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Objective. Ovarian cancer is the deadliest gynaecological cancer globally. In our study, we aimed to analyze specific cell
subpopulations and marker genes among ovarian cancer cells by single-cell RNA sequencing (RNA-seq). Methods. Single-cell
RNA-seq data of 66 high-grade serous ovarian cancer cells were employed from the Gene Expression Omnibus (GEO). Using
the Seurat package, we performed quality control to remove cells with low quality. After normalization, we detected highly
variable genes across the single cells. Then, principal component analysis (PCA) and cell clustering were performed. The
marker genes in different cell clusters were detected. A total of 568 ovarian cancer samples and 8 normal ovarian samples were
obtained from The Cancer Genome Atlas (TCGA) database. Differentially expressed genes were identified according to ∣log 2
fold change ðFCÞ ∣ >1 and adjusted p value <0.05. To explore potential biological processes and pathways, functional
enrichment analyses were performed. Furthermore, survival analyses of differentially expressed marker genes were performed.
Results. After normalization, 6000 highly variable genes were identified across the single cells. The cells were divided into 3 cell
populations, including G1, G2M, and S cell cycles. A total of 1,124 differentially expressed genes were identified in ovarian
cancer samples. These differentially expressed genes were enriched in several pathways associated with cancer, such as
metabolic pathways, pathways in cancer, and PI3K-Akt signaling pathway. Furthermore, marker genes, STAT1, ANP32E,
GPRC5A, and EGFL6, were highly expressed in ovarian cancer, while PMP22, FBXO21, and CYB5R3 were lowly expressed in
ovarian cancer. These marker genes were positively associated with prognosis of ovarian cancer. Conclusion. Our findings
revealed specific cell subpopulations and marker genes in ovarian cancer using single-cell RNA-seq, which provided a novel
insight into the heterogeneity of ovarian cancer.

1. Introduction

Ovarian cancer is one of the most common gynaecological
cancers in the world, with high heterogeneity and poor prog-
nosis [1]. High-grade serous ovarian cancer is the deadliest
subtype of ovarian cancer, with up to 80% of patients recur-
ring after initial treatment [2]. Despite advances in treatments
such as surgery and chemotherapy, the 5-year survival rate of
patients with advanced ovarian cancer remains around 30%-

40% [3, 4]. Since ovarian cancer patients are usually diagnosed
at an advanced stage, genetic risk prediction and prevention
strategies will be an important way to reduce ovarian cancer
mortality [5]. Targeted therapies significantly improve the
therapeutic effects of patients with ovarian cancer [6]. How-
ever, ovarian cancer shows heterogeneity within the tumor
that may affect the therapeutic outcomes of targeted therapies.
Tumors including ovarian cancer usually consist of heteroge-
neous cells that are different in many biological features, like
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Figure 1: Continued.
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morphology, apoptosis, and invasion [7]. However, RNA-seq
data reflect the average expression levels of different cells, not
to reveal the intrinsic expression differences between different
cell subpopulations. The genetic heterogeneity of ovarian
cancer has been confirmed at single-cell resolution. The hetero-
geneity of gene expression levels greatly affects the patients’
clinical outcomes [8]. Therefore, understanding the heteroge-
neity of tumors at the transcriptome level and the precise char-
acterization of gene expression in tumors may help to identify
better therapeutic molecular targets [9]. The characterization of
heterogeneous tumor features will help to develop more effec-
tive molecular targeted therapeutics.

The basic unit of cancer is the innovative single cell along
with genetics and epigenetics. Single-cell control determines
the parameters of various aspects of cancer biology. Thus,
single-cell analysis provides the ultimate resolution for us to
understand the biology of various diseases [10]. Single-cell
RNA-seq has been become a promising approach for revealing
the clonal genotype and population structure of human can-
cers. RNA-seq of the single cell can be used to analyze the cell
type in the tumor microenvironment, the tumor heterogene-
ity, and its clinical significance [11]. Unlike traditional
sequencing methods, single-cell sequencing methods provide
different types of omics analysis for individual cells, such as
genomics and transcriptomics [12]. Among them, single-cell
RNA sequencing (scRNA-seq) is capable of measuring gene
expression at the single-cell level. Based on classical markers,
the scRNA-seq reveals the heterogeneity of gene expression
in individual cells or cells with the same type [13], rather than

simply examining differential expression between two cells. In
this study, we analyzed the heterogeneity among ovarian
cancer cells and identified marker genes by scRNA-seq.

