0) = U0(x) ≥ 0, I(x, 0) = I0(x) ≥ 0, (2)

V (x, 0) = V0(x) ≥ 0, C(x, 0) = C0(x) ≥ 0, ∀x ∈ Ω̄,

and zero-flux boundary conditions

∂C

∂~n
=

∂V

∂~n
= 0, on ∂Ω× (0,+∞),

where Ω is a bounded domain in R
n with smooth boundary ∂Ω, and ∂

∂~n

denotes the outward normal derivative on ∂Ω. From the biological point
of view, these boundary conditions indicate that the capsids and free virus
particles do not move across the boundary ∂Ω.

The rest of the paper is organized as follows. The following section is de-
voted to the calculations of the basic reproduction number and steady states
of model (1). The global dynamics of the FPDE model is analyzed in Section
3. To support the analytical results, we present some numerical simulations
in Section 4. Finally, we end the paper with biological and mathematical
conclusions in Section 5.

2 Equilibria of the FPDE model

It is easy to verify that the only infection-free steady state of the FPDE

model (1) is P0(U
0, 0, 0, 0), where U0 =

σ

δ
. Then the basic reproduction
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number of (1) given by

R0 =
κηF (U0, 0)

ν(η + ρ)(ǫ+ ρ)
. (3)

The other steady states verify the following system:

σ − δU − F (U, V )V + ǫI = 0, (4)

F (U, V )V − (ǫ+ ρ) I = 0, (5)

κI − (η + ρ)C = 0, (6)

ηC − νV = 0. (7)

From (4)-(7), we get I = σ−δU
ρ

, C = κ(σ−δU)
ρ(η+ρ)

, V = ηκ(σ−δU)
νρ(η+ρ)

and

F

(

U,
ηκ(σ − δU)

νρ(η + ρ)

)

=
ν(η + ρ) (ρ+ ǫ)

κη
. (8)

I = σ−δU
ρ

> 0 implies that U 6
σ

δ
. So, we consider the function G defined

on interval [0,
σ

δ
] by

G(U) = F

(

U,
ηκ(σ − δU)

νρ(η + ρ)

)

−
ν(η + ρ) (ρ+ ǫ)

κη
. (9)

We have G(0) = −ν(η+ρ)(ρ+ǫ)
κη

< 0, G
(σ

δ

)

= ν(η+ρ)(ρ+ǫ)
κη

(R0 − 1) and

G′(U) =
∂F

∂U
−

κηδ

νρ(η + ρ)

∂F

∂V
> 0. (10)

If R0 > 1, we deduce that system (1) admits a unique infection equilibrium

P1(U1, I1, C1, V1) with U1 ∈
(

0,
σ

δ

)

, I1 = σ−δU1

ρ
, C1 = κ(σ−δU1)

ρ(η+ρ)
and V1 =

ηκ(σ−δU1)
νρ(η+ρ)

.
We summarize the above discussions in the following result.

Theorem 2.1.

(i) When R0 ≤ 1, the FPDE model (1) has one infection-free steady state

P0(U
0, 0, 0, 0), where U0 =

σ

δ
.

(ii) When R0 > 1, the FPDE model (1) has uniquely one chronic infection

steady state P1(U1, I1, C1, V1), where U1 ∈
(

0,
σ

δ

)

, I1 = σ−δU1

ρ
, C1 =

κ(σ−δU1)
ρ(η+ρ)

and V1 =
ηκ(σ−δU1)
νρ(η+ρ)

.
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3 Global dynamics

This section analyzes the global dynamics of the FPDE model (1).

Theorem 3.1. The infection-free steady state P0 is globally asymptotically
stable if R0 ≤ 1.

Proof. Let

L0(t) =

∫

Ω

[

α0

α0 + α1U0
U0Φ

(

U

U0

)

+
α0ǫ (U(x, t)− U0 + I(x, t))

2

2 (ρ+ δ) (α0 + α1U0)U0

+I(x, t) +
ǫ+ ρ

κ
C(x, t) +

(ǫ+ ρ) (η + ρ)

κη
V (x, t)

]

dx,

where Φ(x) = x− 1− ln(x) for x > 0. According to [22], we obtain

DαL0(t) ≤

∫

Ω

[

α0

α0 + α1U0

(

1−
U0

U

)

∂α
t U + ∂α

t I +
α0ǫ (U − U0 + I) (∂α

t U + ∂α
t I)

(ρ+ δ) (α0 + α1U0)U0

ǫ+ ρ

κ
∂α
t C +

(ǫ+ ρ) (η + ρ)

κη
∂α
t V

]

dx.

