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Several studies have demonstrated that chronic hepatitis delta virus (HDV) infection is associated with a worsening of hepatitis B
virus (HBV) infection and increased risk of hepatocellular carcinoma (HCC). However, there is limited data on the role of HDV in
the oncogenesis of HCC. This study is aimed at assessing the potential mechanisms of HDV-associated hepatocarcinogenesis,
especially to screen and identify key genes and pathways possibly involved in the pathogenesis of HCC. We selected three
microarray datasets: GSE55092 contains 39 cancer specimens and 81 paracancer specimens from 11 HBV-associated HCC
patients, GSE98383 contains 11 cancer specimens and 24 paracancer specimens from 5 HDV-associated HCC patients, and 371
HCC patients with the RNA-sequencing data combined with their clinical data from the Cancer Genome Atlas (TCGA).
Afterwards, 948 differentially expressed genes (DEGs) closely related to HDV-associated HCC were obtained using the R
package and filtering with a Venn diagram. We then performed gene ontology (GO) annotation and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analysis to determine the biological processes (BP), cellular component
(CC), molecular function (MF), and KEGG signaling pathways most enriched for DEGs. Additionally, we performed Weighted
Gene Coexpression Network Analysis (WGCNA) and protein-to-protein interaction (PPI) network construction with 948
DEGs, from which one module was identified by WGCNA and three modules were identified by the PPI network. Subsequently,
we validated the expression of 52 hub genes from the PPI network with an independent set of HCC dataset stored in the Gene
Expression Profiling Interactive Analysis (GEPIA) database. Finally, seven potential key genes were identified by intersecting
with key modules from WGCNA, including 3 reported genes, namely, CDCA5, CENPH, and MCM7, and 4 novel genes, namely,
CDC6, CDC45, CDCA8, and MCM4, which are associated with nucleoplasm, cell cycle, DNA replication, and mitotic cell cycle.
The CDCA8 and stage of HCC were the independent factors associated with overall survival of HDV-associated HCC. All the
related findings of these genes can help gain a better understanding of the role of HDV in the underlying mechanism of HCC
carcinogenesis.

1. Introduction

Hepatocellular carcinoma (HCC) is the sixth most commonly
diagnosed cancer and the fourth leading cause of cancer-
related mortality globally [1, 2] and the second in China [3].
More than 80% of all HCC causes are associated with infection

with hepatitis B virus (HBV), hepatitis C virus (HCV), and
hepatitis delta virus (HDV) [4]. Approximately 292 million
people worldwide are chronically infected with HBV, which
causes liver injury that can progress to cirrhosis, resulting in
HCC, liver failure, and eventually death [5, 6]. The HDV is
known as the satellite of HBV and affects 15–20million people
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in the world [7]. Concurrent HBV and HDV infections signif-
icantly increase both the incidence and mortality of HCC
among patients with chronic hepatitis B (CHB) [8]. HDV is
a kind of defective RNA virus which uses HBV envelope pro-
tein for successful spread in hepatocytes [9]. Although the risk
of HCC is thought to be higher when a HBV-infected patient
is superinfected with HDV, the molecular mechanisms of car-
cinogenesis remain unclear [10]. Chronic hepatitis D (CHD)
is more severe than any other type of hepatitis, but its carcino-
genesis mechanism remains poorly understood. Additionally,
it has been found that the intrahepatic HBV DNA levels in
patients with HDV-associated HCC and non-HCC cirrhosis
are significantly reduced [11]. This phenomenon of HDV-
mediated inhibition of HBV replication suggests that the
effects of HDV are mediated through a unique molecular
mechanism.While HBV and HCV are both included in Inter-
national Agency for Research on Cancer (IARC) group 1 (high
evidence of carcinogenicity to humans), HDV was assigned
several years ago to group 3 (not sufficient evidence of carcino-
genicity) [12], due to inadequacy to support the contribution
of HDV to HBV-induced HCC. Due to the dependency of
HDV on HBV, there are still controversies regarding the
increased risk of HCC development in chronically HDV-
infected patients [4], and the available data on the particular
mechanism by which HDV contributes to HCC are sparse.
With the development of genomics and other “-omics” disci-
plines, substantial omics data from HCC specimens have been
accumulated [13]. Therefore, researchers have taken advan-
tage of gene ontology (GO) and signal pathway analysis tools
to identify and characterize many differentially expressed
genes (DEGs).

In the present study, the GSE55092 and GSE98383
mRNA expression profile datasets were retrieved from Gene
Expression Omnibus (GEO) online [14, 15]. And the RNA-
sequencing data of 371 HCC patients and their clinical data
were from the Cancer Genome Atlas (TCGA). We performed
DEG analysis between cancerous specimens of HBV-
associated HCC and HDV-associated HCC patients and
their respective paracancerous specimens using Linear
Models for Microarray Data (LIMMA) [16] and other pack-
ages implemented in R/Bioconductor [17]. We aimed to
investigate potential HDV carcinogenesis mechanisms by
PPI network, Gene Expression Profiling Interactive Analysis
(GEPIA), andWeighted Gene Coexpression Network Analy-
sis (WGCNA), particularly to screen and identify key genes
and pathways to determine their possible role in HCC
pathogenesis, and to help determine their mechanism of
inhibition of HBV replication and their effects in diagnosis,
treatment and prognosis.