2. Materials and Methods

2.1. Ovarian Cancer Single-Cell RNA-seq Datasets. Single-cell
RNA-seq gene expression data of ovarian cancer were
employed from the Gene Expression Omnibus (GEO; https://
www.ncbi.nlm.nih.gov/geo/) database with accession number
GSE123476. According to the study ofWinterhoff et al., 19 cells
were excluded due to poor cell morphology, extremely large or
small cell size, or evidence of multiple cells in the well. Mean-
while, 7 cells that did not express at least 1,000 of the highly
expressed genes were also removed [14]. As a result, 26 ovarian
cancer cells with low quality were removed from 92 cells. The
barcode information and single-cell RNA-seq gene expression
matrix were extracted for further analyses [14].

2.2. Quality Control Filtering and Data Normalization. The
gene expression matrix was imported into the Seurat pack-
age in R (version 3.1.0; http://satijalab.org/seurat/). Seurat,
as a tool for single-cell genomics, is used for quality control,
analysis, and exploration of single-cell RNA-seq data [15].
For single-cell RNA-seq data, there could be cells with low
quality, probably due to the loss of cytoplasmic RNA when
the cells were disrupted. Since mitochondria were much
larger than single transcriptional molecules, they were not
easily leaked out of the broken cell membrane, causing the
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Figure 1: Quality control filtering to remove cells with low quality. (a) Violin plots showing the counts of genes in each cell. (b) Violin plots
of the sum of the expression levels of all genes in each cell. (c) Violin plots of the percentage of mitochondrial genes. (d) Scatter plots for the
percentage of mitochondrial genes in the sum of the expression levels of all genes in each cell. (e) Scatter plots for the counts of genes in the
sum of the expression levels of all genes in each cell.
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abnormally high proportion of mitochondrial genes among
the cells in sequencing results. Thus, to remove cells with
low quality, quality control was performed. After quality con-
trol, fragments per kilobase of transcript per million mapped
read (FPKM) values were transformed into the log-space.

2.3. Detection of Highly Variable Genes across the Single Cells.
To eliminate the dimensional relationship between variable
genes and make the data comparable, using the Normalize-
Data function of the Seurat package, data were normalized
with the log-normalize method. For each gene, we calculated
the standard variance in all cells using the FindVariableFea-
ture function. Herein, mean-variance was calculated as 1.
Standard variance cut-off of 1 was used to identify highly var-
iable genes. The top 20 highly variable genes were identified.

2.4. Cell Clustering Analysis Using Seurat. Principal compo-
nent analysis (PCA) is a multivariate statistical method that
examines the correlation between different variables. PCA
was used to examine how to reveal the internal structure
between multiple variables through a few principal compo-
nents. That is, a few principal components were derived from
the original variables while they retained the information of
the original variables as much as possible and were not related
to each other. In our study, PCA was carried out based on
highly variable genes. Using the screened PCs as input, the cell
clustering was visualized using Uniform Manifold Approxi-
mation and Projection (UMAP) via the RunUMAP function.

2.5. Gene Scoring. The CellCycleScoring function of the Seu-
rat package was used to score the marker genes in the two
cell cycles G2M and S based on the gene expression levels.

We calculated the average expression value of S phase genes
and G2/M phase genes for each cell. All genes were divided
into different bins based on the average expression levels,
and then, the control genes were randomly selected as the
background from each bin. The average expression levels
of these control genes were calculated. The average expres-
sion levels of control genes were subtracted from the average
expression levels of S phase genes and G2/M phase genes to
obtain S.Score and G2M.Score. S:Score < 0 and G2M:Score
< 0 were judged as G1 phage, otherwise, which phage was
judged as which score was higher. The difference between
the cell cluster and the cell cycle distribution was examined
by Fisher’s test. The top ten differentially expressed genes
and the cell cycle were separately plotted, which were visual-
ized into heatmaps.

2.6. Detection of Marker Genes and Functional Enrichment
Analysis. The cluster marker genes with ∣log 2fold change
ðFCÞ ∣ ≥0:25, the expression ratio of cell population ≤ 0:25,
and p value ≤0.05 were identified using the “FindAllMarkers”
function in the Seurat package. An expression heatmap was
generated for given cells and genes using the DoHeatmap.
The expression level of markers in each cluster was calculated,
and the putative identities of each cell clustering were identi-
fied. The top 20 markers were plotted for each cluster. To
explore potential biological processes and pathways enriched
by markers in each cluster, functional enrichment analyses
were performed using the gProfiler package.

