
Research Article
Bioinformatic Analysis and Integration of Transcriptome and
Proteome Results Identify Key Coding and Noncoding Genes
Predicting Malignancy in Intraductal Papillary Mucinous
Neoplasms of the Pancreas

Barsha Saha , Bishnupriya Chhatriya, Swapnila Pramanick , and Srikanta Goswami

National Institute of Biomedical Genomics, Kalyani, West Bengal, India

Correspondence should be addressed to Srikanta Goswami; sg1@nibmg.ac.in

Received 10 July 2021; Revised 7 October 2021; Accepted 21 October 2021; Published 8 November 2021

Academic Editor: Shibiao Wan

Copyright © 2021 Barsha Saha et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Intraductal papillary mucinous neoplasms (IPMNs) are precursor lesions of pancreatic ductal adenocarcinoma
(PDAC). IPMNs are generally associated with high risk of developing malignancy and therefore need to be diagnosed and
assessed accurately, once detected. Existing diagnostic methods are inadequate, and identification of efficient biomarker
capable of detecting high-risk IPMNs is necessitated. Moreover, the mechanism of development of malignancy in IPMNs is
also elusive. Methods. Gene expression meta-analysis conducted using 12 low-risk IPMN and 23 high-risk IPMN tissue
samples. We have also listed all the altered miRNAs and long noncoding RNAs (lncRNAs), identified their target genes,
and performed pathway analysis. We further enlisted cyst fluid proteins detected to be altered in high-risk or malignant
IPMNs and compared them with fraction of differentially expressed genes secreted into cyst fluid. Results. Our meta-analysis
identified 270 upregulated and 161 downregulated genes characteristically altered in high-risk IPMNs. We further identified 61
miRNAs and 14 lncRNAs and their target genes and key pathways contributing towards understanding of the gene regulation
during the progression of the disease. Most importantly, we have detected 12 genes altered significantly both in cystic lesions
and cyst fluid. Conclusion. Our study reports, for the first time, a meta-analysis identifying key changes in gene expression
between low-risk and high-risk IPMNs and also explains the regulatory aspect through construction of a miRNA-lncRNA-
mRNA interaction network. The 12-gene-signature could function as potential biomarker in cyst fluid for detection of IPMN
with a high risk of developing malignancy.

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) has quite a high
mortality rate among other cancers due to the combination
of its aggressive nature and limited early diagnostic or ther-
apeutic intervention. Generally, PDAC is thought to evolve
from two types of precursor lesions: intraepithelial lesions
and cystic lesions. Pancreatic intraepithelial (PanIN) lesions
arise from acinar cells that undergo acinar-ductal metapla-
sia [1], while intraductal papillary mucinous neoplasm
(IPMN) and mucinous cystic neoplasm (MCN) are two
major subtypes of cystic neoplasms having high risk of

developing malignancy. IPMNs, further subdivided into
main-duct and branch-duct IPMN (MD/BD-IPMN), are
characterized by dilation of pancreatic duct, intraductal
papillary growth, and secretion of thick mucus. Most of
the time, these types of cystic neoplasms remain asymp-
tomatic and incidentally detected through an abdominal
image. However, the incidence of malignancy, as reported,
varies from 57% to 92% in case of MD-IPMN and from
6% to 46% in BD-IPMN [2]. Therefore, once detected,
there has to be a proper timely diagnosis of whether the
IPMN possesses the risk of developing malignancy, as it
directly determines the subsequent course of disease
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management. However, despite clinicians’ attempts to elab-
orate features concerning for malignancy, it is difficult to
predict whether it is going to be malignant with the help
of conventional imaging techniques, and therefore a precise
and noninvasive test to diagnose malignant IPMN is
required.

