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Background. Gastric cancer (GC) has been divided into four molecular subtypes, of which the mesenchymal subtype has the poorest
survival. Our goal is to develop a prognostic signature by integrating the immune system and molecular modalities involved in the
mesenchymal subtype.Methods. The gene expression profiles collected from 6 public datasets were applied to this study, including
1,221 samples totally. Network analysis was applied to integrate the mesenchymal modalities and immune signature to establish an
immune-based prognostic signature for GC (IPSGC). Results. We identified six immune genes as key factors of the mesenchymal
subtype and established the IPSGC. The IPSGC can significantly divide patients into high- and low-risk groups in terms of overall
survival (OS) and relapse-free survival (RFS) in discovery (OS: P < 0:001) and 5 independent validation sets (OS range: P = 0:05 to
P < 0:001; RFS range: P = 0:03 to P < 0:001). Further, in multivariate analysis, the IPSGC remained an independent predictor of
prognosis and performed better efficiency compared to clinical characteristics. Moreover, macrophage M2 was significantly
enriched in the high-risk group, while plasma cells were enriched in the low-risk group. Conclusions. We propose an immune-
based signature identified by network analysis, which is a promising prognostic biomarker and help for the selection of GC
patients who might benefit from more rigorous therapies. Further prospective studies are warranted to test and validate its
efficiency for clinical application.

1. Introduction

Gastric cancer (GC) is ranked as the third cause of cancer-
related death; each year, there is about one million newly
diagnosed GC [1, 2]. In the early stage of GC, surgery can
prolong the survival of patients [3]. However, more than half
of the patients with advanced-stage GC have local recurrence
or distant metastasis which eventually leads to poor progno-
sis (5-year survival rate is about 5-10%) [3, 4]. Therefore,
researchers and clinicians need to focus on targeted prognos-
tic and treatment strategies and accurately identify and per-
sonalize treatments to extend GC patient survival.

Gene expression-based biomarkers in tumor tissue are
reliably associated with cancer prognosis [5, 6]. Large-scale
public cohorts with tumor gene expression data provide a
broader opportunity to search for reliable prognostic
markers for gastric cancer. Several studies have developed

markers based on gene expression for GC prognosis predic-
tion [7–10]. However, due to the heterogeneity of GC, most
of the markers have low prognostic efficacy and cannot be
directly used in clinical practice. Recently, four gastric cancer
subtypes with different molecular and clinical characteristics
were found [11], among which the mesenchymal subtype
had the poorest prognosis. Thus, the intrinsic modalities of
the more malignant mesenchymal subtype could potentially
be used for risk assessment in GC patients and for develop-
ment of more precise and targeted treatment strategies.

There is growing evidence that the immune system plays
an important role in the development and progression of
cancer [12, 13]. Many previous studies have shown that
immunotherapy targeting immune checkpoint is strongly
pursued [14, 15]. In addition, previous studies have tenta-
tively shown that the immune system has a prognostic value
in gastric cancer [16, 17]. Therefore, it is possible to develop

Hindawi
BioMed Research International
Volume 2020, Article ID 9780981, 10 pages
https://doi.org/10.1155/2020/9780981

https://orcid.org/0000-0003-1580-8603
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/9780981


prognostic markers based on immune genes for clinical
application in gastric cancer.

In this study, we applied network analysis to integrate
mesenchymal modalities and immune signature genes from
the ImmPort database underlying the mesenchymal subtype.
The master regulator analysis showed that six immune genes
were the key factors of the mesenchymal subtype. We pooled
and analyzed six public cohorts containing 1,221 GC patients
to develop and validate an immune gene-based prognostic
signature for GC (IPSGC) using these six immune genes.
Although immune prognostic markers for gastric cancer
have been reported [18], no research has been done for risk
stratification by integrating the characteristics of the mesen-
chymal subtype. The robustness and reliability of our
model were proved by sufficient verification in 5 indepen-
dent datasets. In addition, we conducted a comprehensive
analysis to investigate the intrinsic biological and clinical
relevance of IPSGC. Our signature combines the molecular
modalities involved in the mesenchymal subtype and would
be used to screen GC patients who may benefit from more
rigorous treatment.

2. Materials and Methods

2.1. Ethical Approval. The researchers were authorized to
conduct the study by the Ethics Committee of the Beilun
People’s Hospital, Ningbo, China. All procedures were
implemented in accordance with the Declaration of Helsinki
and relevant policies in China.

