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Background. Clear cell renal cell carcinoma (ccRCC) is the most common renal malignant tumor. Preoperative imaging boasts
advantages in diagnosing and choosing treatment methods for ccRCC. Purpose. This study is aimed at building models based
on R.E.N.A.L. nephrometry score (RNS) and CT texture analysis (CTTA) to estimate the Fuhrman grade of ccRCC and
comparing the advantages and disadvantages of the two models. Materials and Methods. 143 patients with pathologically
confirmed ccRCC were enrolled. All patients were stratified into Fuhrman low-grade and high-grade groups with complete CT
data and R.E.N.A.L. nephrometry scores. CTTA features were extracted from the ROI delineated at the largest tumor level, and
RNS and CTTA features were included in the logistic regression model, respectively. Results. RNS model constructed based on
multivariate logistic regression analysis showed that 3 pts for R-scores, 2 pts for E-scores, and 3 pts for L-scores were
significant indicators to predict high-grade ccRCC, the AUC of RNS model was 0.911, and the sensitivity and specificity were
71.11% and 83.67%, respectively. The CTTA-model confirmed energy, kurtosis, and entropy as independent predictive factors,
and the AUC of CTTA model was 0.941, with an optimal sensitivity and specificity of 84.44% and 93.88%. Conclusions.
R.E.N.A.L. nephrometry score has a certain provocative effect on the Fuhrman pathological grading of ccRCC. As a potential
emerging technology, CTTA is expected to replace R.E.N.A.L. nephrometry score in evaluating patients’ Fuhrman
classification, and this approach might become an available method for assisting clinicians in choosing appropriate operation.

1. Introduction

Renal cell carcinoma (RCC) is the most common renal
malignant tumor, originating from the renal parenchymal
urinary epithelial system and accounting for 80%–90% of
primary renal malignant tumors. Recently, a global report
about RCC has suggested that the morbidity and mortality
rates of RCC are increasing by year [1]. As compared with
other subtypes of RCC, clear cell renal cell carcinoma
(ccRCC) is the most common subtype of RCC, which
accounts for 70%-80% of RCC [1, 2].

Prognostic assessment of cancers is one of core clinical
mission, especially to ccRCC, which is a heterogeneous dis-
ease with poor prognosis [3]; tumor grading is a key prog-

nostic factor with the increasing appreciation [4]. Fuhrman
classification scheme was widely used in the pathological
grading of RCC and was one of the main factors suggesting
affecting the prognosis of RCC. This pathological grading
system was originally proposed by Fuhrman et al. [5], who
mainly classified tumor cells into four grades based on the
size of the nucleus and the morphology of the nucleoli. Pre-
vious studies identified the prognosis of Fuhrman low-grade
(Fuhrman grades I or II) ccRCC patients is relatively better
than Fuhrman high-grade patients, the safety of partial
nephrectomy is higher, and the incidence of postoperative
complications is lower [6]. However, in high-grade
(Fuhrman grades III or IV) ccRCC patients, the situation is
reversed, and the appropriate treatment options available
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are different. Many studies have shown that the traditional
four-grade classification system can be simplified into a
two-grade system of a low-grade group and high-grade
group [7, 8]. With this new approach, the accuracy of the
evaluation method is unchanged, but the consistency is
higher. However, since Fuhrman classification is a patholog-
ical grading standard usually only be obtained through post-
operative pathology, how we can obtain the patients’
Fuhrman classification in a timely and effective manner
before treatment is still a problem that we need to address.

As a common way to gather clinical evidence, preopera-
tive imaging plays a decisive role in the diagnosis and clinical
treatment of RCC. At present, clinicians and researchers
have proposed more than 10-related scoring methods in
the literature, the first-generation scoring system, including
R.E.N.A.L. nephrometry score (RNS), the PADUA scoring
system, and the C-index (CI) system are widely used [9].
RNS was first proposed by Kutikov and Uzzo [10] and is a
preoperative anatomical evaluation method for assessing
renal tumors based on image data. The indicators are rela-
tively objective, and the measurement stability is strong
and robust. Five scoring items compose this system and
can objectively evaluate the surgical difficulty of renal
tumors. Lesions with a final score of four to six points
(pts) are of a low complexity, tumors of seven to nine pts
are of moderate complexity, and those of 10 to 12 pts are
considered to be highly complex; based on the score, clini-
cians can choose the most reasonable surgical method and
treatment in each case [6].