2. Methods and Materials

2.1. Acquisition of Data and Preprocessing. The RNA-
sequencing data and clinical data of 371 HCC patients were
downloaded from TCGA (http://cancergenome.nih.gov/.
http://cancergenome.nih.gov/). The expression of genes was
represented by fragments per kilobase of exon per million
fragments mapped (FPKM). Microarray data were available
at the National Center for Biotechnology Information

(NCBI) Gene Expression Omnibus (GEO, https://www.ncbi
.nlm.nih.gov/geo/) database. The inclusion criteria for selec-
tion GEO datasets in this study were as follows: (1) hepato-
cellular carcinoma containing cancer and paracancer tissue;
(2) HBsAg positive at least 6 months with serum HBV
DNA positive; (3) anti-HDAg positive with serum HDV
RNA positive (applies only to filter HDV-associated HCC
dataset); and (4) sample size more than 10 with data unbi-
ased. The exclusion criteria were as follows: (1) the second
liver cancer, (2) HCV-related HCC, (3) dataset biased, and
(4) no paracancer tissue and carcinoma tissue present at the
same patients. We searched the GEO database using “Hepa-
titis D Virus,” “Hepatocellular Carcinoma,” and “Homo sapi-
ens” as keywords, and there were only 2 results, between
which only GSE98383 met our criteria for HDV-associated
HCC. Similarly, we searched the keywords “Hepatitis B
Virus,” “Hepatocellular Carcinoma,” and “Homo sapiens”
and obtained 581 search results. The flow chart of screening
HBV-associated HCC could be seen in Figure 1, and only
GSE55092 was suited for an in-depth study.

Microarray data GSE55092 [18] and GSE98383 [11] were
generated using the GPL570 Affymetrix HG-U133 Plus 2.0
Array platform, and we performed the analysis on the data
from whole liver tissue. GSE55092 contains 39 cancer speci-
mens and 81 paracancer specimens from 11 HBV-associated
HCC patients (average age = 57:7 ± 7:7 years; 10 male
patients and 1 female patient). GSE98383 contains 11 cancer
specimens and 24 paracancer specimens from 5 HDV-
associated HCC patients (average age = 57 ± 3 years, 5 male
patients). The comparison of baseline characteristics between
patients with HBV-associated HCC and HDV-associated
HCC is shown in Table 1.

We downloaded the GSE55092 and GSE98383 datasets,
normalized them by the Affy package of the R Bioconductor,
and then converted the gene expression profile at the probe
level into gene symbol level and removed the duplicated sym-
bols. When numerous probes were mapped to one gene, the
average value was defined as the expression level of that gene.
According to the description of the uploader, an unsuper-
vised multidimensional scaling (MDS) of all specimens
obtained from HBV-associated HCC patients showed a clear
separation between two distinct clusters that corresponded to
cancer areas and paracancerous areas. A similar separation
between two clusters that corresponded to cancerous areas
and paracancerous areas was observed for the specimens
from HDV-associated HCC patients. Therefore, all the data
are available for the identification of DEGs.

2.2. Identification of DEGs. DEG analysis refers to the identi-
fication of genes with significantly different expression levels
between two groups through multiple analysis modes [19].
We performed differential expression analysis using Bayes t
-statistics from the LIMMA implemented in the R Biocon-
ductor and corrected p values for multiple testing using the
Benjamini-Hochberg method [20]. We identified the DEGs
in primary cancerous specimens of HCC patients by compar-
ing them with paracancerous normal specimens of the same
HCC patients. The absolute value of log2-fold change (FC)
was set to ≥1.0, and a p value of <0.01 was used as the
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Figure 1: Flow chart of enrolled datasets and availability of datasets.

Table 1: Comparison of baseline characteristics between patients with HBV-associated HCC and HDV-associated HCC.