2.7. Reconstruction of Differentiation Trajectories Using
Monocle Analysis. The pseudotime estimation analysis of
epithelial cancer cells and stromal cells was performed using
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the Monocle package. A pseudotime plot was generated that
can account for both branched and linear differentiation pro-
cesses based on the top 2000 highly variable marker genes.

2.8. Differential Expression Analysis and Function Enrichment
Analysis Using Ovarian Cancer Datasets.A total of 593 ovarian
cancer samples were obtained from The Cancer Genome Atlas

(TCGA) using the UCSC Xena (https://tcga.xenahubs.net),
including gene expression profiles and clinical information.
Supplementary table 1 listed the IDs of all samples. After
removing 17 relapse ovarian cancer, 568 ovarian cancer
samples and 8 normal ovarian tissue samples were employed
for this study. Differential expression analysis was then
performed according to ∣log 2FC ∣ >1 and adjusted p value
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Figure 3: Individual principal component analysis. (a) The top 30 genes in PC1 and PC2. (b) The correlation between PC1 and PC2. (c) The
p value of PCs. (d) The PCs were sorted based on the standard deviation. (e) UMAP plots showing the three cell clusters.
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<0.05 using the limma package in R. To explore potential
biological processes and pathways, functional enrichment
analyses of upregulated and downregulated genes were
performed using the gProfiler package in R, including Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG). The GO terms include biological process
(BP), cellular component (CC), and molecular function (MF).
Terms with p value <0.05 were significantly enriched.

2.9. Overall Survival Analysis. Marker genes and differentially
expressed genes were overlapped. Overall survival and
recurrence-free survival analyses of differentially expressed
marker genes were performed. Kaplan-Meier survival curves
and log-rank tests were performed to evaluate the associations
between ovarian cancer prognosis and the expression of these
prognostic genes.

3. Results

3.1. Identification of Three Cell Subpopulations across Ovarian
Cells Based on Single-Cell RNA-seq. In total, 66 ovarian cancer
cells were included in this study. Considering that the amount
of data and the number of cells was relatively small, we used all
the cells without filtering (Figures 1(a)–1(e)). Then, we
detected 6000 highly variable genes across the single cells after
calculating the mean and the variance to mean ratio of each
gene. The top 20 highly variable genes such as LUM, COL3A1,
and SPARC are shown in Figure 2.

To overcome the various technical noise in any single
feature of scRNA-seq data, the Seurat package was used to
cluster cells according to their PCA scores, where each PC
represented a “meta-feature” (Figures 3(a) and 3(b)). Jack-
Straw function was used to resample the test. We randomly
replaced a subset of the data (default was 1%) and rerun
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Figure 4: Cell cycle analyses. (a) The top 20 marker genes in the three cell subpopulations. (b) Cell cycle phase. (c) Cell cycle heatmap.
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PCA to construct an “empty distribution” of feature scores
and repeated the process (Figure 3(c)). We identified
“important” PCs with low p values. Furthermore, the PCs
were sorted based on the standard deviation using ElbowPlot
function (Figure 3(d)). Because there was no obvious elbow
point, we selected 19 PCs for downstream analysis. After
cluster analysis, we divided the cells into 3 cell populations
across ovarian cancer cells (Figure 3(e)). The number of cells
in clusters 0, 1, and 2 was 24, 22, and 20. Supplementary
table 2 listed which cells were in which cluster.

3.2. Analysis ofMarker Genes in the Three Cell Subpopulations.
The top 20 marker genes in the three cell subpopulations are
listed in heatmap (Figure 4(a)). We used the Seurat tool to
score the marker genes in the G1, G2M, and S cell cycles.
Figure 4(b) shows the cell counts in the G1, G2M, and S cell
cycles. By Fisher’s test, there was no significant difference
between the three cell subpopulations and cells in each cell
cycle (p value = 0.2834). Cell cycle heatmap shows the top
ten differentially expressed genes and cell cycle scores in each
cell subpopulation (Figure 4(c)). To explore potential biologi-
cal processes and pathways, GO and KEGG enrichment
analyses were performed (Figure 5). Genes in cluster 1
(Figures 5(a)–5(d)) and cluster 2 (Figures 5(e)–5(h)) were
mainly enriched in metabolic processes and pathways. Mean-
while, genes in cluster 2 were primarily involved in cancer-
related pathways such as PI3K-Akt pathway and pathways in
cancer (Figures 5(i)–5(l)). We found that these marker genes
were enriched in different biological processes and pathways
in different cell subpopulations such as metabolic pathways,
pathways in cancer, and mTOR signaling pathway.