Imaging has been the major mode of detection of malig-
nancy in IPMNs, where cyst size, main pancreatic duct dila-
tion, presence of mural nodules, thick enhancing walls,
and/or septae are aspects generally getting investigated
mainly through MRI, CT, MRCP, ERCP, or EUS [3, 4].
Apart from this, there have been efforts to understand the
molecular changes as manifested in cyst fluid, pancreatic
juice, or serum of the patients so that we can identify some
potential biomarkers for proper detection of the disease
and simultaneously have an idea regarding the mechanistic
aspect of disease progression. Investigation of somatic muta-
tions and chromosomal abnormalities using tumour DNA
collected from cyst fluid showed loss of heterozygosity at
9p12 (p16) and 17 p13 (p53) in malignant IPMNs [5]. Cyst
fluid gene expression analysis, miRNA profiling, and prote-
ome profiling have also been studied to have an idea of small
RNA and protein-based biomarkers for detection of high-
risk IPMN [6]. However, there has not been an integration
of these multiple studies, and due to this unavailability of
cytology and biochemical markers in classifying the pathol-
ogy of IPMN accurately, the quest for molecular markers
capable of detecting IPMNs with high risk of malignancy is
still ongoing.

In order to fill the gap, we have first performed a meta-
analysis of the existing transcriptome data and tried to
combine the results to that of cyst fluid proteome to derive
a more convincing set of genes altered both at mRNA and
protein level, capable to act as putative biomarker for detec-
tion of high-risk IPMN. Furthermore, we have addressed
the interaction between coding and noncoding genes and
identified key pathways probably playing significant role
during the development of malignant IPMN from benign
ones. This not only sheds light on the mechanism of disease
progression but also forms the basis of future drug discov-
ery studies preventing progression to malignant IPMNs.

2. Materials and Methods

2.1. Selection of Datasets. Datasets were searched in GEO
using the keywords “IPMN” and “gene expression” and
selected according to criteria mentioned in Figure 1. From
multiple groups of two selected datasets, GSE19650 and
GSE63104, we took the only benign or low-risk samples as
“Control” and malignant or high-risk samples as “Case,”
for subsequent analysis.

The same criteria were used to search datasets in GEO
using the keywords “IPMN” and “miRNA expression”
resulting in two of them GSE63102 and GSE29352.

2.2. Processing of Datasets. Datasets were processed indi-
vidually, and unsupervised analysis was done by using R.
Dataset processing included normalization methods. For

normalization, we used “Oligo” Bioconductor package ver-
sion 3.1.

2.3. Batch Correction and Meta-Analysis. SVA package was
used for identifying and removing batch effects followed by
meta-analysis using the R Bioconductor package “Rank-
Prod” [7] as described earlier [8]. Firstly, each dataset was
normalized and outliers were removed and expression data
obtained likewise from multiple datasets were merged to
form a combined expression data file. The origin and disease
status of the samples were specified in another file. These
two files were used as input files using “RankProd,” and
differentially expressed genes (DEGs) were obtained based
on the percentage of false prediction (PFP). A cut-off of
PFP < 0:05 was used.

We could not perform the same meta-analysis with two
datasets for miRNAs. So we decided to search from
literature.

2.4. DE-miRs Selection. We searched in PubMed using the
keywords “IPMN” and “miRNA.” We found multiple
reports, mostly with candidate miRNAs in IPMN. From
those, we could select 106 miRNAs which are differentially
expressed between high-risk and low-risk IPMN.

2.5. List of Deregulated lncRNAs. Our upregulated and
downregulated DEGs, as obtained from meta-analysis, also
had information about DE-lncRNAs. In addition to these,
we also searched extensively in the literature using keywords
“IPMN” and “long noncoding RNA” and listed the results as
reported to be altered in high-risk IPMNs.

2.6. Target Identification for miRNAs. Experimentally vali-
dated targets for the selected miRNAs were identified using
miRNet [9, 10]. It was a web tool that provided statistical
and functional support for miRNA studies. Next, we com-
pared the targets with the upregulated and downregulated
DEGs as obtained from meta-analysis using Venny 2.1.0
[11]. Based on the status of the expression of target genes,
a hypergeometric test was done to identify the miRNAs
enriched with target genes in the reciprocal direction.

