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Background. The molecular mechanisms and genetic markers of thyroid cancer are unclear. In this study, we used bioinformatics to
screen for key genes and pathways associated with thyroid cancer development and to reveal its potential molecular mechanisms.
Methods. The GSE3467, GSE3678, GSE33630, and GSE53157 expression profiles downloaded from the Gene Expression Omnibus
database (GEO) contained a total of 164 tissue samples (64 normal thyroid tissue samples and 100 thyroid cancer samples). The
four datasets were integrated and analyzed by the RobustRankAggreg (RRA) method to obtain differentially expressed genes
(DEGs). Using these DEGs, we performed gene ontology (GO) functional annotation, pathway analysis, protein-protein
interaction (PPI) analysis and survival analysis. Then, CMap was used to identify the candidate small molecules that might
reverse thyroid cancer gene expression. Results. By integrating the four datasets, 330 DEGs, including 154 upregulated and 176
downregulated genes, were identified. GO analysis showed that the upregulated genes were mainly involved in extracellular
region, extracellular exosome, and heparin binding. The downregulated genes were mainly concentrated in thyroid hormone
generation and proteinaceous extracellular matrix. Pathway analysis showed that the upregulated DEGs were mainly attached to
ECM-receptor interaction, p53 signaling pathway, and TGF-beta signaling pathway. Downregulation of DEGs was mainly
involved in tyrosine metabolism, mineral absorption, and thyroxine biosynthesis. Among the top 30 hub genes obtained in PPI
network, the expression levels of FN1, NMU, CHRDL1, GNAI1, ITGA2, GNA14 and AVPR1A were associated with the
prognosis of thyroid cancer. Finally, four small molecules that could reverse the gene expression induced by thyroid cancer,
namely ikarugamycin, adrenosterone, hexamethonium bromide and clofazimine, were obtained in the CMap database.
Conclusion. The identification of the key genes and pathways enhances the understanding of the molecular mechanisms for
thyroid cancer. In addition, these key genes may be potential therapeutic targets and biomarkers for the treatment of thyroid cancer.

1. Introduction

Thyroid cancer, a most common endocrine cancer, accounts
for 1-2% of human tumors. In recent years, the incidence of
thyroid cancer, ranking the seventh among all tumors and
the fifth for women, has been increasing. The appropriate
treatment plan (surgery, radiotherapy, chemotherapy) is
designed according to the stage of the disease. Most patients
have a good prognosis after percutaneous transluminal
coronary angioplasty, but invasive tumor or distant metas-
tases would occur in a small number of patients following
this treatment [1]. Therefore, finding key biomarkers and

therapeutic targets of thyroid cancer will greatly improve
the quality of life for patients.

Since the invention of gene expression microarray tech-
nology about 20 years ago, many mRNA profiling data sets
have been generated for different biological processes in
organisms. Currently, more than 30,000 series and 1 million
array-based gene expression data samples are stored in GEO
database of the National Center for Biotechnology Informa-
tion (NCBI) [2]. Microarray analysis is a newmethod to study
tumor genes, search for molecular targets of tumor drug ther-
apy and monitor prognosis. However, due to the heterogene-
ity of the experimental samples, different detection platforms
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and data processing methods generate inconsistent results
[3]. The study was based on biological information in the
GEO database, and the final results were obtained by analyz-
ing the molecular functions of mRNA associated with thyroid
cancer and the signal pathways involved.

To more accurately identify DEGs associated with
TCHA, bioinformatics methods were applied to analyze
datasets from GEO and then the results in this study were
integrated. Bioinformatic analyses were performed on these
DEGs. Here, we aimed to explore a reliable basis for explor-
ing the molecular mechanisms of THCA pathogenesis and
the identification of molecular targets for clinical diagnosis
or treatment.

2. Materials and Methods

2.1. Microarray Data. The GEO database (https://www.ncbi
.nlm.nih.gov/geo/) was searched using the keywords “thyroid
cancer”. The GSE3467 (including 9 normal thyroid tissue
samples and 9 thyroid cancer samples, [4]), GSE3678
(including 7 normal thyroid tissue samples and 7 thyroid
cancer samples0, GSE33630 (including 45 normal thyroid
tissue samples and 60 thyroid cancer samples, [5]) and
GSE53157 (including 3 normal thyroid tissue samples and
24 thyroid cancer samples, [6]) gene expression profile
matrix files were downloaded. The data set information is
shown in Table 1 and the clinical information is provided
in the supplementary materials (available here). We down-
loaded the four series of matrix TXT files and the corre-
sponding platform TXT files. The gene probe ID in each
matrix file was converted to the gene symbol in the platform
file by the Perl language. Impute and Limma packages in R
software (version: x64 3.2.1) were applied to perform the
background correction, normalization and log2 conversion
for the matrix data of each GEO dataset.