2.2. Patient Series. We retrospectively collected and compre-
hensively analyzed the gene expression profiles (GEPs) from
6 independent datasets, containing 1,221 cases. The complete
lists of all GEPs are shown in Table S1. These datasets
involved patients from GSE15459 (n = 192), GSE13861
(n = 65), GSE84437 (n = 433), GSE62254 (n = 300), GSE26901
(n = 97), and GSE29272 (n = 134). The expression data of all
cohorts together with the corresponding clinical parameters
were downloaded from Gene Expression Omnibus (GEO).
The molecular subtyping information for GSE15459 and
GSE62254 was retrieved from Cristescu et al.’s study [11].
The detailed clinical characteristics of the 6 datasets were
described in Table 1. The design and workflow of this study
are illustrated in Figure 1(a).

2.3. Expression Data Preprocessing. GEPs were downloaded
from GEO by “GEOquery” (R package, version 1.0.7) [19]
and normalized with the robust multiarray analysis (RMA).
For each cohort, the GEPs were collapsed from probe IDs
to gene symbols; if multiple probe IDs correspond to the
same gene symbol, the one with the highest mean value was
kept as the representative of the corresponding gene [20].

2.4. Integrated Network Analysis. Immune genes (IRGs) were
downloaded from the ImmPort database [21]. IRGs mea-
sured by all cohorts were kept. Network analysis was applied
to integrate mesenchymal modalities and immune genes
underlying the mesenchymal subtype. Together, we used
the GSE15459 dataset as the training cohort. 46 immune
genes (|log 2FC∣ > 1:5, FDR < 0:05) and 1,865 target genes

(log 2FC > 0:5, FDR < 0:05) were differentially expressed by
comparing the mesenchymal subtype with the other three
subtypes (MSI, TP53-, and TP53+). Integrated network anal-
ysis was performed by “RTN” (R package, version 2.10.0)
[22]. Master regulator analysis (MRA) was done to examine
significantly overrepresented epithelial-mesenchymal transi-
tion (EMT) genes [23] within each immune gene’s regulon.
Six immune genes of top significance were kept as the key
factors of the mesenchymal subtype.

2.5. Development of the Immune-Based Prognostic Signature
for GC (IPSGC). Six immune genes are differentially upex-
pressed in the poorest survival subtype and are the master
regulatory factors of the mesenchymal subtype-specific genes
(including EMT genes). The Cox proportional hazards
model was applied to test their association with overall sur-
vival. Based on these six immune genes, we develop a Cox
model named the immune-based prognostic signature for
GC (IPSGC) as follows: risk score = ð0:3686 × CLEC11AÞ +
ð0:0545 × NRP2Þ + ð0:3192 × TPM2Þ + ð−0:1722 ×
ANGPTL2Þ + ð−0:1892 × FGF7Þ + ð−0:0768 × FABP4Þ.
2.6. Validation of the IPSGC. The IPSGC score was further
evaluated in the 5 independent validation cohorts in terms
of OS and RFS by the log-rank test, respectively. The IPSGC
then was evaluated with other clinical parameters in the uni-
and multivariate Cox analyses. In the multivariable Cox
regression, tumor stages, histology, and gender were included
as covariates.

2.7. Profiling of Immune Cell Infiltration. To analyze the
immunobiological characteristics of the high- and low-risk
groups, we used CIBERSORT [24], to characterize immune
cells’ abundance of tumor tissue GEPs. Based on a set of ref-
erence immune cell GEPs, CIBERSORT used support vector
regression [24] to deconvolute tumor tissue gene expression
profile with each type of immune cell enrichment. More
specifically, standardized gene expression profiles were sub-
mitted to the CIBERSORT Web portal (http://cibersort.
stanford.edu/) with 1,000 permutations. For each sample,
CIBERSORT quantified the relative proportions of 22 infil-
trated immune cell types.

2.8. Gene Ontology (GO) Analysis and Gene Set Enrichment
Analysis (GSEA). GO analysis was conducted for the sig-
nificantly upregulated genes in the high-risk group using
g:Profiler [25]. GSEA [26] was conducted using “fgsea”
(Bioconductor package, version 1.12.0) with 1,000 permuta-
tions. Gene sets were retrieved from the Molecular Signature
Database (MSigDB hallmark and KEGG, version 7) [26].
A P value below 0.05 was used to choose significant gene sets.