2.7. miRNA-lncRNA-mRNA Interaction. To gain insight into
the interactions among long noncoding RNAs, miRNAs,
and mRNAs in IPMN, various publicly available databases
and web tools were explored. We used LncCeRBase [12],
RNAInter: RNA Interactome Database [13], RAID v2.0
RNA Association Interaction Database [14], miRcode [15],
miRTarBase [16], ENCORI StarBase/starBase v2.0 [17],
and LncRNA2Target v2.0 [18] to list down the interactions
in Homo sapiens, relevant to the DE-lncRNAs we had iden-
tified. Finally, the interacting miRNAs and mRNAs from
this list were compared with DE-miRs and DE-Target genes
identified previously. Then, we made a network of the
miRNA-lncRNA-mRNA using miRNAs as source nodes,
mRNAs as target nodes, lncRNAs as source nodes, miRNAs
as target nodes, lncRNAs as source nodes, and mRNAs as
target nodes in Cytoscape [19].
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2.8. Proteome Analysis. We searched for proteomic bio-
markers for IPMN in various published literature in PubMed
using keywords like “Proteomic analysis,” “biomarker,” and
“IPMN.” PeptideAtlas [20], ExoCarta [21], and The Human
Protein Atlas [22] were used to identify the secreted proteins
in humans. The common secreted proteins from three of the
datasets were obtained and further compared with upregu-
lated and downregulated DEGs separately using Venny
2.1.0. Finally, these secreted DEGs were compared with a list
of proteomic biomarkers reported from high-throughput
studies in high-risk IPMN.

2.9. Pathway Analysis. To find out biologically relevant path-
ways, we used GOstats [23]. We also used KEGG mapper to
find out the pathway name as well as the gene names
included for each pathway [24].

3. Results

3.1. Dataset Selection and Overall Plan. We have performed
a meta-analysis with two selected datasets. One dataset,
GSE19650, compared gene expression between 6 low-risk
IPMN tissue samples (intraductal papillary mucinous ade-
noma (IPMA) group) and 6 high-risk noninvasive IPMN
tissue samples (intraductal papillary mucinous carcinoma
(IPMC) group) by using Affymetrix Human Genome U133
Plus 2.0 Array platform. Another dataset, GSE63104,
compared gene expression between 6 low-risk IPMN tissue
samples and 17 high-risk noninvasive IPMN tissue samples
by using Rosetta/Merck Human RSTA Custom Affymetrix
2.0 microarray. We could not do a meta-analysis using the
datasets for miRNAs as they used two different platforms.
We performed GEO2R analysis on them but did not find
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Figure 1: Schematic flowchart summarizing the study design followed in the study.
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any miRNA significantly altered between two groups. For
obvious reasons, we then explored all the published litera-
ture on role of miRNAs in IPMN and listed differentially
expressed miRNAs altered in high risk or malignant IPMN
as compared to low-risk/benign ones. Subsequently, we
derived targets of those miRNAs using miRNet and com-
pared with our top-ranked DEGs to get a subset of DEGs
which happened to be the targets of these miRNAs altered
in high-risk IPMNs. Next, we did a hypergeometric test to
derive the statistically significant miRNA-mRNA target
interactions based on their expression in low-risk and high-
risk IPMN. Parallelly, we obtained a list of lncRNAs altered
between these two disease types from our meta-analysis as
well as from literature and performed a miRNA-lncRNA-
mRNA interaction analysis to have a comprehensive under-
standing of the regulation of gene expression by noncoding
RNAs during progression of the disease. Most importantly,
we wanted to explore how many of the DEGs, as derived
from our meta-analysis, are also reported to be differentially
secreted into cyst fluid of patients with high-risk IPMNs.
This integration of transcriptomic and proteomic results led
to the identification of 12 genes found to be altered both at
the mRNA level and at the protein level. We also got our
results validated from existing literature. The overall plan is
shown in Figure 1.