2.2. Data Processing and Identification of DEGs. Differential
expression analysis of the each dataset was carried out
using the limma package. We defined |log(FC)|≥ 1 and adj.
P-val< 0.05 as DEGs screening criteria for thyroid cancer
samples from four microarray datasets, and generated heat
maps and volcano maps of each dataset. In addition, a txt file
of all gene lists sorted by log (FC) in each data set was saved
for the subsequent integration analysis.

2.3. Integration of Microarray Data. We downloaded the
RobustRankAggreg (RRA) package and used the R software
to run the instruction code. The four lists of genes ranked

by expression level were integrated using the RRA package
in R software. The RRA method was based on the assump-
tion that all genes were unordered in each list. Equally,
|log(FC)|≥ 1 and adj. P-val< 0.05 were considered statistically
significant for the DEGs. As a result, a post-integration
heat map was generated and the upregulated and downreg-
ulated genes were further screened for further analysis. All
the R packages performed in our research were arranged in
R software.

2.4. Functional Enrichment Analysis of DEGs. The Database
for Annotion, Visualition and Intrgrated Discovery
(DAVID) 6.8 (https://david.ncifcrf.gov), is an online bioin-
formatics database for gene functional analysis that inte-
grates biological data and analysis tools, and annotates
biological functions for large-scale gene or protein lists. We
used DAVID to perform GO analysis on the up-regulated
and down-regulated DEGs. The difference was considered
statistically significant when adj. P-val< 0.05. Subsequently,
we introduced the up-regulated and down-regulated differ-
ential genes into Cytoscape’s plug-in ClueGO for pathway
analysis. Similarly, the difference was considered statistically
significant when adj. P-val≤ 0.05.

2.5. PPI Network Construction. STRING (http://string-db
.org) was used to analyze the direct (physical) and indirect
(function) associations between different genes. Protein-
Protein Interaction (PPI) network analysis was conducted
on all integrated DEGs by STRING10.0 with the effective
binding score set >0.7 [7]. Then the results were imported
into Cytoscape 3.7.1 to build a network model. Using Cytos-
cape’s plugin Cytohubba, we selected the top 30 DEGs with
high connectivity in the gene expression network as the
hub genes according to the degree algorithm.

2.6. Survival Analysis of Hub Genes. To further clarify the
relationship between the hub gene expression and thyroid
cancer prognosis, we used Gene Expression Profiling
Interactive Analysis (GEPIA, http://gepia.cancer-pku.cn)
for survival and statistical analyses using log rank [8]. The
difference was considered statistically significant when
P< 0.05. Due to their importance to the prognosis of thyroid
cancer, these hub genes were taken as key genes.

2.7. Verification of Key Genes in TCGA. Gene Expression
Profiling Interactive Analysis(GEPIA), is a web-based tool
(http://gepia.cancer-pku.cn) that delivers fast and customiz-
able functionalities based on TCGA and GTEx data. In this
study, we used GEPIA to verify the key genes and the

Table 1: Details of the thyroid cancer data in GEO.

Reference Sample GEO Platform Normal Tumor Number of DEGs

He H et al. [6] Thyroid GSE3467 GPL570 9 9 455

Missing Thyroid GSE3678 GPL570 7 7 487

Tomás G et al.
(2012), Dom G et al. [5]

Thyroid GSE33630 GPL570 45 60 904

Pita JM et al. [4] Thyroid GSE53157 GPL570 3 24 93

Abbreviation:GEO, gene expression omnibus.
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Figure 1: Continued.
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Figure 1: Normalization of datasets. (a–b) Normalization of GSE3467 (c–d) Normalization of GSE3678. (e–f) Normalization of GSE33630.
(g–h) Normalization of GSE53157. Blue: data before normalization. Red: data after normalization.

Volcano

2

0

lo
gF

C

–2

0 2 4
–log10 (adj. P val)

6 8

(a)

lo
gF

C
Volcano

2

4

0

–2

–4

0 2 31 4

–log10 (adj. P val)

5 6 7

(b)

lo
gF

C

Volcano

2

4

0

–2

–4

0 10 155 20

–log10 (adj. P val)

25 30 35

(c)

lo
gF

C

Volcano

2

4

0

–2

–4

0 4 62 8
–log10 (adj. P val)

10 12 14

(d)

Figure 2: Volcano plots of each dataset. (a) GSE3467, (b) GSE3678, (c) GSE33630, (d) GSE53157. Red dots: upregulated DEGs. Green dots:
downregulated DEGs. Black dpots: genes with no significant difference in expression.
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Figure 3: Cluster heat maps of each dataset. (a) GSE3467, (b) GSE3678, (c) GSE33630, (d) GSE53157. Red: relatively upregulated DEGs;
Green: relatively downregulated DEGs.
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expression of key genes in TCGA was shown by boxplot. The
following screening criteria were set as follows: |log(FC)|≥ 1
and P-val< 0.05.