HBV-associated HCC HDV-associated HCC p

Patients 11 5 —

Age (years old) 57:7 ± 7:7 57 ± 3 0.849

Male (%) 10 [90.9] 5 [100] 1.000

ALT (U/L) 36:18 ± 17:8 87 ± 25 0.000

AST (U/L) 39:09 ± 17:0 82 ± 21 0.001

GGT (U/L) 93:9 ± 83:56 98 ± 22 0.917

PT (INR) 1:13 ± 0:14 1:4 ± 0 0.001

TB (mg/dL) 0:88 ± 0:47 2:3 ± 1:3 0.005

PLT (103/mL) 15:381 ± 9:373 101:4 ± 16:1 0.000

Liver pathology

Activity grade 5:75 ± 3:06 9:1 ± 1:1 0.034

Fibrosis stage 5:1 ± 1:56 6:0 ± 0:0 0.226

F5/F6 9 5

Tumor grade 0.107

G2 7 1

G3 3 4

G4 1 0

Tumor size 0.407

<2 cm 4 0

≥2 and ≤3 cm 4 3

>3 cm 3 2

Serum HDV RNA positive, no. 0 5 —

Serum HBV DNA positive, no. 11 5 —

ALT: alanine aminotransferase; AST: aspartate aminotransferase; GGT: γ-glutamyl transferase; TB: total bilirubin; PT: prothrombin time; PLT: Platelets.
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significance criteria, and genes that met these criteria were
used for further analysis. The final step is to use Venn dia-
grams to identify DEGs closely related to HDV-associated
HCC [21].

2.3. GO Enrichment and Pathway Analysis. DAVID program
(https://david.ncifcrf.gov/) [22] is a bioinformatics resource
comprising a biological database and a set of annotation
and analytical tool that intuitively integrates functional geno-
mic annotations with graphics. In this study, the DEGs were
submitted to DAVID for GO [23] and KEGG [24] enrich-
ment analyses, which included biological process (BP), cellu-
lar component (CC), molecular function (MF), and related
biological metabolic pathways. A p value < 0.05 was consid-
ered statistically significant.

2.4. Weighted Gene Coexpression Network Construction and
Module-Clinical Characteristic Associations. We compared
DEGs with the genes of 371 HCC patients downloaded from
TCGA website. Expression data of the matched genes from
TCGA were applied to find gene modules significantly asso-
ciated with clinical trait (stage of HCC) by WGCNA [25]. In
this analysis mode, the soft thresholding acts as the lowest
power based on the criterion of approximate scale-free topol-
ogy [26], and analogous modules would be merged together
due to the similarity. The heatmap of module-clinical
characteristic relationship could reveal modules significantly
associated with clinical characteristics.

2.5. Construction of PPI Networks and Module Analysis. The
visual protein-to-protein interaction (PPI) networks of DEGs
were predicted using the web resource Search Tool for the
Retrieval of Interacting Genes (STRING) [27] to search the
STRING database (https://string-db.org/), which contains
over 5,000 organisms as well as their over 24.6 million pro-
teins and over 2 billion interactions. We correlated the target
DEGs with the STRING database and set the significant
threshold to the highest confidence level (interaction score
≥ 0:900). Subsequently, we used Cytoscape [28], a software
to construct PPI networks and analyze highly interconnected
modules using the built-in Molecular Complex Detection
(MCODE) clustering algorithm. The parameters were set
by default except for the K-core value which was equal to 8.

2.6. Validation of Module Gene. First, we uploaded the poten-
tial genes identified by PPI-network analysis to GEPIA [29]
(http://gepia.cancer-pku.cn/, an online server containing
TCGA/GTEx datasets) to validate the gene expression con-
sistency between the microarray datasets (GSE55092 and
GSE98383) and TCGA/GTEx HCC dataset, setting the
threshold parameters as follows: |log2FC| cutoff ≥ 1:0 and p
value cutoff < 0.01. Afterwards, we performed the overall sur-
vival analysis as follows: we divided the patients in TCGA/G-
TEx dataset into high and low expression groups with the
TPM (transcripts per kilobase million) midvalue as a break-
point; a log-rank test was used to determine significance at
p < 0:05. Finally, we took the intersection of related genes
to the OS of HCC by GEPIA and genes contained in the
hub module obtained by WGCNA and got the key genes.

2.7. Univariate and Multivariate Cox Proportional Hazards
Model Analysis. We performed univariate and multivariate
Cox proportional hazards model analysis in patients from
TCGA, to find independent factors associated with the
overall survival of HCC.

3. Result

3.1. Comparison of Baseline Characteristics. GSE98383 was
the only dataset of HDV-associated HCC that met our cri-
teria, as to the screen of HBV-associated HCC dataset, overall
581 datasets were enrolled and screened for eligibility and 3
datasets met inclusion criteria. Of these 3 datasets, the data
processing platform of GSE55092 was GPL570, which was
the same with GSE98383, while GSE22058 and GSE94660
were different, so we took GSE55092 to stand for HBV-
associated HCC for study. The number of datasets and rea-
sons for exclusion are shown in Figure 1. The HDV-
associated HCC patients in GSE98383 had higher levels of
alanine aminotransferase (ALT), aspartate aminotransferase
(AST), total bilirubin (TB), prothrombin time (PT), platelet
counts (PLT), and inflammatory activity grade than the
HBV-associated HCC patients in GSE55092, which is consis-
tent with the characteristics of CHD of the most severe hep-
atitis. On the other hand, there was no significant difference
in sex, age, tumor grade, and tumor size between the two
groups.