3.2. mRNA and lncRNA Metasignature of IPMN. A total
number of 431 differentially expressed genes were identified
in high-risk IPMN tissue samples in our meta-analysis by
using RankProduct method. DEGs were selected based on
their percentage of false positive or PFP (with a cut-off of
PFP < 0:05). Among them, 161 genes were downregulated
and 270 genes were upregulated. The volcano plot in
Figure 2 shows the distribution of up- and downregulated
genes, and the lists of downregulated and upregulated genes
are given in Supplementary Tables 1 and 2, respectively. The
array platform also had probes for lncRNAs, and our final
DEG list had two downregulated lncRNAs (XIST and
LINC00261) and one upregulated lncRNA (LINC00483).

3.3. Finding Out DE-miRNAs and Their Target
Identification. Extensive search from published reports for
differentially expressed miRNAs identified 106 miRNAs
deregulated in high-risk IPMNs (Supplementary Table 3)
[25–32]. These miRNAs must be engaged in important
functions during the progression of IPMN from benign to
malignant. To elucidate their role, we wanted to identify
the genes being targeted by these miRNAs. We focused
only on experimentally validated targets and chose the web
tool miRNet. miRNet provides experimentally validated
target information collated from published reports on
experiments like CLASH, PAR-CLIP, and Microarray and
also from qPCR or reporter assays. We have found 10777
validated target information, and when our differentially
expressed genes were compared to these target genes, we
got 208 DEGs as targets of these miRNAs. Supplementary
Table 4 shows the full list of target genes of 106 miRNAs
as derived from miRNet.

3.4. Selection of DE-miR-DE-Target Gene Pairs. Not all of the
DEGs targeted by DE-miRs, as obtained by miRNet, could
be functional in IPMN. Tissue- or disease-specific gene
regulation by miRNAs is always there, and the first step to
derive the tissue-specificity information could be achieved
by adding expression information to this target list. We did
that and performed the hypergeometric test to find out
statistically significant DE-miR-DE-Target gene interaction.
Our analysis finally identified 61 DE-miRs interacting with
131 DE-Target genes. This resulted in 174 interactions with
24 downregulated miRNAs and 96 upregulated target genes
and 72 interactions with 37 upregulated miRNAs with 35
downregulated target genes, represented in Supplementary
Tables 5 and 6, respectively. The final list of 61 miRNAs
differentially altered in high-risk IPMN is shown in Table 1.

3.5. Derivation of miRNA-lncRNA-mRNA Interactions.
lncRNAs have seriously been implicated in regulation of
gene expression in different diseases. Mode of action of
lncRNAs involves direct regulation of mRNA expression as
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Figure 2: Volcano plot showing statistically significant genes. Green dots represent upregulated genes, and Red dots represent
downregulated genes as obtained from meta-analysis.
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well as interaction with miRNAs. Therefore, it is necessary
to have miRNA-lncRNA-mRNA interactions elaborated in
details to have a complete understanding about the gene
regulatory mechanisms. Our meta-analysis identified only
3 DE-lncRNAs specific to high-risk IPMN. One main reason
for this less number was less representation of lncRNA
probes in the array platform. Therefore, to gain more infor-
mation on the altered lncRNAs in high-risk IPMNs, we
explored the published literature and rigorous searching
identified 11 more lncRNAs from multiple studies (Supple-
mentary Table 7) [33, 34]. Subsequently, reported and
predicted interactions of these 14 lncRNAs with miRNA
and mRNA targets were obtained using several web tools.
The next step was to identify how many of our DE-miRs
and DE-Target genes were also common in that target list,
and this comparison yielded the final miRNA-lncRNA-
mRNA interaction network. While Figure 3 shows the
network specific for downregulated miRNAs, Figure 4
shows the network specific for upregulated miRNAs.