2.8. Immunohistochemical Analysis. Due to the high specific-
ity of the binding between antibodies and antigens, we com-
bined the antibody-based approach with transcriptomics
data to summarize the global expression profile [9]. The pro-
tein expressions of key genes in normal tissues and thyroid
cancer tissues were observed using the human protein map
(HPA, https://www.proteinatlas.org), a unique collection of
antibodies mapped across the entire human proteome by
immunohistochemistry and immunocytochemistry.

2.9. Identification of Candidate Small Molecules. The Con-
nectivity Map database (CMap, http://www.broadinstitute
.org/cmap/), a reference database containing drug-specific
gene expression profiles, can be used to discover the connec-
tions between small molecules that share a mechanism of
action, chemicals and physiological processes, as well as dis-
eases and drugs by submitting the genes that are potentially
associated with a particular disease [10, 11]. We matched
the DEGs screened from GEO with the data from CMap to
predict small molecules that might reverse the biological sta-
tus of thyroid cancer. The DEGs were divided into the upreg-
ulated group and the downregulated group. Then two lists of
gene IDs were introduced into CMap for gene set enrichment
analysis to obtain small molecules with enrichment values of
-1 to +1. The positive connectivity value (close to +1) indi-
cated that the corresponding small molecule could induce
gene expression in thyroid cancer, while the negative connec-

tivity value (close to -1) indicated greater similarity between
the gene and the small molecule, the potential to reverse
the state of thyroid cancer cells. The results were ranked by
P values. We chose the top 4 small molecules and analyzed
their 3D conformations in PubChem (http://www.pubchem
.ncbi.nlm.gov), a collection of chemical information, includ-
ing substance information, compound structures, and bio-
logical activities.

3. Results

3.1. Identification of DEGs. The thyroid cancer expression
profile chip data sets GSE3467, GSE3678, GSE33630 and
GSE53157 were normalized (Figure 1). The GSE3467 dataset
contained 501 differential genes, including 282 upregulated
genes and 219 downregulated genes. The GSE3678 dataset
contained 526 differential genes, including 226 upregulated
genes and 300 downregulated genes. The GSE33630 dataset
contained 904 differential genes, including 481 upregulated
genes and 423 downregulated genes. The GSE53157 dataset
contained 93 differential genes, including 11 upregulated
genes and 82 downregulated genes. The volcano plots of each
dataset are shown in Figure 2, and the cluster heat maps of
the top 20 DEGs in each dataset are shown in Figure 3.

3.2. Identification of Integrated DEGs. A total of 330 inte-
grated DEGs, including 154 upregulated genes and 176
downregulated genes, were identified by the RRA method.
Table 2 shows the DEGs. Figure 4 presents the heat map of
the top 20 upregulated and downregulated integrated DEGs.

Table 2: Integrated DEGs in THCA.

DEGs Gene names

Upregulated

PRR15 ZCCHC12 LRP4 CITED1 ARHGAP36 LRRK2 KCNJ2 DPP4 QPCT CLDN1 METTL7B FN1 PCSK2 LPAR5
CDH3 SCEL GABRB2 SYTL5 IGSF1 ENTPD1 TENM1 LIPH GALNT7 SERPINA1 LAMB3 FRMD3 C4orf48 MPZL2
PSD3 PROS1 NELL2 RXRG LAMP3 RYR1 GOLT1A SYTL1 SCG5 CHI3L1 NMU HEY2 GABBR2 CAMK2N1 COMP
THRSP TIAM1 SLC34A2 AGR2 FAM20A ITGA2 FAXC CFI KLHDC8A TMPRSS4 CYP1B1 ZMAT3 TNFRSF12A UPP1

PDZK1IP1 AMIGO2 SLIT1 NFE2L3 NRCAM GGCT RAB27A EPS8 AX748273 SPOCK1 CCND1 MET CDH2
DCSTAMP SPP1 DTX4 BID NGEF APOC1 NR2F1-AS1 KRT80 RASD2 UHRF1 CORO2A UBE2QL1 DEPDC1B CKS2

ALOX5 PLAG1 C19orf33 SFTPB DUSP4 CD55 DUSP6 NPC2 CLDN10 TBC1D2 NRIP1 DUSP5 TMEM163
LOC100507165 TNC MLLT11 ADAMTS9 SDC4 SHROOM4 TUSC3 ETV5 MUC1 TNIK CHST2 COL13A1 STK32A