By σ = δU0, we have

DαL0(t) ≤

∫

Ω

[

−

(

1

U
+

ǫ

(ρ+ δ)U0

)

α0δ(U − U0)2

α0 + α1U0
−

α0ǫρI
2

(ρ+ δ) (α0 + α1U0)U0

−
α0ǫI (U − U0)

2

(α0 + α1U0)U0U
+

ν(ǫ+ ρ)(η + ρ)

κη

(

R0
F (U, V )

F (U0, 0)
− 1

)

V

]

dx,

≤ −

∫

Ω

[(

1

U
+

ǫ

(ρ+ δ)U0

)

α0δ(U − U0)2

α0 + α1U0
+

α0ǫρI
2

(ρ+ δ) (α0 + α1U0)U0

+
α0ǫI (U − U0)

2

(α0 + α1U0)U0U
−

ν(ǫ+ ρ)(η + ρ)

κη
(R0 − 1) V

]

dx.

Then DαL0(t) ≤ 0 when R0 ≤ 1. Additionally, {P0} is the largest invariant
set in {(U, I, C, V ) | DαL0(t) = 0}. By LaSalle’s invariance principale [23],
P0 is globally asymptotically stable if R0 ≤ 1.

Theorem 3.2. The chronic infection steady state P1 is globally asymptoti-
cally stable when R0 > 1 and

R0 ≤ 1 +
[δρν(η + ρ) + α2δσκη] (ǫ+ ρ) + α3ǫηκσ

2

ǫνρ(ǫ + ρ)(α0δ + α1σ)
. (11)
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Proof. Let

L1(t) =

∫

Ω

[

α0 + α2V1

α0 + α1U1 + α2V1 + α3U1V1
U1Φ

(

U

U1

)

+
ǫ (α0 + α2V1) (U(x, t)− U1 + I(x, t)− I1)

2

2 (ρ+ δ) (α0 + α1U1 + α2V1 + α3U1V1)U1

+I1Φ

(

I

I1

)

+
ǫ+ ρ

κ
C1Φ

(

C

C1

)

+
(ǫ+ ρ) (η + ρ)

κη
V1Φ

(

V

V1

)]

dx.

Then

DαL1(t) ≤

∫

Ω

[

α0 + α2V1

α0 + α1U1 + α2V1 + α3U1V1

(

1−
U1

U

)

∂α
t U

+
ǫ (α0 + α2V1) (U − U1 + I − I1) (∂

α
t U + ∂α

t I)

(ρ+ δ) (α0 + α1U1 + α2V1 + α3U1V1)U1

+

(

1−
I1
I

)

∂α
t I

+
ǫ+ ρ

κ

(

1−
C1

C

)

∂α
t C +

(ǫ+ ρ) (η + ρ)

κη

(

1−
V1

V

)

∂α
t V

]

dx.

Since σ = δU1 + ρI1, F (U1, V1)V1 = (ǫ + ρ)I1, κI1 = (η + ρ)C1 and 1 −
F (U1, V1)

F (U, V1)
=

α0 + α2V1

α0 + α1U1 + α2V1 + α3U1V1

(

1−
U1

U

)

, we have

DαL1(t) ≤

∫

Ω

[

−δ (α0 + α2V1) (U − U1)
2

(α0 + α1U1 + α2V1 + α3U1V1)U
+

ǫ (α0 + α2V1) (U − U1) (I − I1)

(α0 + α1U1 + α2V1 + α3U1V1)U

+F (U, V1)V1

(

1−
F (U1, V1)

F (U, V1)
+

F (U, V )V1

F (U, V1)V1

)

+ F (U1, V1)V1

(

1−
IC1

I1C

)

+F (U1, V1)V1

(

1−
F (U, V )V I1
F (U1, V1)IV1

)