On the other hand, as a “radiomics” method for medical
image interpretation, CT texture analysis (CTTA) can effec-
tively describe the spatial distribution of image gray inten-
sity. It has become a promising technology for evaluating
tumor heterogeneity and predicting treatment response
and prognosis. The image information obtained by texture
analysis cannot be recognized by naked eyes [11, 12]. In
CTTA, the feature that quantitatively describes the distribu-
tion of pixel signal intensity in the target area is called first-
order texture feature, also known as histogram feature.
Previous studies have shown that the first-order texture
feature of CCTA is related to clear cell histologic findings
of RCC and can predict the time of disease recurrence and
death due to disease [13]. Studies have shown that CT or
MRI texture analysis can distinguish between ccRCC and
non-ccRCC based on the extracted texture features [14,
15]. Additionally, some studies have exhibited that texture
parameters such as entropy are related to the Fuhrman grade
of RCC and TNM stage [14, 16, 17]. Thus, this study is
aimed at building models based on R.E.N.A.L. nephrometry
score and CTTA, sought to estimate the Fuhrman grade of
ccRCC by the two models, and comparing the pros and cons
of the two methods.

2. Materials and Methods

2.1. Patient Population. This study was a single-center retro-
spective study and approved by the Medical Ethics Commit-
tee of the Second Affiliated Hospital of Harbin Medical
University, and due to the retrospective character of this

study, the informed consent was waived. From January
2008 to December 2017, this study collected a total of
182 consecutive patients suspected ccRCC by dynamic
contrast-enhanced CT at our hospital. Cases were included
if meeting the following criteria: (1) complete preoperative
dynamic contrast-enhanced CT images, including cross-
sectional image slices and coronal and sagittal MRPs, clearly
showed lesion boundaries; (2) patients were confirmed surgi-
cal pathology with single-pathotype ccRCC, and the location
of tumors was unilateral and solitary; (3) without distant
metastasis or renal dysplasia. A total of 39 patients were
excluded, including 16 patients with other organ or tissue
metastasis, five patients lost follow-up after dynamic
contrast-enhanced CT, and surgical pathology showed 18
patients’ tumors were mixed-pathotype ccRCC or other
pathotypes RCC. Finally, according to the 7th Edition of
the AJCC cancer staging manual, we stratified Fuhrman
grade I and II as low-grade groups (LGG) and Fuhrman
grade III and III as high-grade group (HGG). Figure 1 pre-
sents the patient recruitment process.

2.2. CT Scanning Protocol. Routine dynamic CT was per-
formed on a dual source multidetector (64-section) row Def-
inition Flash® CT scanner (Siemens, Munich, Germany). All
patients fasted 8 hours and drank about 1 L of water in 30
minutes before scanning and scanned abdomen, in the
supine position injecting nonionic contrast material
(Iohexol, 400mg/dl Iodine, calculated as 1.5ml per kilogram
of body weight) at the rate of 4ml/s pumped through a
double-barrel high-pressure syringe (Oelrich, Germany)
[18]. The scanning protocol began about 5 seconds after
the injection of the contrast agent. The scan time in the
corticomedullary phase was 25 seconds and that in the
nephrographic phase was 60 seconds; 120 seconds later,
the excretory phase scan was initiated. The scanning param-
eters were the following, slice thickness 5mm, layer spacing
5.0mm, pitch 1.2, reconstruction interval 1.25mm, tube cur-
rent 300mA, and tube voltage 120 kV.