PDLIM4 APOE KLK10 ALDH1A3 C2CD4A CPNE4 PMAIP1 GALE KCNN4 DIRAS3 PNP TIMP1 LPL TGFA
RP6-99M1.2 NAB2 CTSS CBLN1 SLC27A6 PRSS23 CDKN1A CDKN2B SLPI CTSC SLC35F2 KISS1R LAMP5 CRLF1
NOX4 PLAU KRT19 IER5L KLK7 PDZRN4 SDK1 MRC2 BEAN1 FLRT3 DDB2 RP11-476D10.1 LEMD1 MIR34A

LONRF2 GDF15

Downregulated

TFF3 PKHD1L1 MPPED2 LRP1B CDH16 IPCEF1 TCEAL2 TPO PLA2R1 CCL21 DIO1 GPM6A CFD SLC26A4-AS1
SERTM1 DPP6 COL9A3 GHR PROM1 GJB6 DPT OGDHL PAPSS2 LOC646736 ZFPM2 TDRD9 SMOC2 CWH43
SLC26A4 ADH1B KIT IGFBPL1 TNFRSF11B CSGALNACT1 RASSF9 IP6K3 DLG2 HGD SPX WDR72 COL23A1

HSD17B6 FAM167A GDF10 SCN3A TFCP2L1 CRABP1 GPR83 TMEM171 FAM3B EDN3 OGN MUM1L1 EFEMP1
OTOS C11orf74 ZMAT4 ELMO1 AADACP1 GLT8D2 SGK223 LOC440934 MAMDC2 FHDC1 RASSF6 ROR2 MMRN1
FABP4 LMOD1 SDPR FHL1 PTCSC1 TBC1D4 MT1M SLC26A7 MT1F PKIA IMPA2 LOC101929480 TMEM178A

LYVE1 PBX4 RELN AVPR1A AIF1L LIFR FGF13 DIRAS2 TCEAL7 LTF FMOD TGFBR3 SLC1A1 FGL2 RNF150 DGKI
AKR1C3 ANGPTL1 DEPTOR AOX1 CHCHD10 PLSCR4 AF070581 FXYD6 CITED2 PPARGC1A DYNLRB2 FOLR1
AGR3 KIAA1324 TMEM139 RYR2 CCDC146 TCF7L1 FCGBP HBB RNF157-AS1 GRAMD2 MT1H PLA2G7 APOD
CLCNKB GNA14 HSD11B2 SMAD9 SLITRK5 DIO2 MYOC LINGO2 FBLN5 AKAP12 PRDM16 ST7-AS1 PAK3

RAP1GAP FBLN7 RP6-24A23.7 BEX1 SORBS2 TSPAN7MFAP4 LRP2 PCP4 TFPI PRTG CPQ CHRDL1 EYA2 SLC16A2
ANKRD18A CNTN3 FREM2 IYD DNALI1 CCL28 SLC25A15 KCNIP4 BMP8A PTX3 SLC4A4 BTBD11 CRYAB CUX2

MDH1B SELENBP1 EPHA3 SYNM RP13-20 L14.1 RGS16 ITM2A STEAP2 GNAI1 PEG3 PRR15L IRS1 DCN
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3.3. GO Enrichment Analysis of DEGs. GO function annota-
tions of the integrated DEGs were mainly divided into three
parts: biological process (BP), cell composition (CC) and
molecular function (MF). As shown in Figure 5 and
Table 3, the upregulated DEGs were mainly concentrated in
the extracellular region (ontology: CC), extracellular exo-
some (ontology: CC), and heparin binding (ontology: MF);
the downregulated DEGs were mainly concentrated in thy-
roid hormone generation (ontology: BP) and proteinaceous
extracellular matrix (ontology: CC).

3.4. Functional Enrichment Analysis of DEGs. Functional
enrichment analysis of integrated DEGs showed the upregu-
lated DEGs were mainly attached to ECM-receptor interac-
tion, p53 signaling pathway, TGF-beta signaling pathway

and other pathways; the downregulated DEGs were mainly
attached to tyrosine metabolism, mineral absorption, and
thyroxine biosynthesis (Figure 6, Table 4).

3.5. PPI Analysis of DEGs. The STRING online database was
used to analyze the integrated DEGs obtained after screening
and a PPI network was construct (Figure 7). The effective
binding fraction was set to be greater than 0.7, which resulted
in 313 nodes and 228 edges. The top 30 hub genes were
screened out by cytoHubba (Figure 8).