3.2. Identification of DEGs. We identified DEGs from the
microarray GSE55092 and GSE98383 datasets using the
LIMMA package, setting |log2-FC| to ≥1.0 and adjusted p
value to <0.01 as the criteria. By comparing the cancerous
and paracancerous specimens in GSE55092 up to 1,375,
DEGs were identified, comprising 518 upregulated and 857
downregulated genes (Table S1). A similar comparison in
GSE98383 contains 1,605 DEGs, including 592 upregulated
and 1,013 downregulated genes (Table S1). Volcano plots of
the GSE55092 and GSE98383 microarrays are shown in
Figures 2(a) and 2(b), respectively. We used Venn diagrams
to determine the DEGs closely related to HDV-associated
HCC (Figure 2(c)), and 948 DEGs (373 upregulated and
582 downregulated) were identified and selected for further
analysis (Table S2).

3.3. GO Enrichment and Pathway Analysis. In order to
further screen HDV-associated HCC potential target genes
among these DEGs, GO and pathway analysis were
performed on HDV-associated HCC DEGs using p value <
0.05 as the threshold (Figure 2(d)). The results are presented
in Figure 2(d) and show the TOP-7 GO terms (BP, CC, and
MF) and KEGG pathway terms significantly enriched in the
DEGs. Additionally, the TOP-5 annotations of the DEGs
are shown in Table 2. In the BP series, the DEGs were mostly
enriched for genes related to the cellular response to chemical
stimulus and organic substance, defense response, and cell
adhesion. In the CC series, the DEGs were primarily enriched
for genes involved in cell surface, side of membrane,
membrane-bounded vesicle, external side of plasma mem-
brane, and proteinaceous extracellular matrix. In the MF
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series, the DEGs were predominantly enriched for genes
associated with glycoprotein binding, molecular function
regulator, cytokine binding, heparin binding, and glycosami-
noglycan binding. In the KEGG pathway series, the enrich-
ment for DEGs was mainly in the chemokine signaling
pathway, Staphylococcus aureus infection, transcriptional
misregulation in cancer, focal adhesion, and leukocyte
transendothelial migration.

3.4. Weighted Gene Coexpression Network Construction and
Module-Clinical Characteristics. We compared 948 DEGs
with the genes of 371 samples downloaded from TCGA data-
sets, matched a total of 883 genes, and performed WGCNA.
As shown in Figures 3(a), 3(b), and 3(c), the soft thresholding
power β was set to 3, and MEblue and MEred were merged
together due to the similarity (the height = 0:25). Then, we
found five coexpressed gene modules. The MEturquoise

contained the most DEGs with the number of 320. The five
modules and contents are stored in supplementary material
Table S3. Next, we further analyzed these modules with
clinical characteristics (sex, event, OS, stage, grade, and
age). Obviously, the MEturquoise module was significantly
associated with event (correlation coefficients ðrÞ = 0:19, p
< 0:001), OS (r = −0:21, p < 0:001), stage (r = 0:23, p <
0:001), grade (r = 0:24, p < 0:001), and age (r = −0:14, p =
0:01) (Figure 3(d)).

3.5. Construction of PPI Networks and Gene Module Analysis.
We uploaded the DEGs onto the STRING online tool and
analyzed them with the Cytoscape software. We then selected
353 nodes and 939 edges with the highest confidence
(scores > 0:900) to construct the PPI networks
(Figure 4(a)). Then, the MCODE plugin filtered out three
important gene modules. Genes within module 1 andmodule
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plot of DEGs related to HBV-associated HCC; the DEGs with the top-10 P value differences are shown in the plot. (b) Volcano plot of DEGs
related to HDV-associated HCC; the DEGs with the top-10 P value differences are shown in the plot. (c) The Venn diagram shows the
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2 are comprised of downregulated genes, while module 3 is
comprised of upregulated genes, except for PPP2R5C and
LONRF1. Module 1 contains 15 nodes and 105 edges
(Figure 4(b)), which are mainly related to G protein-
coupled receptor signaling pathway (BP), plasma membrane
(CC), G protein-coupled receptor binding (MF), and chemo-
kine signaling pathway (KEGG) (Table 3). Module 2 contains
12 nodes and 66 edges (Figure 4(c)), which are primarily
related to type I interferon signaling pathway (BP), cytosol
(CC), 2′-5′-oligoadenylate synthetase activity (MF), and
hepatitis C (KEGG) (Table 4). Module 3 contains 25 nodes
and 94 edges (Figure 4(d)), which are predominantly related
to the mitotic cell cycle process (BP), chromosomal part
(CC), DNA replication origin binding (MF), and cell cycle
(KEGG) (Table 5).