3.6. Pathway Analysis. A crucial step to understand how
these differentially expressed coding and noncoding genes
actually contribute to the pathophysiology of the disease is
pathway analysis. Statistical evaluation of the upregulated
and downregulated genes being enriched in specific pathways
will assign importance to them with respect to the disease
relevance. Our pathway enrichment analysis identified
several upregulated and downregulated pathways; top few
of them are shown in Supplementary Table 8. The most
notable among the upregulated pathways were TGF-beta
signalling pathway, ECM-receptor interaction pathway, focal
adhesion pathway, and several cancer-specific pathways,
while normal pancreatic function pathways like protein and
fat digestion/absorption pathways and pancreatic secretion

Table 1: List of miRNAs altered in high-risk IPMN and targeting
the differentially expressed genes.

Sl no. miRNA Expr. Adjusted p value

1 hsa-miR-10a-5p Down 1:77E − 05
2 hsa-miR-16-5p Up 0.002127895

3 hsa-miR-130b-3p Down 5:13E − 06
4 hsa-miR-340-5p Down 3:57E − 08
5 hsa-miR-335-5p Down 8:11E − 18
6 hsa-miR-33a-5p Up 0.039545455

7 hsa-miR-93-5p Down 2:40E − 12
8 hsa-miR-503-5p Down 0.253349282

9 hsa-miR-424-5p Up 0.000805785

10 hsa-miR-192-5p Up 0.001066549

11 hsa-miR-593-3p Down 5:13E − 06
12 hsa-let-7a-5p Down 3:00E − 16
13 hsa-miR-148a-3p Down 1:61E − 07
14 hsa-miR-24-3p Up 2:18E − 08
15 hsa-miR-155-5p Up 0.314020914

16 hsa-let-7e-5p Down 1:08E − 10
17 hsa-miR-146a-5p Down 4:26E − 10
18 hsa-miR-196a-5p Down 1:61E − 07
19 hsa-miR-22-3p Down 0.001176948

20 hsa-miR-26a-5p Up 0.010227273

21 hsa-miR-21-5p Up 1:42E − 05
22 hsa-miR-183-5p Up 0.000423701

23 hsa-miR-20a-5p Up 0.000984848

24 hsa-let-7c-5p Up 0.000171192

25 hsa-let-7f-5p Up 0.002984563

26 hsa-miR-107 Up 0.000343774

27 hsa-miR-15b-5p Down 6:93E − 14
28 hsa-miR-103a-3p Down 1:86E − 14
29 hsa-miR-142-3p Up 7:51E − 07
30 hsa-miR-29a-3p Up 0.003766234

31 hsa-miR-320a Up 0.000171192

32 hsa-miR-187-3p Down 0.008672249

33 hsa-miR-375 Down 1:61E − 07
34 hsa-miR-130a-3p Down 0.000126263

35 hsa-miR-199b-3p Down 0.000171192

36 hsa-miR-141-3p Down 0.015447443

37 hsa-miR-1257 Down 0.008672249

38 hsa-miR-4770 Up 0.000423701

39 hsa-let-7d-5p Up 0.000788281

40 hsa-miR-27a-3p Down 0.002984563

41 hsa-let-7c-3p Up 0.021492095

42 hsa-miR-29c-3p Up 0.001694805

43 hsa-let-7g-5p Up 7:49E − 05
44 hsa-miR-215-3p Up 1:77E − 05
45 hsa-miR-3714 Up 0.000171192

Table 1: Continued.

Sl no. miRNA Expr. Adjusted p value

46 hsa-miR-146b-5p Up 7:49E − 05
47 hsa-miR-150-5p Up 4:23E − 05
48 hsa-miR-548d-3p Up 4:64E − 06
49 hsa-miR-20b-5p Up 0.000522648

50 hsa-miR-98-5p Up 1:03E − 06
51 hsa-miR-96-5p Up 0.000423701

52 hsa-miR-1260b Up 0.000423701

53 hsa-miR-1207-5p Up 0.000423701

54 hsa-miR-221-3p Down 0.039545455

55 hsa-miR-100-5p Up 0.000423701

56 hsa-miR-210-3p Down 0.000788281

57 hsa-miR-23a-3p Up 0.001176948

58 hsa-miR-216b-5p Up 3:57E − 08
59 hsa-miR-216a-5p Up 7:49E − 05
60 hsa-miR-181a-5p Up 0.001694805

61 hsa-miR-761 Down 0.008672249
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pathways were among the significantly downregulated
pathways.