3.6. Survival Analysis of Hub Genes. We used GEPIA to ana-
lyze the correlation between hub gene expression and thyroid
cancer prognosis. It was found that the Disease Free Survival
(DFS) was lower in the high FN1 expression group than the
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low FN1 expression group (P=0.024); the high NMU expres-
sion group had lower DFS than the low NMU expression
group (P=0.021); the low CHRDL1 expression group had
lower DFS than the high CHRDL1 expression group
(P=0.0028); the low GNAI1 expression group had lower
DFS than the high GNAI1 expression group (P=0.014); the
high ITGA2 expression group had lower DFS than the low
ITGA2 expression group (P=0.029); the low GNA14 expres-

sion group had lower DFS than the high GNA14 expression
group (P=0.011). The low AVPR1A expression group had
lower DFS than the high AVPR1A expression group
(P=0.013). As shown in Figure 9, the other hub genes were
not significantly associated with the prognosis of thyroid
cancer (P> 0.05). Hence, we derived seven key genes related
to the prognosis of thyroid cancer: FN1, NMU, CHRDL1,
GNAI1, ITGA2, GNA14, AVPR1A.
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Figure 5: GO terms of integrated DEGs. (a) Significant GO terms of upregulated DEGs. (b) Significant GO terms of downregulated DEGs.

Table 3: GO analysis of integrated DEGs.

(a) Upregulated genes top 9 enriched GO terms

Category Term Count PValue Adj.P-value

Upregulated

GOTERM_CC_DIRECT GO:0005576~extracellular region 33 6.02E-07 6.53E-05

GOTERM_CC_DIRECT GO:0005615~extracellular space 30 4.51E-07 9.78E-05

GOTERM_CC_DIRECT GO:0070062~extracellular exosome 43 1.38E-05 9.94E-04

GOTERM_CC_DIRECT GO:0016324~apical plasma membrane 11 9.61E-05 0.005198329

GOTERM_CC_DIRECT
GO:0033116~endoplasmic reticulum-Golgi
intermediate compartment membrane

6 1.41E-04 0.006102825

GOTERM_CC_DIRECT GO:0005578~proteinaceous extracellular matrix 9 0.001212652 0.032377398

GOTERM_CC_DIRECT GO:0030054~cell junction 12 9.49E-04 0.033762537

GOTERM_CC_DIRECT GO:0009986~cell surface 13 0.001109523 0.033828883

GOTERM_MF_DIRECT GO:0008201~heparin binding 8 2.89E-04 0.041460423

(b) Downregulated genes top 7 enriched GO terms

Category Term Count PValue Adj.P-value

Downregulated

GOTERM_BP_DIRECT GO:0006590~thyroid hormone generation 5 2.64E-06 0.002657461

GOTERM_BP_DIRECT GO:0030509~BMP signaling pathway 7 5.37E-05 0.026654296

GOTERM_CC_DIRECT GO:0005578~proteinaceous extracellular matrix 15 7.80E-08 1.45E-05

GOTERM_CC_DIRECT GO:0070062~extracellular exosome 50 3.91E-07 2.42E-05

GOTERM_CC_DIRECT GO:0005615~extracellular space 32 3.46E-07 3.22E-05

GOTERM_CC_DIRECT GO:0005576~extracellular region 30 9.41E-05 0.004366683

GOTERM_CC_DIRECT GO:0043235~receptor complex 7 7.88E-04 0.028910743

(a) Top 9 enriched GO terms of upregulated DEGs. (b) Top 7 enriched GO terms of downregulated DEGs.

9BioMed Research International



3.7. Verification of Key Genes in TCGA. We validated the
reliability of the key genes using GEPIA. The databases
showed that the key genes were differentially expressed in

normal thyroid tissue samples and thyroid cancer samples
(Figure 10). By reviewing the original data, we found that
the results were consistent with our study.
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Figure 6: Pathways of integrated DEGs. (a) Significant pathways of upregulated DEGs. (b) Significant pathways of downregulated DEGs.

Table 4: Pathway analysis of integrated DEGs.

(a) Pathways of upregulated DEGs

ID Pathway Count P-value Adj.P-Val

Upregulated

KEGG:05222 Small cell lung cancer 9.00 8.62532E-08 6.46899E-06

R-HSA:8952289 FAM20C phosphorylates FAM20C substrates 9.00 3.15636E-07 2.3357E-05

R-HSA:8957275 Post-translational protein phosphorylation 9.00 3.15636E-07 2.3357E-05

R-HSA:1474244 Extracellular matrix organization 13.00 1.53637E-06 0.000110619

WP:2814 Mammary gland development pathway - puberty (stage 2 of 4) 4.00 3.29235E-06 0.000233757

KEGG:04512 ECM-receptor interaction 7.00 5.8434E-06 0.000409038

WP:366 TGF-beta signaling pathway 8.00 1.67948E-05 0.001158841

R-HSA:1474228 Degradation of the extracellular matrix 8.00 2.43709E-05 0.001657223