3.6. Validation of Module Genes. We compared the gene
expression changes between the three module genes of
HDV-associated HCC (a total of 52 genes) and the validation
HCC (TCGA/GTEx) datasets in the GEPIA website to verify
whether their expression in both datasets is consistent. We
noticed that CCL21 and FPR1 in module 1 as well as XAF1
in module 2 were downregulated in tumors compared to nor-
mal specimens in the HCC datasets, which is in accordance
with the HDV-associated HCC specimens. However, IFI6,
IFI27, and ISG15 in module 2, which were downregulated
in cancerous specimens compared to paracancerous normal
specimens, were conversely expressed in HCC datasets. The

genes in module 3, including CDC6, CDC45, CDCA5,
CDCA8, CENPH,MCM4,MCM7, and TCEB1, were upregu-
lated in tumor compared to normal specimens in the HCC
datasets, which is consistent with the HDV-associated HCC
patients. All the box plots comparing gene expression are
shown in Figure 5(a). For further verification, 11 genes whose
gene expression trends are consistent with HCC datasets
were selected and used to conduct overall survival analysis.
In Figure 5(b), there were the upregulated genes (CDC6,
CDC45, CDCA5, CDCA8, CENPH, MCM4, MCM7, and
TCEB1) which are associated with a lower survival rate in
the high expression group than in the low expression group.

The reason for excluding CCL21, FPR1, IFI6, IFI27,
ISG15, and XAF1 is that their p value did not comply with
the standards or the opposite gene expression. All the 8
retained potential genes are related to the nucleoplasm, and
most of them are related to the mitotic cell cycle process, cell
cycle, and DNA replication (Figure 5(c)). Taken together, the
intersection of the above validated 8 genes and 320 genes in
MEturquoise module by WGCNA, the potential 7 key genes
(CDC6, CDC45, CDCA5, CDCA8, CENPH, MCM4, and
MCM7) were found (Figure 5(d)).

3.7. Identification of Independent Factors of Overall Survival
of HCC.We performed the univariate analysis in 371 patients
from TCGA and found that CDCA8, stage, CDC45, CDC6,
CDCA5, MCM4, CENPH, MCM7, sex, and age were signifi-
cantly associated with OS of HCC. The multivariate Cox

Table 2: The top five annotations in GO and KEGG enrichment analysis of the DEGs.

Category Term Count p value

GOTERM_BP_FAT GO:0070887~cellular response to chemical stimulus 208 4:96E − 14
GOTERM_BP_FAT GO:0071310~cellular response to organic substance 180 7:46E − 14
GOTERM_BP_FAT GO:0010033~response to organic substance 210 7:89E − 12
GOTERM_BP_FAT GO:0006952~defense response 129 9:24E − 11
GOTERM_BP_FAT GO:0007155~cell adhesion 139 1:95E − 10
GOTERM_CC_FAT GO:0009986~cell surface 69 1:59E − 06
GOTERM_CC_FAT GO:0098552~side of membrane 43 4:16E − 05
GOTERM_CC_FAT GO:0031988~membrane-bounded vesicle 225 4:83E − 05
GOTERM_CC_FAT GO:0005578~proteinaceous extracellular matrix 37 4:95E − 05
GOTERM_CC_FAT GO:0009897~external side of plasma membrane 28 8:75E − 05
GOTERM_MF_FAT GO:0001948~glycoprotein binding 16 9:68E − 05
GOTERM_MF_FAT GO:0098772~molecular function regulator 97 1:11E − 04
GOTERM_MF_FAT GO:0019955~cytokine binding 15 1:44E − 04
GOTERM_MF_FAT GO:0008201~heparin binding 20 2:02E − 04
GOTERM_MF_FAT GO:0005539~glycosaminoglycan binding 23 3:53E − 04
KEGG_PATHWAY hsa04062: Chemokine signaling pathway 25 1:16E − 04
KEGG_PATHWAY hsa05150: Staphylococcus aureus infection 12 1:73E − 04
KEGG_PATHWAY hsa05202: Transcriptional misregulation in cancer 22 4:38E − 04
KEGG_PATHWAY hsa04510: Focal adhesion 25 5:49E − 04
KEGG_PATHWAY hsa04670: Leukocyte transendothelial migration 17 6:91E − 04
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proportional hazards model showed that CDCA8 and stage
of HCC were independent factors of OS of HCC (Table 6).

4. Discussion

As the virus causing the most severe type of hepatitis, HDV
affects 15-20 million people worldwide, but its specific path-
ogenic mechanism remains unclear. Accordingly, we under-
took to find potential genes and pathways involved in the
pathogenesis of this disease through text mining to help
explain the underlying carcinogenic mechanism of HDV as
well as the HBV inhibitory mechanism.