2.9. Statistical Analysis. Continuous variables were compared
using the Wilcoxon signed-rank test or Kruskal-Wallis rank-
sum test. Kaplan-Meier analysis was performed using the
log-rank test using “survival” (R package, version 2.41.3).
Uni- and multivariable analyses were conducted by the Cox
proportional hazards model. For all tests, a P value below
0.05 was used to choose significant gene sets. Statistical sig-
nificance is presented as follows: ∗P < 0:05, ∗∗P < 0:01, and
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∗∗∗P < 0:001. All the statistical tests were conducted using R
(version 3.6.1).

3. Results

3.1. Integrative Analysis Reveals Seven Immune Genes as
Master Regulators for the Mesenchymal Subtype of GC.
GC is a molecularly heterogeneous disease. In recent stud-
ies [11], four molecular subtypes have been identified,
among which the mesenchymal subtype has the worst
prognosis (Figure S1(A, B)). To investigate the immune
system role underlying the mesenchymal subtype, a total
of 1,221 patients with GC from 6 independent public
cohorts were included (Table 1). We applied network
analysis to integrate mesenchymal modalities and immune
genes in the GSE15459 cohort (Figure 1(a)). We
investigated the differences between the mesenchymal
subtype and the other three subtypes, as the mesenchymal
subtype has shown the worst prognostic outcome. The
networks consist of 46 immune genes (∣ log 2FC∣ > 1:5,
FDR < 0:05) and 1,865 target genes (log 2FC > 0:5, FDR <
0:05) by comparing the mesenchymal subtype with the
other three subtypes (Figure 1(b)). Master regulator
analysis (MRA) identified six immune genes (CLEC11A,
NRP2, TPM2, ANGPTL2, FGF7, and FABP4) as the key
factors of the mesenchymal subtype (Table S2). These six

immune genes are significantly upexpressed in the
mesenchymal subtype in the training cohort and one
validation dataset containing molecular subtyping
information (Figure S2). FN1 [27], SNAI1 [28], TGFB1
[29], and CDH1 [30], which are epithelial-mesenchymal
transition (EMT) signature [23] genes, are significantly
correlated with the six immune genes, showing that the
mesenchymal property is indeed governed by these six
immune genes (Figure S3). Results from the univariable
Cox proportional analysis demonstrated strong prognostic
values of the six immune genes for OS (Figure S4).
Therefore, these six immune genes are key factors of the
mesenchymal modalities and can be potentially applied for
risk assessment of GC patients.

3.2. Development of the Immune-Based Prognostic Signature
for GC (IPSGC). Using the GSE15459 cohort as the training
set, we defined the IPSGC using Lasso Cox proportional
hazards regression of these seven immune genes: risk score =
ð0:3686×CLEC11AÞ+ð0:0545×NRP2Þ+ð0:3192×TPM2Þ +
ð−0:1722 × ANGPTL2Þ + ð−0:1892 × FGF7Þ + ð−0:0768 ×
FABP4Þ. Risk scores were calculated in all the training and
validation cohorts (Table S3). The risk score plots clearly
demonstrate the difference between alive and dead patients
(Figure S5(A, B)). The median risk value was set as the
cutoff to separate patients into high- and low-risk groups

Table 1: Patients’ characteristics in public datasets.

Training cohort Validation cohorts
GSE15459
(n = 192)

GSE13861
(n = 65)

GSE84437
(n = 433)

GSE62254
(n = 300)

GSE26901
(n = 97)

GSE29272
(n = 134)

Age (years) 64 (23-92) 61 (32-83) 60 (27-86) 62 (24-86) 56 (28-74) 56 (23-73)

Gender

Female 67 (35%) 19 (29%) 137 (32%) 101 (34%) 37 (38%) 31 (23%)

Male 125 (65%) 46 (71%) 296 (68%) 199 (66%) 60 (62%) 103 (77%)

Histology

Diffuse 75 (39%) 30 (46%) 135 (45%) 10 (10%)

Indeterminate
2 (1%)

Intestinal 99 (52%) 19 (29%) 146 (49%) 71 (73%)

Mixed 18 (9%) 12 (18%) 17 (6%) 5 (5%)

Unknown 4 (6%) 11 (11%)

Site

Antrum 26 (40%) 152 (51%) 51 (53%)

Body 31 (48%) 110 (37%) 30 (31%)

Cardia 4 (6%) 32 (11%)

Entire 1 (2%) 3 (1%) 4 (4%)

Fundus 1 (2%) 12 (12%)

Unknown 2 (3%)