3.3. Reconstruction of Differentiation Trajectories Using
Monocle Package. Cell fate decisions and differentiation tra-
jectories were reconstructed with the Monocle package. The
pseudotime estimation analysis of epithelial cancer cells and
stromal cells was performed based on the top 2000 highly
variable marker genes (Figures 6(a) and 6(b)).

3.4. Identification of Differentially ExpressedGenes Using TCGA
Ovarian Cancer Datasets. A total of 1,124 differentially
expressed genes with ∣log 2FC ∣ >1 and adjusted p value <0.05
were identified between 568 ovarian cancer samples and 8 nor-
mal samples (Figures 7(a) and 7(b)). GO enrichment analysis
results showed that upregulated genes were primarily enriched
in intracellular membrane-bounded organelle, nucleus, nuclear
lumen, cytosol, nucleoplasm, cellular nitrogen compound met-
abolic process, heterocycle metabolic process, cellular aromatic
compound metabolic process, and protein metabolic process
(Figure 7(c)). Meanwhile, upregulated genes were involved in
cell cycle, Herpes simplex virus 1 infection, human papilloma-
virus infection, human T cell leukemia virus 1 infection, and
PI3K-Akt signaling pathway (Figure 7(d)). Downregulated
genes primarily participated inmulticellular organism develop-
ment, plasma membrane, cytosol, vesicle, animal organ devel-
opment, extracellular exosome, extracellular vesicle, positive
regulation of cellular metabolic process, cellular response to
organic substance, and positive regulation of nitrogen com-
pound metabolic process (Figure 7(e)). In Figure 7(f), down-
regulated genes were mainly enriched in MAPK, metabolic,
pathways in cancer, PI3K-Akt, and Ras signaling pathways.

3.5. Identification of Differentially Expressed Marker Genes
Associated with Prognosis of Ovarian cancer. All marker
genes were overlapped with 1,124 differentially expressed
genes in TCGA samples. Survival analysis was used for iden-
tifying prognosis-related differentially expressed marker
genes. The results showed that marker genes STAT1,
ANP32E, GPRC5A, and EGFL6 were highly expressed in
ovarian cancer (Figures 8(a)–8(d)). Furthermore, marker
genes PMP22, FBXO21, and CYB5R3 were lowly expressed
in ovarian cancer (Figures 8(e)–8(g)). The high expression
of ANP32E (p = 0:031, HR: 0.79 (0.64-0.98)), STAT1
(p = 0:005, HR: 0.74 (0.59-0.91)), GPRC5A (p = 0:03, HR:
1.27 (1.02-1.57)), EGFL6 (p = 0:018, HR: 0.77 (0.62-0.96)),
and PMP22 (p = 0:043, HR: 1.25 (1.01-1.54)) was signifi-
cantly associated with better overall survival time than their
low expression (Figures 9(a)–9(e)). The high expression of
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Figure 6: Reconstruction of differentiation trajectories to ovarian cancer. (a, b) The trajectory plot in pseudotime of epithelial cancer cells
and stromal cells using Monocle analysis. Different colors represent different cell states.
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FBXO21 (p = 0:027, HR: 0.57 (0.35-0.94)), ANP32E (p = 0:007,
HR: 0.51 (0.31-0.84)), and CYB5R3 (p = 0:015, HR: 1.86
(1.12-3.08)) indicated better recurrence-free survival time
compared with their low expression (Figures 9(f)–9(h)). Fur-
thermore, we found that STAT1 had the highest expression
in stage II among all stages (Figure 10(a)). PMP22 had the
highest expression in stage III among all stages (Figure 10(b)).

4. Discussion

The treatment of ovarian cancer is complicated by the hetero-
geneity of the tumor. Different histological types of epithelial
ovarian cancer have different cell origins, different mutation
profiles, and different prognosis [16, 17]. Even in a histological
type, different molecular subtypes with different prognosis can
be found. To solve these problems, it is necessary to better
characterize the heterogeneity of these ovarian cancer cells,
to find reliable biomarkers, and develop appropriate targeted
therapies. Single-cell RNA sequencing technology can explore
the intercellular heterogeneity at the single-cell level and
reconstruct lineage hierarchies. This method allows an unbi-
ased analysis of the heterogeneity profile within a population
of cells as it utilizes transcriptome reconstitution from a single
cell. Our reanalysis of the ovarian cancer single-cell tran-
scriptome may provide a deeper insight into the heterogeneity
spectrum of ovarian cancer cells.