In this study, we compared cancerous and paracancerous
specimens of patients suffering from HBV or HDV-
associated HCC with the aim of identifying potential genes
closely related to HDV-associated HCC. The study identified
373 upregulated DEGs and 582 downregulated DEGs. These
DEGs were subjected to GO and KEGG annotation and
enrichment analyses. In addition, we constructed PPI net-
works and sorted out 353 nodes with 939 edges, from which
the three most significant modules were selected and 52 cen-
tral nodes/genes were selected for validation using the

GEPIA database. In the module confirmed by the WGCNA
that was significantly associated with clinical features includ-
ing event, OS, stage, grade, and age, only CDC6, CDC45,
CDCA5, CDCA8, CENPH, MCM4, and MCM7 were consis-
tent with genes identified by the PPI network, which were
found to be significantly correlated with nucleoplasm, cell
cycle, DNA replication, and mitotic cell cycle. Univariate
and multivariate Cox proportional hazards model analysis
showed the stage of HCC and CDCA8 are the independent
factors associated with the OS of HCC.

Cell division cycle 6 (CDC6) is thought to be significantly
associated with pancreatic cancer and colorectal cancer
(CRC) [30]. It has a pivotal role in regulating the process of
DNA replication as well as tumorigenesis; its overexpression
could interfere with the expression of tumor suppressor
genes (INK4/ARF) through the mechanism of epigenetic
modification [31]. During the S phase of DNA replication
in eukaryotic cells, cell division cycle 45 (CDC45) is an essen-
tial component of CMG (CDC45–MCM–GINS) helicase.
CDC45 acts as a hubprotein, significantly upregulated in can-
cerous tissues from CRC and non-small-cell lung cancer
(NSCLC) patients, and promotes tumor progression [32]. It
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Figure 3: The processing steps of WGCNA. (a) Analysis of the soft thresholding power (β = 3). (b) MEblue and MEred merged together due
to the similarity (the height = 0:25). (c) Gene dendrogram and module colors; the MEturquoise contained the most DEGs (n = 320). (d)
Heatmap of module-trait relationships. The MEturquoise was the most significantly associated with event, OS, stage, grade, and age.
WGCNA: Weighted Gene Coexpression Network Analysis.
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Figure 4: PPI networks and the top-3 significant modules (module 1-3). (a) PPI networks constructed with the DEGs closely related to HDV-
associated HCC. The red border indicates upregulation, the blue border indicates downregulation, the pink core represents module 1, the
green core represents module 2, the dark blue core represents module 3, and the size of the circle represents the relative expression level of
the genes; (b) module 1, the DEGs in module 1 are all downregulated; (c) module 2, the DEGs in module 2 are all downregulated; (d)
module 3, the DEGs in module 3 are upregulated except for PPP2R5C and LONRF1. PPI: protein-to-protein interaction; DEGs:
differentially expressed genes.

Table 3: Functional and pathway enrichment of module 1 genes.

Category Term Count p value Genes

GOTERM_
BP_FAT

G protein-coupled receptor
signaling pathway

14 2:79E − 13 ADCY7, ADRA2A, CCL21, CCL4, CCR2, CCR7, CXCL16, CXCL5,
CXCR4, FPR1, GNG2, P2RY12, P2RY14, PNOC

GOTERM_
BP_FAT

Cell chemotaxis 8 2:16E − 10 CCL21, CCL4, CCR2, CCR7, CXCL16, CXCL5, CXCR4, FPR1

GOTERM_
BP_FAT

Chemokine-mediated
signaling pathway

6 6:75E − 09 CCL21, CCL4, CCR2, CCR7, CXCL5, CXCR4

GOTERM_
CC_FAT

Plasma membrane 11 0.0205
ADCY7, ADRA2A, CCR2, CCR7, CXCL16, CXCR4, FPR1, GNG2,

P2RY12, P2RY14, PNOC

GOTERM_
CC_FAT

External side of plasma
membrane

3 0.0205 CCR2, CCR7, P2RY12

GOTERM_
CC_FAT

Side of membrane 4 0.0205 CCR2, CCR7, GNG2, P2RY12

GOTERM_
MF_FAT

G protein-coupled receptor
binding

7 7:55E − 08 ADRA2A, CCL21, CCL4, CCR2, CXCL16, CXCL5, PNOC

GOTERM_
MF_FAT

Chemokine receptor binding 5 7:55E − 08 CCL21, CCL4, CCR2, CXCL16, CXCL5

GOTERM_
MF_FAT

Chemokine activity 4 2:30E − 06 CCL21, CCL4, CXCL16, CXCL5

KEGG_
PATHWAY

Chemokine signaling pathway 10 1:15E − 15 ADCY7, CCL21, CCL4, CCR2, CCR7, CXCL16, CXCL5, CXCR4,
GNB4, GNG2

KEGG_
PATHWAY

Cytokine-cytokine receptor
interaction

7 1:67E − 08 CCL21, CCL4, CCR2, CCR7, CXCL16, CXCL5, CXCR4

KEGG_
PATHWAY

Circadian entrainment 3 0.00092 ADCY7, GNB4, GNG2
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Table 4: Functional and pathway enrichment of module 2 genes.