Stage

I 31 (16%) 12 (18%) 31 (10%) 33 (34%) 5 (4%)

II 29 (15%) 12 (18%) 97 (32%) 17 (18%) 5 (4%)

III 72 (38%) 25 (38%) 95 (32%) 32 (33%) 115 (86%)

IV 60 (31%) 16 (25%) 77 (26%) 15 (15%) 9 (7%)
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Figure 1: Network inference identifies six immune signature genes as key regulators of the mesenchymal subtype in GC. (a) Study design. (b)
The integrated network displays the relationships between the six immune signature genes and the regulated EMT signature genes.
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across all datasets. In the training set, the high-risk group
displayed a worse OS (HR: 2.16, 95% CI: 1.43− 3.28; P =
1:96 × 10−4) (Figure 2(a) and Table S3).

3.3. Validation of the IPSGC. To verify the prognostic power
of the IPSGC, we calculated the survival difference within the
two risk groups in 5 validation cohorts. As expected, the
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Figure 2: Prognostic value of the IPSGC. Kaplan-Meier plots showing differences in overall survival among different risk groups stratified by
the median risk score within (a) GSE15459, (b) GSE13861, (c) GSE84437, (d) GSE62254, (e) GSE26901, (f) GSE29272, and (g) the
combination of all validation cohorts. P values are calculated by the log-rank tests.
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IPSGC significantly stratified patients into high- and low-risk
groups in terms of OS (HR range: 1.70 [95% CI: 0.99–2.91;
P = 5:00 × 10−2] to 1.93 [95% CI: 1.39–2.67; P = 6:35 × 10−5])
(Figures 2(b)–2(f) and Table S3) and RFS (HR range: 2.21
[95% CI: 1.06–4.63; P = 3:10 × 10−2] to 2.31 [95% CI: 1.59–
3.34; P = 5:41 × 10−6]) (Figures 3(a)–3(c)) and Table S3) in
the 5 validation cohorts. In the meta-analysis for all
datasets, the prognostic effects of the IPSGC are more
obvious in terms of OS (HR: 1.75, 95% CI: 1.48− 2.08; P =
1:01 × 10−10) (Figure 2(g)) and RFS (HR: 2.18, 95% CI: 1.65
− 2.89; P = 2:14 × 10−6) (Figure 3(d)). Furthermore, it
remains an independent predictor of prognosis in the uni-
and multivariate Cox models, after adjusting for stage,
histology, and gender (Table 2).

3.4. In Silico Functional Assessment of the IPSGC. To gain
insight into the biological differences between risk groups,
we performed immune cell infiltration, GO, and GSEA anal-

yses. Immune cell types, such as macrophages M2, T cell CD4
memory resting, and T cell CD8, were enriched in training
and validation cohorts (Figure S6). We observed a
significantly higher proportion of macrophage M2 in the
high-risk group and a significantly higher enrichment of
plasma cells in the low-risk group (Figures 4(a) and 4(b)).
Furthermore, these two risk groups’ specific immune cell
infiltration was also validated in validation cohorts
(Figure S7). GO analysis showed that the differentially
expressed genes between risk groups were mostly involved
in immune responses and tumor metastasis (Figure 5(a)).
Enrichment analysis between high- and low-risk groups
identified that many mesenchymal phenotype-related
pathways, including the TGF-beta signaling, epithelial-
mesenchymal transition, angiogenesis, and focal adhesion,
were positively enriched in the high-risk group (P < 0:01)
(Figure 5(b) and Table S4). We observed that the risk
score levels were significantly increased with tumor stages,
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Figure 3: Kaplan-Meier plots showing differences in relapse-free survival among different risk groups within (a) GSE13861, (b) GSE62254,
(c) GSE26901, and (d) the combination of the three cohorts. P values are based on log-rank tests.

6 BioMed Research International



of which stage IV patients have the highest risk score
(Figure S8(A)). Moreover, the risk scores were significantly
higher in diffuse GC than in other GC histologies
(Figure S8(B)).

4. Discussion

Gastric cancer (GC) is the third leading cause of cancer death
with pathological and molecular heterogeneity characteris-
tics [1, 2, 11]. In the past, clinicopathological indicators have
been used for risk stratification of GC. However, some
patients with advanced GC remained stable for several years
after surgery, while some patients with early GC progressed
rapidly [31]. At present, various multigene prognostic
markers have been developed [7–10], but their prediction
efficiencies were still uncertain. Therefore, a new signature
that can accurately recognize patients with poor GC progno-
sis is urgently needed to give more rigorous treatments.