2.3. Image Analysis. The R.E.N.A.L. nephrometry scores on
CT were determined subjectively by a radiologist with 10
years of experience in abdominal imaging, based on the
R.E.N.A.L. nephrometry score standard [10]. Whether each
patient has tumor blood vessels, select the lesion with the
largest diameter. The images of all included cases were eval-
uated according to Table 1. As shown in Figures 2–4, the
maximum diameter of the tumor R-score, E-scores (the con-
vexity of the tumor), N-scores (the positioning of the tumor
relative to the renal collecting system or sinus), A-scores
(measured by the distance between the medial side of the
tumor and the renal system or renal sinus fat the position
of the tumor in the axial position), and L-scores (the rela-
tionship between the tumor and the renal polar line). The
R-score, E-score, and N-scores indicators in particular
needed to be comprehensively evaluated in the axial, coro-
nary, and sagittal positions. Moreover, imaging features such
as necrosis and calcification in the lesions were observed and
recorded. All data were measured triple at different times by
the radiologist and averaged.
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2.4. CT Texture Feature Extraction. The digital imaging and
communication (DICOM) files of included patients were
exported by the image archiving and communication system
(PACS) and anonymized. The images were read using the
open-source imaging postprocessing software 3D slicer soft-
ware (version 4.11.20210226), and a radiologist with 20
years of experience in abdominal imaging (HJJ) draws a
region of interest (ROI) along the edge of the tumor on the
largest level of the axial tumor and blinded to pathology.
The texture features were extracted by a 3D slicer extension
(SlicerRadiomics). Based on the ROI, 18 first-order features

were obtained. In order to reduce the impact of texture anal-
ysis feature collinearity on the subsequent model construc-
tion, we use Spearman rank correlation to remove the
features with high correlation (coefficient ∣ρ ∣ ≥0:9).

2.5. Statistical Analysis. The Statistical Package for the Social
Sciences (SPSS) version 20.0 software program (IBM Corp.,
Armonk, NY, USA) and R software (version 4.0.4, https://
www.r-project.org/) was used for statistical analysis. Mea-
surement data were expressed as x ̅±s. The chi-squared test
was used to compare the differences in RNS and gender
between the Fuhrman high- and low-grade groups. The stu-
dent’s t-test was performed to assess the differences in age
and every item of RNS between the high-grade and low-
grade groups. Multivariate logistic regression analysis was
used to distinguish two groups with respect to statistical sig-
nificance of texture features and a scoring item. The receiver
operating characteristic (ROC) curve was drawn to compare
multiparameter regression models, scores, and the diagnos-
tic value of each single scoring item and to assess sensitivity
and specificity of the total scoring item by threshold analysis.
DeLong testing was used to compare area under the curve
(AUC) between RNS and texture analysis models. The
statistical methods used were selected according to the
“Guidelines for reporting of statistics for clinical research
in urology” [19]. Statistical results were statistically signifi-
cant according to p < 0:05.

3. Results

3.1. Clinical and Pathological Characteristics of Patients.
Finally, 143 patients were enrolled in the study, and the
mean age was 58.4 years in the low-grade group and 60.3
year in the high-grade group. Males had a preponderance
in both groups (63.3% and 73.3%, respectively). A summary
of patient demographics, T stage, and tumor distribution is

182 Patients underwent dynamic
contrast-enhanced CT with renal lesions
between january 2008 to december 2017

16 Patients with distant metastasis did
not receive surgical resection

5 Patients lost follow-up a�er
dynamic contrast-enhanced CT

166 Patients received surgical resection

Low-grade groups

Fuhrman grade I (n = 17) Fuhrman grade II (n = 81) Fuhrman grade III (n = 40) Fuhrman grade IV (n = 5)

High-grade groups

143 Patients eligible

Surgical pathology showed 18 patients’
tumors were mixed-pathotype ccRCC or

other pathotypes RCC

Figure 1: Patient selection process.

Table 1: Clinical and pathological characteristics of patients.