Category Term Count p value Genes

GOTERM_BP_
FAT

Type I interferon signaling pathway 12 2:85E − 27 BST2, IFI27, IFI6, IFIT1, IRF7, IRF9, ISG15, MX1, MX2,
OAS1, OAS2, XAF1

GOTERM_BP_
FAT

Defense response to virus 9 1:15E − 14 BST2, IFIT1, IRF7, IRF9, ISG15, MX1, MX2, OAS1, OAS2

GOTERM_BP_
FAT

Negative regulation of viral genome
replication

5 3:48E − 09 BST2, IFIT1, ISG15, MX1, OAS1

GOTERM_CC_
FAT

Cytosol 10 0.004
BST2, IFIT1, IRF7, IRF9, ISG15, MX1, MX2, OAS1, OAS2,

XAF1

GOTERM_CC_
FAT

Mitochondrion 6 0.0067 IFI27, IFI6, MX1, MX2, OAS1, XAF1

GOTERM_CC_
FAT

Cytoplasmic part 12 0.0067
BST2, IFI27, IFI6, IFIT1, IRF7, IRF9, ISG15, MX1, MX2,

OAS1, OAS2, XAF1

GOTERM_MF_
FAT

2′-5′-Oligoadenylate synthetase
activity

2 0.00028 OAS1, OAS2

GOTERM_MF_
FAT

Double-stranded RNA binding 2 0.0229 OAS1, OAS2

KEGG_
PATHWAY

Hepatitis C 5 1:72E − 07 IFIT1, IRF7, IRF9, OAS1, OAS2

KEGG_
PATHWAY

Measles 5 1:72E − 07 IRF7, IRF9, MX1, OAS1, OAS2

KEGG_
PATHWAY

Influenza A 5 1:92E − 07 IRF7, IRF9, MX1, OAS1, OAS2

Table 5: Functional and pathway enrichment of module 3 genes.

Category Term Count p value Genes

GOTERM_
BP_FAT

Mitotic cell cycle process 16 2:69E − 16 CDC45, CDC6, CDCA5, CDCA8, CENPE, DBF4, ESPL1, KIF18A, MCM10,
MCM4, MCM7, ORC6, POLE2, PPP2R5C, SKP2, ZWILCH

GOTERM_
BP_FAT

Cell cycle 17 6:32E − 13 CDC45, CDC6, CDCA5, CDCA8, CENPE, DBF4, ESPL1, KIF18A, KLHL13,
MCM10, MCM4, MCM7, ORC6, POLE2, PPP2R5C, SKP2, ZWILCH

GOTERM_
BP_FAT

G1/S transition of mitotic
cell cycle

9 4:80E − 12 CDC45, CDC6, DBF4, MCM10, MCM4, MCM7, ORC6, POLE2, SKP2

GOTERM_
CC_FAT

Chromosomal part 13 5:18E − 10 CDC45, CDCA5, CDCA8, CENPE, CENPH, CENPI, KIF18A, MCM10,
MCM7, ORC6, POLE2, PPP2R5C, ZWILCH

GOTERM_
CC_FAT

Chromosome,
centromeric region

8 3:39E − 09 CDCA5, CDCA8, CENPE, CENPH, CENPI, KIF18A, PPP2R5C, ZWILCH

GOTERM_
CC_FAT

Intracellular
nonmembrane-bounded

organelle
18 1:05E − 06

CDC45, CDC6, CDCA5, CDCA8, CENPE, CENPH, CENPI, ESPL1, KCTD6,
KIF18A, MCM10, MCM7, ORC6, POLE2, PPP2R5C, RNF213, SKP2,

ZWILCH

GOTERM_
MF_FAT

DNA replication origin
binding

3 0.00011 CDC45, MCM10, ORC6

GOTERM_
MF_FAT

Single-stranded DNA
binding

4 0.00037 CDC45, MCM10, MCM4, MCM7

GOTERM_
MF_FAT

DNA helicase activity 3 0.00069 CDC45, MCM4, MCM7

KEGG_
PATHWAY

Cell cycle 8 8:55E − 11 CDC45, CDC6, DBF4, ESPL1, MCM4, MCM7, ORC6, SKP2

KEGG_
PATHWAY

DNA replication 3 0.00022 MCM4, MCM7, POLE2

KEGG_
PATHWAY

Ubiquitin-mediated
proteolysis

4 0.00024 KLHL13, SKP2, TCEB1, TRIM37
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is established that the MCM4/6/7 (minichromosomemainte-
nance complex component 4/6/7) hexamer complex acts as a
DNA helicase. Additionally, in endometrial cancer and skin
cancer studies, it was found that MCM4mutations may affect