KEGG:04115 p53 signaling pathway 6.00 3.20579E-05 0.002147877

R-HSA:3000170 Syndecan interactions 4.00 7.37454E-05 0.004867193

(b) Pathways of downregulated DEGs

ID Pathway Count P-value Adj.P-Val

Downregulated

R-HSA:209968 Thyroxine biosynthesis 4.00 1.02232E-06 2.2491E-05

R-HSA:209776 Amine-derived hormones 4.00 1.41298E-05 0.000296725

R-HSA:5661231 Metallothioneins bind metals 3.00 9.55155E-05 0.00191031

R-HSA:5660526 Response to metal ions 3.00 0.000206804 0.00392928

KEGG:00350 Tyrosine metabolism 4.00 0.000241586 0.004348555

R-HSA:3560782 Diseases associated with glycosaminoglycan metabolism 4.00 0.000401916 0.006832565

R-HSA:2161282 Elastic fibres bind associated proteins 3.00 0.000452188 0.007235015

R-HSA:1630316 Glycosaminoglycan metabolism 6.00 0.000673119 0.01009678

KEGG:04978 Mineral absorption 4.00 0.000928833 0.013003667

WP:2895 Differentiation of white and brown adipocyte 3.00 0.001220241 0.01586313

(a) Pathways of upregulated DEGs. (b) Pathways of downregulated DEGs.
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3.8. Immunohistochemical Analysis. The Human Protein
Atlas (HPA)-based Immunohistochemistry (IHC) database
showed that FN1, NMU, and ITGA2 were upregulated in
thyroid cancer tissues compared with normal tissues, while
CHRDL1, GNAI1 and GNA14 were downregulated in thy-
roid cancer tissues (Figure 11). These results confirmed our
findings. However, we did not find the association between
AVPR1A and thyroid cancer in this database. According to
our analysis, we predicted that AVPR1A might also be asso-
ciated with the development of thyroid cancer, but experi-
mental data were needed to confirm this specific link.

3.9. Screening of Small Molecule Drugs Screening. In order to
find drugs involved in the treatment or prognosis of thyroid
cancer, we uploaded the selected DEGs (divided into the
upregulated and downregulated groups) to the CMap data-
base and then matched them with small molecule therapy.
As shown in Table 5, among the top 4 small molecules, adre-
nosterone (enrichment value -0.914) and hexamethonium
bromide (enrichment value -0.813) exhibited highly signifi-
cant negative scores. The 3D conformer is shown in
Figure 12. These small molecule drugs could reverse the gene
expression induced by thyroid cancer. Of course, more

Figure 7: PPI network of integrated DEGs by STRING. Circles: genes. Lines: protein interaction between genes. Results within the circle:
structure of proteins. Line color: evidence of the interaction between the proteins.
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Figure 8: Continued.
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experimental data are needed to confirm the potential of
these candidate small molecules in treating thyroid cancer.

4. Discussion

Although thyroid cancer is a least fatal human cancer, its ris-
ing incidence imposes a great burden on both the society and
individuals. Since the 1990s, the incidence of thyroid cancer
has been growing faster than the other tumors in the United
States. The rising morbidity and mortality of thyroid cancer
are related to overdiagnosis [12]. Therefore, studying the bio-
markers and precise targets associated with the development
of thyroid cancer will improve the diagnostic accuracy and
thus lessen the economic burden.

In this study, bioinformatics methods were applied to
analyze the GSE3467, GSE3678, GSE33630 and GSE53157
datasets from GEO, and GO and pathway analyses were
performed in the integrated DEGs. We used STRING to
structure the Protein-Protein Interaction (PPI) network of
integrated DEGs based on the functional association. Inter-
actions are derived from seven sources: (1) the experiments
channel; (2) the database channel; (3) the textmining chan-
nel; (4) the coexpression channel; (5) the neighborhood

channel; (6) the fusion channel; (7) the co-occurrence chan-
nel. Then we applied Cytoscape to identify 30 hub genes.
Finally, 7 key genes related to thyroid cancer prognosis were
obtained. Among them, FN1, NMU and ITGA2 were upreg-
ulated DEGs, while CHRDL1, GNAI1 and GNA14 were
downregulated ones. At the same time, gene expression was
verified through GEPIA and the level of gene expression
protein was verified by HPA.