Variables Low-grade group1 High-grade group1 p value2

Age 58:4 ± 14:5 60:3 ± 13:4 0.442

Gender

Male 62 (63.3%) 33 (73.3%) 0.236

Female 36 (36.7%) 12 (26.7%)

Necrosis

Yes 76 (77.6%) 41 (91.1%) 0.051

No 22 (22.4%) 4 (8.9%)

Calcification

Yes 11 (11.2%) 8 (17.8%) 0.284

No 87 (88.8%) 37 (82.2%)

T stage

pT1a 21 (21.43%) 13 (28.89%) 0.510

pT1b 53 (54.08%) 24 (53.33%)

pT2a 24 (24.49%) 8 (17.78%)

Kidney 1.000

Left 42 (42.86%) 20 (44.44%)

Right 56 (57.14%) 25 (55.56%)
1n (%). 2Pearson’s Chi-squared test; Fisher’s exact test.
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(a) (b)

Figure 2: (a) shows a left kidney tumor (E − scores = 1), with the white dotted kidney outline as the boundary, where the tumor is mostly
located outside the kidney. (b) presents a right kidney tumor E − scores = 2, with the black dotted kidney outline as the boundary, where the
tumor is mostly located inside the kidney but a small part is still located outside the kidney.

(a) (b)

(c)

Figure 3: The solid line is parallel to the anterior and posterior lip centerline and divides the renal parenchyma into the ventral and dorsal
sides. (a) shows the left kidney tumor on the ventral side A-scores; (b) shows the left kidney tumor on the dorsal side (P), and (c) shows the
right kidney tumor spanning the midline and where it cannot be located.
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provided in Table 1. Age, gender, necrosis, calcification, T
stage, and tumor distribution showed no significant differ-
ence between the low-grade group and the high-grade group
(p > 0:05) Table 2.

3.2. R.E.N.A.L. Nephrometry Score Evaluating Fuhrman
Classification. We calculated R.E.N.A.L. nephrometry score of
the tumors between the low-grade group and the high-grade
group and summarized them in Table 3. The R-scores, E
-scores, and N-scores of tumors in the high-grade group were
relatively lower than the low-grade group (p < 0:05), but L
-scores and A-scores had no significant difference between the
two groups (p = 0:135 and 0.104, respectively) Table 4. Com-
pared with Fuhrman low-grade, the total RNS items (3 pts for
R-scores, 2 pts for E-scores, and 3 pts for L-scores) were associ-
ated with Fuhrman high-grade, and the difference was statisti-
cally significant (p < 0:001). RNS model constructed based on
multivariate logistic regression analysis showed that 3 pts for
R-scores (largest tumor diameter), 2 pts for E-scores (tumor
convexity), and 3 pts for L-scores (relationship between tumor
and renal polar line) were significant indicators to predict
high-grade ccRCC.

3.3. CTTA Model Construction. In the 18 extracted texture
features, 7 texture features with high collinearity were
removed (coefficient ∣ρ ∣ ≥0:9), and the remaining 11 fea-
tures were input into the logistic regression via backward
stepwise model (Figure 5). The CTTA-model confirmed
energy (OR = 1:000, 95% CI 0.001-1167.084, p < 0:001), kur-
tosis (OR = 0:438, 95% CI: 0.008-23.914, p = 0:041), and
entropy (OR = 1:506, 95% CI 0.015-65.30, p = 0:033) as
independent predictive factors, and the AUC of CTTA-
model was 0.941, with an optimal sensitivity and specificity
of 84.44% and 93.88%.

3.4. Performance and Validation of the R.E.N.A.L.
Nephrometry Score and CTTA. The AUCs of R-scores,
E-scores, L-scores, and N-scores were 0.79, 0.78, 0.73,
and 0.60, respectively (Figures 4(a) and 4(b)). Delong test
showed that the AUC of RNS model and the total RNS items
(0.909 and 0.786, respectively) was larger than the AUC of
each single RNS score, and the differences were statistically
significant (p < 0:05). There was no significant difference in
ROC curves between RNS model and CTTA-model
(p = 0:783).