3.7. Identification of the Cyst Fluid Proteins Specific to High-
Risk IPMNs. As we had already performed a meta-analysis
and identified genes differentially expressed in high-risk
IPMN tissues, we thought that if we could detect how many
of these DEGs were reported to be secreted in cyst fluid of
high-risk IPMNs, as reported from high-throughput studies;
then it would help to actually identify the altered proteins as
putative biomarker candidates. We followed a series of strin-
gent steps to get the result as illustrated in Supplementary
Figure 1. Firstly, we downloaded all the relevant secretory
proteins from three different databases (PeptideAtlas,
ExoCarta, and The Human Protein Atlas) and derived the
common ones between them. Different databases might

follow different methodologies to enlist the secretory
proteins, but going ahead with the common ones will
ensure that chances of them being secretory are maximum.
The number of common proteins from these three
databases was 1597. Next, we compared these proteins
with our DEGs to find out how many of our upregulated
and downregulated DEGs belong to the class of secretory
proteins (which resulted in 31 upregulated and 14
downregulated DEGs). Meanwhile, we have rigorously
explored the published literature on mass spectrometry-
analysed proteome results and listed all the secretory
proteins differentially detected in cyst fluid of malignant
IPMNs in those high-throughput studies (Supplementary
Table 9) [6, 35–38]. All of them were high-throughput
studies having lots of variations between them. Hence, we
wanted to see if we could detect any of our secreted DEGs

Figure 3: Interaction network between downregulated miRNAs and their target genes. miRNA-lncRNA-mRNA interaction network with
downregulated miRNAs and their target mRNAs and long noncoding RNAs. Blue represents downregulated and red represents upregulated.
Round shape represents miRNA, rounded rectangle represents long noncoding RNA, and triangle represents mRNAs.

Figure 4: Interaction network between upregulated miRNAs and their target genes. miRNA-lncRNA-mRNA interaction network with
upregulated miRNAs and their target mRNAs and long noncoding RNAs. Blue represents downregulated and red represents upregulated.
Round shape represents miRNA, rounded rectangle represents long noncoding RNA, and downward arrow represents mRNAs.
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among the list of cyst fluid-specific altered proteins. Such
comparison resulted in 4 upregulated (CP, CEACAM5,
DMBT1, and KRT6A) and 8 downregulated (CEL, CPA1,
CPB1, ALB, SERPINA4, CA2, CLU, and AMBP) DEGs
secreted in cyst fluid of high-risk IPMNs (Figure 5). This is
the outcome of integration of transcriptome and proteome
results, and the altered genes were found to be deregulated
at the mRNA level in IPMN tissues as well as at the
protein level in cyst fluid with adequate evidences that the
protein products of these genes are secretory in nature.
The findings increase the possibility of these genes to
function as true biomarker.

3.8. Validation of Our Results. We have used experimentally
validated miRNAs and lncRNAs from literature and also
selected experimentally validated target genes for the miR-
NAs. Therefore, though we did not have our findings sepa-
rately checked in a new set of patient samples, we believe
that there are enough evidences from other studies support-
ing our results.