+ F (U1, V1)V1

(

1−
V

V1

−
CV1

C1V

)

−
ǫ (α0 + α2V1)

[

δ (U − U1)
2 + ρ(I − I1)

2 + (δ + ρ) (U − U1) (I − I1)
]

(α0 + α1U1 + α2V1 + α3U1V1) (δ + ρ)U1

]

dx

−
ǫ+ ρ

κ
dCC1

∫

Ω

‖▽C‖2

C2
dx−

(ǫ+ ρ) (η + ρ)

κη
dV V1

∫

Ω

‖▽V ‖2

V 2
dx.

6



Hence,

DαL1(t) ≤ −

∫

Ω

[

(α0 + α2V1) (U − U1)
2

(α0 + α1U1 + α2V1 + α3U1V1)UU1

(

(δU1 − ǫI1) +
δǫU

ρ+ δ
+ ǫI

)

+
ǫρ (α0 + α2V1) (I − I1)

2

(α0 + α1U1 + α2V1 + α3U1V1) (ρ+ δ)U1

−F (U1, V1)V1

(

5−
F (U1, V1)

F (U, V1)
−

C1I

CI1
−

F (U, V )

F (U1, V1)

V I1
V1I

−
CV1

C1V
−

F (U, V1)

F (U, V )

)

+
F (U1, V1)V1(α0 + α1U)(α2 + α3U)(V − V1)

2

(α0 + α1U + α2V1 + α3UV1)(α0 + α1U + α2V + α3UV )V1

]

dx

−
ǫ+ ρ

κ
dCC1

∫

Ω

‖▽C‖2

C2
dx−

(ǫ+ ρ) (η + ρ)

κη
dV V1

∫

Ω

‖▽V ‖2

V 2
dx.

Since 5− F (U1,V1)
F (U,V1)

− C1I
CI1

− F (U,V )
F (U1,V1)

V I1
V1I

− CV1

C1V
− F (U,V1)

F (U,V )
≤ 0, we have DαL1(t) ≤ 0

if R0 > 1 and ǫI1 ≤ δU1. The last condition is equivalent to

R0 ≤ 1 +
[δρν(η + ρ) + α2δσκη] (ǫ+ ρ) + α3ǫηκσ

2

ǫνρ(ǫ + ρ)(α0δ + α1σ)
.

Also, {P1} is the largest invariant set in {(U, I, C, V ) | DαL1(t) = 0}. Accord-
ing to LaSalle’s invariance principale, we deduce that P1 is globally asymp-
totically stable. This completes the proof.

4 Numerical simulations

In this section, we present some numerical illustrations to support the ob-
tained analytical results.

Let ∆t be the time step size, Ω = [xmin, xmax] and ∆x = (xmax − xmin) /N
be the space step size with N is a positive integer. The grid points for the
space are xi = xmin + i∆x for i ∈ {0, ..., N}, and for time are tm = m∆t
for m ∈ IN. From Grünwald-Letnikov method [24], the Caputo fractional
derivative is approximated as follows

C∂α
t l (xi, tm) ≈

1

∆tα

m
∑

j=0

βα
j l (xi, tm−j)− l̃m, (12)
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Figure 1: Stability of the infection-free steady state P0.

where l̃m = l(xi,0)t
−α
m

Γ(1−α)
and βα

j are the fractional binomial coefficients

(

α
j

)

with the recursion formula

βα
j =

(

1−
1 + α

j

)

βα
j−1, βα

0 = 1.

Let (Um
i , Imi , Cm

i , V m
i ) be the approximations of the solution (U, I, C, V )

of (1) at the discretized point (xi, tm). Then by applying (12), we get

1

∆tα

(

Um+1
i +

m+1
∑

j=1

βα
jiU

m+1−j

)

− Ũm+1
i = σ − δUm

i − F (Um
i , V m

i )V m
i + ǫImi ,

1

∆tα

(

Im+1
i +

m+1
∑

j=1

βα
j I

m+1−j
i

)

− Ĩm+1
i = F (Um

i , V m
i )V m

i − (ǫ+ ρ)Imi ,

1

∆tα

(

Cm+1
i +

m+1
∑

j=1

βα
j C

m+1−j
i

)

−C̃m+1
i = dC

Cm
i+1 − 2Cm

i + Cm
i−1

∆x2
+κImi −(η+ρ)Cm

i ,
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Figure 2: Stability of the chronic infection steady state P1.