(a) (b)

Figure 4: The dotted line is parallel to the midline of the upper and lower lips of the kidney and the solid line is the upper and lower polar
lines of the kidney. (a) shows that the right kidney tumor is completely located at the lower pole, with L − scores = 1. (b) shows that the left
kidney tumor crosses the upper pole of the renal line but does not cross the midline of the kidney and remains mostly still at the upper pole,
L − scores = 2; meanwhile, another tumor is partially located between the upper and lower polar lines, L − scores = 3.

Table 2: R.E.N.A.L. nephrometry score standard.

Index
Score

1 pt 2 pts 3 pts

R (cm) ≤4 7 > R > 4 ≥7
E ≥50% <50% Completely endogenous

N (mm) ≥7 7 > E > 4 ≤4
A A (ventral) P (back side) X (unable to determine)

L The tumor is located completely
above or below the kidney

Most tumors are in the superior or
inferior pole of the kidney

More than 50% of tumors pass through the
upper/lower polar line of the kidney or are completely

between the renal upper/lower polar line
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The calibration curves (Figures 5(c) and 5(d)) showed
the matching degree between the prediction probability
and the actual probability of CTTA model and RNS model
and indicated that CTTA-model had better consistency
between observation and prediction.

4. Discussion

In RCC studies, conventional medical imaging techniques,
such as CT, MRI, and PET/CT, had been applied to RCC

classification and pretreatment staging. As one of the con-
ventional morphological imaging evaluation criteria, previ-
ous studies demonstrated that R.E.N.A.L. (Figure 6)
nephrometry score can be used to identify high-risk and
low-risk renal tumors, predict RCC postoperative recur-
rence, assess preoperative stage, and evaluate tumor prolifer-
ation activity [20–23]. In contrast, radiomics and texture
analysis started to receive increasing attention as a new
approach that differs from conventional medical imaging
assessment methods. Radiomics and texture analysis

Table 3: Comparing R.E.N.A.L. nephrometry score between the Fuhrman low-grade and high-grade groups.

Variables High-grade group1 Low-grade group1 p value2

R-scores <0.001
1 pt 12 (26.67%) 51 (52.04%)

2 pts 27 (60.00%) 23 (23.47%)

3 pts 6 (13.33%) 24 (24.49%)

E-scores <0.001
1 pt 3 (6.67%) 36 (36.73%)

2 pts 24 (53.33%) 46 (46.94%)

3 pts 18 (40.00%) 16 (16.33%)

N-scores 0.030

1 pt 9 (20.00%) 42 (42.86%)

2 pts 16 (35.56%) 25 (25.51%)

3 pts 20 (44.44%) 31 (31.63%)

A-scores 0.106

1 pt 21 (46.67%) 29 (29.59%)

2 pts 19 (42.22%) 49 (50.00%)

3 pts 5 (11.11%) 20 (20.41%)

L-scores 0.687

1 pt 9 (20.00%) 18 (18.37%)

2 pts 20 (44.44%) 51 (52.04%)

3 pts 16 (35.56%) 29 (29.59%)

1 pt for (R), (E), and (L) 53 (54.1%) 8 (17.7%) <0.001
3 pts for (R) and (E), 2 pts for (L) 19 (19.4%) 25 (55.6%)
1n (%). 2Pearson’s Chi-squared test; Fisher’s exact test.

Table 4: Multivariate logistic regression analysis of R.E.N.A.L. nephrometry score between the Fuhrman low-grade and high-grade groups.