The GC transcriptome was unsupervised classified into
four molecular subtypes with different molecular and clinical
characteristics [11]. Prognostic signature screened based on
molecular portraits specific to the worst prognosis subtype
may be used for risk stratification of GC patients [32, 33].
Recent studies have shown that the tumor microenviron-
ment plays an important role in the occurrence and develop-

ment of tumors [34]. The occasion, growth, and forecast of
GC are closely related to the crosstalk between different
immune cells and GC cells [35]. In this study, we established
an immune gene-based prognostic signature for GC (IPSGC)
by integrating mesenchymal modalities and the immune sys-
tem underlying the mesenchymal subtype and validated it in
5 independent validation cohorts which covered most com-
mon microarray platforms. The large sample size provided
sufficient validation for the IPSGC and makes it more robust.
To our knowledge, no research has been done for risk strati-
fication by integrating the immune system and the character-
istics of the mesenchymal subtype in GC. The IPSGC was
constructed by six immune genes as the key factors of the
mesenchymal subtype and could stratify patients into differ-
ent risk groups. Within these six immune genes, CLEC11A
was the driver gene in multiple myeloma (MM) [36]. NRP2
could promote gastric adenocarcinoma lymphatic invasion
with VEGF-C stimulation [37]. High expression of
ANGPTL2 is associated with tumor malignancy, early recur-
rence, and poor prognosis in GC patients [38]. FGF7 pro-
motes gastric cancer invasion and migration [39]. Elevated
expression of FABP4 correlates with poor prognosis in
non-small-cell lung cancer (NSCLC) [40]. The defined
high-risk group showed a worse OS and RFS than the low-
risk group. The IPSGC remained an independent prognostic

Table 2: Univariate and multivariate analyses of immune signature and clinicopathological factors.

Metavalidation cohorts
Univariate Multivariate

HR (95% CI) P HR (95% CI) P

Gender (male vs. female) 1.09 (0.90-1.33) 0.36 1.02 (0.75-1.39) 0.9

Stage (III & IV vs. I & II) 3.62 (2.64-4.96) 1.24E-15 3.32 (2.32-4.75) 5.2E-11

Histology (diffuse & others) 1.38 (1.03-1.84) 0.03 1.23 (0.91-1.66) 0.18

Immune signature (high vs. low risk) 1.76 (1.46-2.11) 1.34E-09 1.93 (1.42-2.62) 2.5E-05
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Figure 4: Immune infiltration status between the two immune-risk groups. (a) Immune infiltration status for different immune-risk groups.
(b) The proportion level of plasma and monocytes for different immune-risk groups. For every immune cell subset, the Wilcoxon test P value
comparing the high- vs. low-immune-risk groups are shown. ∗∗P < 0:01 and ∗∗∗P < 0:001.
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predictor in multivariate Cox proportional hazards analysis
after adjusting for other clinical factors. Most genes within
the differentially expressed genes between risk groups were
mostly involved in immune responses and tumor metastasis.
Previous studies have described that the infiltration of plasma
cells contributes to prolonged survival in GC [41], while mac-

rophage M2 indicates a poor prognosis in GC [42]. We
observed a significantly higher proportion of macrophage
M2 in the high-risk group and a significantly higher enrich-
ment of plasma cells in the low-risk group. Moreover, some
mesenchymal phenotype-related pathways, such as EMT,
angiogenesis, and focal adhesion, were positively enriched
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Figure 5: Pathway alternation between the two immune-risk groups. (a) Gene ontology (GO) of the upexpressed genes between the high- and
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in the high-risk group. Our findings inferred the important
role of IPSGC in tumor invasion and therefore could sever
as a robust prognostic signature in GC.

This study still has some limitations. First of all, the
prognostic signature was screened from gene expression
profiles generated from microarray platforms, which are
expensive, are difficult to operate, and involve professional
bioinformatics expertise, so it is difficult to be popularized
in daily clinical application. Second, the training and valida-
tion datasets were all from retrospective studies in the study,
including fresh frozen samples. Therefore, the efficiency and
stability of FFPE samples are still in doubt. In the following
improvement process, more datasets containing more clini-
cal characteristics need to be included for more extensive
screening and validation.

5. Conclusion

Taken together, our network analysis established an immune
gene-based signature, which could effectively predict GC
patients’ survival. Our study is the first attempt to integrate
tumor heterogeneity and the immune system to develop the
prognostic signature for GC.
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