1

∆tα

(

V m+1
i +

m+1
∑

j=1

βα
j V

m+1−j
i

)

−Ṽ m+1
i = dV

V m
i+1 − 2V m

i + V m
i−1

∆x2
+ηCm

i −νV m
i .

Hence,

Um+1
i = −

m+1
∑

j=1

βα
j U

m+1−j
i +∆tα

[

Ũm+1
i + σ − δHm

i − F (Um
i , V m

i )V m
i + ǫImi

]

,

Im+1
i = −

m+1
∑

j=1

βα
j I

m+1−j
i +∆tα

[

Ĩm+1
i + F (Um

i , V m
i )V m

i − (ǫ+ ρ)Imi

]

,

Cm+1
i = −

m+1
∑

j=1

βα
j C

m+1−j
i +∆tα

[

C̃m+1
i + dC

Cm
i+1 − 2Cm

i + Cm
i−1

∆x2
+ κImi − (η + ρ)Cm

i

]

,

V m+1
i = −

m+1
∑

j=1

βα
j V

m+1−j
i +∆tα

[

Ṽ m+1
i + dV

V m
i+1 − 2V m

i + V m
i−1

∆x2
+ ηCm

i − νV m
i

]

.
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Figure 3: The state variable V (x, t) with different values of α.

For numerical simulations, we choose Ω = [0, 1], dC = 0.1, dV = 0.1,
σ = 50400, b = 3.6 × 10−6, δ = 0.039, ρ = 0.0693, κ = 150, η = 0.01,
ǫ = 0.01, α = 0.8, α0 = 0.1, α1 = 0.1, α2 = 0.01 and α3 = 0.000001. By
simple calculation, we find R0 = 0.0128 < 1. According to Theorem 3.1, the
infection-free steady state P0(1.2923× 106, 0, 0, 0) is globally asymptotically
stable which means that the virus will disappear and the patient will be
completely cured. Figure 1 confirms this result.
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To numerically illustrate the global stability of the second steady state
of model (1), we take b = 0.0018 without changing the values of the other
parameters. In this case, R0 = 6.4083 > 1. From Theorem 2.1, FPDE model
(1) has the unique chronic infection steady state P1(1.244 × 106, 1.891 ×
104, 3.562× 107, 5.314× 105). Additionally, we have

1 +
[δρν(η + ρ) + α2δσκη] (ǫ+ ρ) + α3ǫηκσ

2

ǫνρ(ǫ+ ρ)(α0δ + α1σ)
= 218.9236,

which implies that (11) holds. By Theorem 3.2, P1 is globally asymptotically
stable. Figure 2 validates this result.

5 Conclusions

In this article, we have presented a fractional reaction-diffusion HBV model
that takes into account the HBV DNA-containing capsids and the cure of
infected liver cells. The spatial diffusion is considered in capsids and virions,
and the incidence of infection is described by Hattaf-Yousfi functional re-
sponse that includes various forms existing in the literature. We have shown
that the global dynamics of the FPDEs model is fully determined by a thresh-
old parameter called the basic reproduction number and labeled byR0. More
concretely, the infection-free steady state P0 is globally asymptotically sta-
ble if R0 ≤ 1, which biologically means that the HBV is cleared. However,
the chronic infection steady state P1 is globally asymptotically stable when
R0 > 1 and the condition (11) holds. In this case, the HBV persists in the
liver and the infection becomes chronic.

According to the above analytic results and the numerical simulations,
we deduce that the diffusion and the order of fractional derivative in sense
of Caputo have no effects on the stability of both steady states, but they
can affect the time for arriving to these steady states. For example, the
trajectories quickly converge towards the equilibria of the model for higher
values of the fractional derivative order (see, Figures 3). On the other hand,
the models and results presented in [8, 9, 12–16] are improved and extended.

Data Availability

The data used to support the findings of this study are available from the
corresponding author upon request.
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