the interaction with MCM7, thereby disrupting the stability
of the MCM4/6/7 complex [33]. In addition, MCM4 is also
a member of significant predictors of poor prognosis in
CRC patients [34]. Moreover, MCM7 is also a promising
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Figure 5: Validation of the expression data and survival curve of hub genes from the 3 modules using the GEPIA database and functional and
pathway enrichment analysis. (a) The box plots that verify whether the expression of these DEGs is consistent with that in the LIHC datasets.
Among the downregulated genes, CCL21 and FPR1 (module 1) as well as XAF1 (module 2) are consistent with the HCC datasets, while IFI6,
IFI27, and ISG15 (module 2) are not. All 8 upregulated genes (module 3) are consistent with the LIHC datasets. (b) The genes are associated
with overall survival whose expression is consistent with that in the LIHC datasets. All 8 upregulated genes are from module 3. (c) The chord
diagram showing GO terms and KEGG pathway enrichment with the 8 hub genes involved. (d) The intersection of these 8 genes from PPI
network analysis and 320 genes contained in module MEturquoise obtained by WGCNA, 7 potential key genes in the middle part. HCC:
hepatocellular carcinoma; GO: gene ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; BP: biological process; CC: cellular
component; MF: molecular function; PPI: protein-to-protein interaction; WGCNA: Weighted Gene Coexpression Network Analysis.
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biomarker for early diagnosis of gastric cancer and even a
predictor of meningioma recurrence after surgery [35, 36].
Another study found that high expression of MCM7 may
be involved in the progression of HCC through the MCM7-
cyclin D1 pathway, and MCM7 may serve as a prognostic
marker for patients with HCC [37]. The cell division cycle-
associated protein 5 (CDCA5) is a member of the CDCA
family that comprises CDCA1-8. It plays a crucial role as a
regulator of sister-chromatid cohesion and separation during
cell division, and its upregulation has been shown to be asso-
ciated with various cancers, including breast cancer, esopha-
geal squamous cell carcinoma, CRC, and HCC [38, 39]. Also,
a study found that the activation of the ERK and AKT path-
ways may be involved in the regulation of HCC cell prolifer-
ation by CDCA45 [39]. CDCA8 is an essential regulator of
mitosis, and its overexpression is significantly associated with
bladder cancer, cutaneous melanoma, and the progression
and prognosis of breast cancer [40, 41]. Centromere protein
H (CENPH) is considered to be an essential part of the active
centromere complex, and its overexpression is highly related
to poor prognosis in renal cell carcinoma, nasopharyngeal
carcinoma, CRC, and HCC [42, 43]. Another study found
that CENPH may promote the proliferation of HCC through
the mitochondrial apoptosis pathway [43].

Most of the abovementioned genes are significantly asso-
ciated with the cell cycle and DNA replication, and their
overexpression may affect the replication of HBV DNA,
thereby promoting the unique phenomenon of HDV inhibits
HBV replication. All the findings related to these genes may
also help us understand the mechanisms of HDV-induced
liver injury and HCC. In the future, we will further verify
those genes’ function by performing animals, cells, and clin-
ical trials.

5. Conclusions

In summary, 7 potential candidate genes closely related to
HDV-associated HCC were identified in this study. Through

comparative analysis with previous studies, these genes were
found to be involved in many pathways related to tumorigen-
esis which provided clues to elucidate the mechanism of hep-
atitis D virus-induced HCC or its unique molecular
mechanism in the inhibition of HBV replication. However,
additional in-depth molecular biological research on these
candidate genes closely related to HDV-associated HCC is
necessary to confirm their functions.
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Table S1: DEGs from microarray datasets GSE55092 and
GSE98383. Table S2: 948 DEGs related to HDV-associated
HCC including 373 upregulated and 582 downregulated

Table 6: Univariate and Multivariate Cox proportional hazards model analysis of overall survival of HCC.

Variables
Univariate analysis Multivariate analysis

HR 95% CI p value HR 95% CI p value

CDCA8 1.11 1.08-1.15 <0.001 1.10 1.06-1.14 <0.001
Stage I <0.001 0.019

Stage II 1.43 0.88-2.34 0.151 1.23 0.75-2.02 0.416

Stage IIIA 2.68 1.70-4.21 <0.001 2.11 1.31-3.39 0.002

Stage IIIB 2.87 1.02-8.04 0.045 1.84 0.62-5.44 0.273

CDC45 1.13 1.07-1.19 <0.001
CDC6 1.10 1.05-1.15 <0.001
CDCA5 1.09 1.05-1.13 <0.001
MCM4 1.06 1.04-1.09 <0.001
CENPH 1.18 1.08-1.28 <0.001
MCM7 1.01 1.00-1.01 0.029

Gender (F vs. M) 0.82 0.57-1.16 0.257

Age (years) 1.01 0.99-1.02 0.403

F: female; M: male.
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genes. Table S3: the five modules and contents obtained by
WGCNA. (Supplementary Materials)
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