Fibronectin (FN1), produced by fibroblasts and tumor
cells, is a high molecular weight glycoprotein component of
the extracellular matrix in the tumor microenvironment
(TME). Normally, FN1 supports the cell-extracellular matrix
interaction and participates in cell adhesion, migration,
metastasis, proliferation and differentiation, as well as
embryogenesis, blood clotting, wound healing, development,
and tissue homeostasis [13]. Tumor-associated fibroblasts
are the most abundant cells in the tumor stroma, and their
ability to contract the matrix and induce cancer cell invasion
has been well certified. FN1, derived from tumor-associated
fibroblasts, stimulates cancer cell invasion after assembly
[14]. In addition, as an intrinsic component of epithelial-
mesenchymal transition (EMT) regulatory circuit, FN1 is a
potential target for interfering EMT during tumorigenesis
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Figure 8: PPI analysis of integrated DEGs based on Sytoscape. (a) Visualization analysis of protein interaction network of all DEGs. (b) Top
30 genes with the highest degree scores. (c) Interconnection of 30 hub genes; darker color representing a higher degree score.
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Figure 9: Continued.
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[15]. Here, we suspect that FN1 is related to the pathway of
ECM-receptor interaction. FN1 has been found to be highly
expressed in esophageal and cervical cancers and associated
with their prognosis [16–18]. In the present study, FN1, as
a hub gene with the highest correlation with thyroid cancer,
was highly expressed in tumor tissues compared with the
adjacent non-tumor or normal tissues. Further validation of
the association between FN1 and the development of thyroid
cancer may provide new targets for treating thyroid cancer.

As the gene with the second highest correlation with
thyroid cancer in our study, neuromedin U (NMU), a neu-
ropeptide originally isolated from the spinal cord of pigs,
has multiple physiological functions and is involved in obe-
sity and inflammation [19]. NMU has been confirmed to
confer alectinib resistance in non-small cell lung cancer

(NSCLC) [20]. Although no experimental data has sug-
gested a direct link between NMU and thyroid cancer,
NMU has been shown to promote the development of var-
ious tumors, including breast cancer. Garczyk S et al. have
demonstrated that NMU may contribute to the progression
of NMUR2-positive breast cancer [21] and enhance resis-
tance to tumor immune responses in breast cancers with
HER2 overexpression [22], suggesting NMU is a potential
drug target for personalized strategies. Furthermore, NMU
is involved in the development of endometrial, colorectal
and gastric cancers, as well as acute myeloid leukemia caused
by TP53 mutations [23–26].

CHRDL1 is a secreted protein and antagonist of bone
morphogenetic protein (BMP) that antagonizes BMP-4
activity and induces differentiation of spinal cord-derived
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Figure 9: Survival analysis of hub genes in thyroid cancer. (a) FN1. (b) NMU. (c) CHRDL1. (d) GNAI1. (e) ITGA2. (f) GNA14. (g) AVPR1A.
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neural stem cells into neurons [27]. Pei YF et al. have
reported that CHRDL1 expression is significantly downregu-
lated in gastric cancer tissues and associated with low sur-
vival. In vitro, CHRDL1 knockdown promotes tumor cell
proliferation by activating AKT, ERK and β-catenin and
boosts tumor cell migration through BMPR II. In vivo exper-
iments have confirmed that CHRDL1 is a tumor suppressor
gene that inhibits tumor growth and metastasis [28]. Cyr-
Depauw C et al. have found that CHRDL1 is a negative reg-
ulator of malignant breast cancer phenotype and can inhibit
BMP signal transduction [29]. Since no research has proved
that CHRDL1 is related to thyroid cancer, more research is
needed to verify the association between CHRDL1 and thy-
roid cancer and evaluate CHRDL1 as a target for thyroid
cancer treatment.

The GO annotations of GNAI1 (G protein subunit αi1)
include GTP binding and outdated signal transduction activ-
ity. The guanine nucleotide binding protein (G protein) acts

as a transduction downstream of the G protein coupled
receptor (GPCR) in many signaling cascades. The alpha
chain, which contains a guanine nucleotide binding site,
alternates between active and inactive GTP binding states.
Activation of GPCRs promotes GDP release and GTP bind-
ing. The alpha subunit has low GTPase activity, which con-
verts the bounding of GTP to GDP, and thereby terminates
the signal. Both GDP release and GTP hydrolysis are regu-
lated by regulatory proteins [30, 31]. Cell migration involves
a cycle of adhesion and de-adhesion, and the dynamic bal-
ance between adhesion and reversal of adhesion regulated
by G protein is very important for this process [32]. Cell
migration of normal cells is tightly regulated. However,
tumor cells are exposed to a modified microenvironment that
promotes cell migration [33]. Changes in G protein affect the
tumor cell migration.

ITGA2, the integrin subunit α2, encodes a protein that
forms a heterodimer with the beta subunit and mediates
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Figure 10: The verification of mRNA expression of key genes in the term of boxplot. (a) FN1. (b) NMU. (c) CHRDL1. (d) GNAI1. (e) ITGA2.
(f) GNA14.(g) AVPR1A.
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the adhesion of platelets and other cell types to the extracellu-
lar matrix. The ITGA2-related pathways include beta-
adrenergic signaling and the blood-brain barrier pathway.
GO annotations associated with this gene include protein
heterodimerization activity and integrin binding. Chernaya
G et al. observed higher levels of ITGA2 gene expression in
papillary thyroid carcinoma (PTC) tissues compared to
normal thyroid tissues [34]. Yang Z et al. found that ITGA2
was a direct target of miR-16, and the down-regulation of
miR-16 in invasive PTC resulted in up-regulated ITGA2 gene
expression. The high expression level of ITGA2 might lead
PTC invasion and migration [35].