On the other hand, the 12 genes, whose altered expres-
sion was detected specifically in cyst fluid of high-risk
IPMNs, were also got detected in proteome studies by other
groups. Furthermore, we wanted to test their expression in
PDAC datasets. Considering the fact that high-risk IPMN
will eventually develop into PDAC, the expression of these
genes should be similarly altered in cystic tumour tissues
and cyst fluid from high-risk IPMNs and tumour tissues
collected from PDAC. We have checked their expression in
(a) TCGA RNA sequencing dataset corresponding to PAAD
(pancreatic adenocarcinoma) using the GEPIA web tool
[39], (b) gene expression microarray results using the Pan-
creatic Cancer Database [40], and (c) published literature
studying the roles of individual genes [41–51]. Interestingly
enough, we found that the pattern of alteration of all the
genes was similar in case of high-risk IPMN and PDAC, val-
idating our finding (Table 2).

4. Discussion

Individual studies sometimes have lesser number of samples,
and different studies follow different analysis methods
resulting in variable observations. Here is the significance
of meta-analysis, and our results from a total number of 12
low-risk IPMNs and 23 high-risk IPMNs identified 270
upregulated and 161 downregulated genes. To the best of
our knowledge, this is the first report of this kind of analysis
in IPMN. We have used this finding to address two ques-
tions. While exploring the molecular mechanism of disease
progression, it is equally important to know how the genes
are regulated. Noncoding RNAs have emerged as the most
notable regulators of gene expression, and we have investi-
gated both the roles of miRNAs and lncRNAs in this regard.
Eventually, identification of targets of both the types of non-
coding RNAs and obtaining the miRNA-lncRNA-mRNA
interaction were a crucial step to decipher the cross-talk
between coding and noncoding genes in the disease
(Figures 3 and 4). Pancreatic exocrine insufficiency is char-
acterized by a deficiency of the enzymes secreted from the
pancreas, and this condition has been associated strongly
with PDAC [52] as well as IPMN [53]. Downregulation of
the pathways relevant to pancreatic secretion and protein
and fat digestion/absorption, as resulted from our pathway
analysis, directly supports the phenomenon of pancreatic
exocrine insufficiency seen during the development of IPMN
with high risk of malignancy. On the other hand, extracellu-
lar matrix signalling pathways (and hence, tumour stroma
interaction) were found to be the most upregulated path-
ways. The finding is well supported by similar previous
reports in PDAC [54] and also in IPMN, where other cell
adhesion molecule overexpression has been linked to its
malignant potential [55]. Moreover, inflammatory, espe-
cially TGF-beta signalling pathway has also been found to
be overexpressed in high-risk IPMNs corroborating with
the existing reports [56]. Enrichment of upregulated
cancer-related pathways in our results was also expected.
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Figure 5: Comparison between proteome and gene expression results. (a) Comparison of secretory proteins from three databases and
finding out the common ones. Our list of upregulated and downregulated DEGs was then compared to this list, and resulting “secreting
DEGs” were then compared with the curated list of protein biomarkers to obtain common (b) upregulated and (c) downregulated
proteins in cyst fluid.
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The crucial finding of our study was to identify genes
altered in tumour tissue at the mRNA level as well as altered
in cyst fluid at the protein level. Hence, these genes have
huge potential to function as biomarkers. Among the 8
downregulated genes, CEL, CPA1, CPB1, and ALB were
found to be hugely altered in pancreatic malignancy across
all the platforms and databases. CEL, CPA1, and CPB1 code
for carboxyl ester lipase, carboxypeptidase A1, and carboxy-
peptidase B1, respectively, and their downregulation is again
indicative of pancreatic exocrine insufficiency associated
with onset of malignancy in benign IPMNs. Most interest-
ingly, CEL has been believed to be sequestrated within the
Golgi compartment in pancreatic tumour cells which prob-
ably explained its less secretion into cyst fluid. Similarly,
serum level of albumin has also been shown to be downreg-
ulated in PDAC and also in invasive IPMN [57]. The other
four proteins, SERPINA4, CA2, CLU, and AMBP, are mod-
erately downregulated in high-risk IPMN. Carbonic anhy-
drase 2 (CA2) expression is restricted to pancreatic duct
[58] and also known to be downregulated in PDAC. On
the other hand, CP, CEACAM5, DMBT1, and KRT6A were
upregulated manifold in our results. CEA cell adhesion
molecule 5 (CEACAM5) is a well-studied biomarker for
gastrointestinal cancers and thought to promote tumour
development as a cell adhesion molecule. We have also
shown earlier cell adhesion signalling playing a very impor-
tant role in the development of malignancy in IPMN, when
those pathways got enriched in our result. Though deleted
in malignant brain tumour 1 (DMBT1) functions as tumour
suppressor in many cancers, its huge upregulation in pan-
creatic cancer is also well established. It has been found