Totally, 66 ovarian cancer cells were included in our study.
To remove cells with low quality, quality control was per-
formed using the Seurat package. Proliferation induced by
abnormal regulation of the cell cycle is thought to be critical
for ovarian cancer progression. The G1/S phase is the most
critical rate-limiting step in cell cycle promotion. Some studies
have shown that the expression of cell cycle-related genes is
significantly associated with poor prognosis in patients with
ovarian cancer. Therefore, we studied molecules involved in

cell cycle progression to discover new prognostic factors and
therapeutic targets. In this study, 66 ovarian cancer cells were
clustered into three groups (G1, G2M, and S). The marker
genes in each cluster were identified. To explore potential bio-
logical processes and pathways, KEGG and GO enrichment
analyses of these marker genes were performed. The results
showed that the marker genes in each cluster were enriched
in different biological processes and pathways.

Using ovarian cancer dataset from TCGA, a total of 1,124
differentially expressed genes with ∣log 2FC ∣ >1 and adjusted
p value <0.05 were identified between 568 ovarian cancer
tissues and 8 normal tissues. To explore potential biological
processes and pathways, these differentially expressed genes
were mainly enriched in metabolic pathways, pathways in can-
cer, PI3K-Akt signaling pathway, and the like. For example,
most ovarian cancer cells are highly proliferative; therefore,
they are highly dependent on the metabolism of glucose by
the aerobic glycolysis or the Warburg effect [18, 19]. PI3K-
Akt signaling pathway is deregulated in various malignant can-
cers including ovarian cancer, which participates in tumor cell
proliferation, survival, metabolism, and angiogenesis [20, 21].

The intercellular heterogeneity is one of the major
drivers of cancer progression [22]. Gene variation at the
single-cell level can rapidly produce cancer heterogeneity
[23]. Prognosis-related differentially expressed marker genes
were identified. We found that the expression levels of
STAT1, ANP32E, GPRC5A, and EGFL6 were all signifi-
cantly higher in ovarian cancer tissues compared with nor-
mal tissues. Furthermore, PMP22, FBXO21, and CYB5R3
expression was significantly lower in ovarian cancer tissues
compared with normal tissues. The low expression of
ANP32E, STAT1, GPRC5A, EGFL6, and PMP22 was posi-
tively associated with overall survival time of ovarian cancer.
The low expression of FBXO21, ANP32E, and CYB5R3 was
significantly associated with longer recurrence-free survival
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Figure 8: The differential expression of marker genes associated with prognosis of ovarian cancer. (a) STAT1; (b) ANP32E; (c) GPRC5A;
(d) EGFL6; (e) PMP22; (f) FBXO21; (g) CYB5R3.
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Figure 9: The survival analysis of differentially expressed marker genes in ovarian cancer. (a–e) The overall survival analysis results of
ANP32E, STAT1, GPRC5A, EGFL6, and PMP22. (f–h) The recurrence-free survival analysis results of FBXO21, ANP32E, and CYB5R3.
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time of ovarian cancer. STAT1, a member of STAT family,
has been confirmed to be highly expressed in ovarian cancer
[24, 25]. The high expression of ANP32E is in association
with better prognosis, contributing to the proliferation and
tumorigenesis of triple-negative breast cancer cells [26, 27].
GPRC5A variants may drive self-renewal of bladder cancer
stem cells according to single-cell RNA-seq analysis [28].
EGFL6, a stem cell regulator expressed in ovarian tumor cells
and vasculature, may induce the growth andmetastasis of ovar-
ian cancer [29, 30]. A previous study has found that EGFL6 is
upregulated in drug-resistant ovarian cancer cell lines using
microarray analysis [31]. The expression and function of
PMP22 in tumors remain unclear. Some studies have shown
that PMP22 is a potential tumor suppressor, and others have
indicated that PMP22 has a potential carcinogenic function in

tumors [32–35]. Studies on the role of PMP22 in the regulation
of ovarian cancer have not been reported. Furthermore, there is
no report concerning the expression and role of FBXO21 and
CYB5R3 in ovarian cancer. Collectively, our study identified
specific cell subpopulations andmarker genes in ovarian cancer.

5. Conclusion

In our study, we analyzed the intercellular heterogeneity in
ovarian cancer using single-cell RNA sequencing and identi-
fied marker genes in each cluster. Combining TCGA ovarian
cancer dataset, we identified differentially expressed marker
genes that were significantly associated with prognosis of
ovarian cancer, including ANP32E, STAT1, GPRC5A,
EGFL6, PMP22, FBXO21, and CYB5R3.
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Figure 10: The differential expression of STAT1 and PMP22 across different stages in ovarian cancer. (a) STAT1; (b) PMP22.
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