GNA14 (G protein subunit α14) encodes a member of
the guanine nucleotide binding or G protein family.
GNA14 mutations induce morphological changes in cells
and make cell growth factors independent by upregulating
the MAPK pathway. A study found that GNA14 mutations
could cause vascular tumors in children [36].

Arginine vasopressin receptor 1A (AVPR1A) is involved
in mediation of cell contraction and proliferation, platelet
aggregation, release of coagulation factors, and glycogenoly-
sis. A large volume of literature has demonstrated that
AVPR1A contributes to a range of social behaviors in lower
vertebrates and humans [37]. But evidence on the association
between AVPR1A and cancer is rare. Nor did we find evi-
dence of the link between AVPR1A and thyroid cancer.

Using data mining based on bioinformatics tools, the
present study has confirmed CHRDL1, GNAI1, GNA14
and AVPR1A are associated with thyroid cancer although
their specific biological functions have not been explored by
the molecular biology methods.

For the results of the pathway analysis in this study, we
consulted the literature and retrieved more relevant informa-
tion. ECM-receptor interactions have been found to play a
role in the development of papillary thyroid carcinoma
[38]. Activation of the p53 signaling pathway could induce

Nontumor

×100 ×100

Tumor
Staining: medium
Intensity: moderate
Quantity: 75%–25%
Location: cytoplasmic/
membranous

Staining: not detected
Intensity: negative
Quantity: negative
Location: none

(f)

Figure 11: Comparison of protein expression of key genes between normal thyroid tissues and thyroid cancer tissues. (a) FN1. (b) NMU.
(c) CHRDL1. (d) GNAI1. (e) ITGA2. (f) GNA14.

Table 5: Four most significant small molecule drugs.

Rank CMap name Mean Enrichment P CID

1 Ikarugamycin 0.658 0.955 0.0001 54680304

2 Adrenosterone -0.679 -0.914 0.0001 223997

3 Hexamethonium bromide -0.627 -0.813 0.00056 5938

4 Clofazimine 0.525 0.805 0.00066 2794

CID: 54680304
Ikarugamycin

(a)

CID: 223997
Adrenosterone

(b)

CID: 5938
Hexamethonium bromide

(c)

CID: 2794
Clofazimine

(d)

Figure 12: 3D conformer of 4 most significant small molecule drugs. (a) Ikarugamycin. (b) Adrenosterone. (c) Hexamethonium bromide.
(d) Clofazimine.
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apoptosis and lead to tumorigenesis [39]. Zhao P et al. found
that retinol metabolism might play a key role in thyroid-
associated ophthalmopathy (TAO) (Zhao et al. 2015). West
J. et al. found that anomalies in the TGF-β signaling pathway
seemed to participate in the oncogenesis of thyroid follicular
carcinoma (West et al. 2000).

In addition, we used the CMap database to find small
molecules of drugs that might reverse the expression of thy-
roid cancer genes. This discovery will help develop new tar-
geted drugs for thyroid cancer. Adrenosterone (enrichment
value -0.914) is an endogenous steroid hormone used as a
dietary supplement to reduce body fat and increase muscle
mass. It is proposed that adrenosterone, which is primarily
responsible for reactivation of cortisol from cortisone, may
be an inhibitor of the 11beta-hydroxysteroid dehydrogenase
type 1 enzyme (11beta-HSD1) [40]. Hexamethonium bro-
mide (enrichment value -0.813), a non-depolarizing ganglion
blocker and an nAChR antagonist, can be used to treat
hypertension and duodenal ulcers [41, 42]. After reviewing
the literature, we found that the effectiveness and safety of
adrenosterone and hexamethonium bromide in thyroid can-
cer treatment have not been studied. Therefore, further
research is urgently needed to reveal the potential of these
small molecules in treating thyroid cancer.

In summary, the 7 key genes obtained from the PPI net-
work are closely related to tumorigenesis and tumor progres-
sion, suggesting that these genes may be prognostic markers
and therapeutic targets of thyroid cancer. At the same time,
the KEGG pathway analysis of DEGs provides a new per-
spective for elucidating the pathogenesis and diagnosis of
thyroid cancer, and a new direction for developing targeted
inhibitors for thyroid cancer. The present study is based
on big data, therefore, these thyroid cancer-associated sig-
naling pathways and key genes need further validation in
clinical samples using methods of molecular biology such as
RT-PCR and Western blot.
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