to be secreted in pancreatic juice of the patients too.
KRT6A is a subtype of keratin highly upregulated in pan-
creatic cancer and predictive of patient survival [42]. Inter-
estingly, it is reported to modulate tumour-associated
macrophage phenotype in PDAC tumour tissues [59]. CP
(ceruloplasmin) has also been detected in serum of PDAC
patients by multiple studies and had even been explored
for its biomarker potential. We have not undertaken any
experimental studies ourselves to validate our findings sep-
arately. However, as evident from Table 2, all of these genes
have been validated by multiple studies and by multiple
groups, thereby strongly supporting their candidature as a
potential biomarker. Still, a formal study carrying out the
ROC analysis assessing the individual and cumulative
AUC for these genes in a decent number of low-risk and
high-risk IPMN patients needs to be conducted in the
future.

5. Conclusion

We report for the first time a meta-analysis of gene expres-
sion datasets resulting in a set of differentially expressed
genes between high-risk and low-risk IPMNs. We further
identify differentially expressed miRNAs and lncRNAs con-
structing a miRNA-lncRNA-mRNA interaction network
possibly contributing towards development of malignancy
in benign IPMNs. Most importantly, we integrated the tran-
scriptome and cyst fluid proteome results to identify 4
upregulated and 8 downregulated genes altered both in
IPMN tissue and cyst fluid and capable of functioning as

Table 2: Supporting information validating our finding.

Gene PAAD (TCGA)
PAAD fold change

(TCGA)
Validation from literature in malignant

IPMN/PDAC (PMIDs)
Validation from PCD

SERPINA4 DOWN 0.51 — —

CEL DOWN 0.0015 DOWN in PDAC (31706267)
mRNA: 25-fold DOWN in PDAC
Protein: 33-fold DOWN in PDAC

CPA1 DOWN 0.0008 DOWN in PDAC (31706267)
mRNA: 5-fold DOWN in PDAC
Protein: 25-fold DOWN in PDAC

CPB1 DOWN 0.002 DOWN in PDAC (29631213)
mRNA: 5.3-fold DOWN in PDAC
Protein: 25-fold DOWN in PDAC

AMBP DOWN 0.5 —
mRNA: 5-fold DOWN in PanIN
Protein: 3-fold DOWN in PDAC

CLU UNCHANGED —
DOWN in PDAC and pseudopapillary

tumours (17257128, 17019794)
mRNA: 5-fold DOWN in PDAC

CA2 UNCHANGED — DOWN in PDAC (23327700)
mRNA: DOWN in PDAC
Protein: DOWN in PDAC

ALB DOWN 0.015 DOWN in PDAC (27344157) —

CP UP 17.55
UP in serum of PDAC patients

(18192883, 26850699)
mRNA: 3.5-fold UP in PDAC
Protein: 5-fold UP in PDAC

CEACAM5 UP 1900 UP in PDAC (24476519)
mRNA: 120-fold UP in PDAC

Protein: UP in PDAC

DMBT1 UP 93
UP in PDAC (and also elevated in pancreatic

juice of the patients) (15477757)
mRNA: UP in PDAC
Protein: UP in PDAC

KRT6A UP 13.6 UP in PDAC/as SIGNATURE (30092011) mRNA: UP in PDAC
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potential biomarker predicting malignancy in low-risk
IPMNs.
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