Variables B P OR 95% CI

R-scores (1 pt) — — — —

R-scores (2 pts) 2.12 0.004 8.36 1.94-36.06

R-scores (3 pts) 4.31 <0.001 74.52 10.89-509.85

E-scores (1 pt) — — — —

E-scores (2 pts) 2.33 <0.001 10.28 2.89-36.48

E-scores (3 pts) 1.32 0.397 3.74 0.20-70.36

N-scores (1 pts) — — — —

N-scores (2 pts) 0.123 0.909 1.13 0.14-9.43

N-scores (3 pts) -0.097 0.921 0.91 0.14-6.11

L-scores (1 pt) — — — —

L-scores (2 pts) 0.854 0.172 2.35 0.69-8.01

L-scores (3 pts) 1.36 0.023 3.89 1.21-12.52
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involved medical imaging extraction of quantitative features
and provided a novel idea for tumor preoperative evaluation
by correlating the imaging features with the patient’s clinico-
pathological characteristics [24]. Fuhrman classification is
the most used pathological grading system for RCC and is
also one of the critical independent factors suggesting the
prognosis of RCC. Hence, determining patients’ Fuhrman
classification before surgery has vital clinical significance in
the treatment and prognosis of ccRCC patients. Interest-
ingly, current studies stated that R.E.N.A.L. nephrometry
score and CT texture analysis can be used to identify Fuhr-
man high-grade and low-grade ccRCC [14, 25]. Our
research aimed to apply these two methods for evaluating
the Fuhrman classification of ccRCC and comparing the
advantages and disadvantages of them.

Tumor size is an important part of the TNM staging of
RCC and is also currently the only effective indicator for
monitoring tumor progression [26]. In this work, the results
of each single score item indicated that the difference in
tumor size (R-score) between the high-grade and low-
grade ccRCC groups was statistically significant. Moreover,
R.E.N.A.L. nephrometry score was relatively higher in
high-grade ccRCC group. Importantly, multivariate logistic
regression analysis illustrated that, as compared within one

pt for R-score, three pts for R-score displayed more signifi-
cant indicators concerning predicting high-grade ccRCC.
Previous study has shown that the combination of tumor
size and patient symptoms can accurately stratify the sur-
vival of RCC patients. This result implied that tumor size
is related to Fuhrman classification, and the larger the lesion,
the greater the risk of high-grade tumors [27]. Similarly,
Jeldres et al. analysed a large amount of data and found that
91.5% of renal masses less than or equal to 2 cm did not con-
tain Fuhrman high-grade pathological components [28].

In the RNS model, the E-, N-, and L-scores were also sta-
tistically different between high-grade and low-grade groups,
and 2 pts for E-scores and 3 pts for L-scores showed inde-
pendent predictors of high-grade ccRCC. Shim et al. showed
that lesions located adjacent to the renal arterial trunk and/
or vein and branches of the renal hilum often display a
higher pathological grade [29]. In our work, the N- and L
-scores of high-grade ccRCC were also higher than low-
grade, and the lesions of high-grade ccRCC were positioned
closer to the renal hilum, consistent with the conclusions of
above. Therefore, tumors located near the sinus in the mid-
dle of the kidney are more likely to demonstrate high-grade,
but the axial position (ventral/dorsal) of the tumor was not
statistically significant (Figure 7).
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Figure 5: The correlation coefficient heat map of texture features. The heat map shows the correlation coefficients of all 18 texture features.
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with the color depth, and the cross indicates that there is no correlation between the two features.
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In addition, some studies have reported that the multi-
variate regression model with multiple scoring items in the
comprehensive R.E.N.A.L. nephrometry score displayed a
higher degree of diagnostic efficacy for Fuhrman grading
[25]. In our study, the multivariate regression model com-
bining R-, E-, N-, and L-scores in this study found the
AUC of total score item was better than the AUCs of single
score item. Therefore, in predicting Fuhrman’s pathological
grade using R.E.N.A.L. nephrometry score, it is recom-

mended to use the comprehensive score other than simply
a score for further evaluation.

On the other hand, CTTA features have a statistically
significant correlation with Fuhrman classification in this
study. Deng et al. [14] found the entropy value with fine
and medium spatial filters increased significantly in ccRCC.
In our study, high entropy was correlated with high Fuhr-
man grade as expected (p = 0:033), and multivariate logistic
regression analysis further confirmed the relationship
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Figure 6: ROC curves of R.E.N.A.L. nephrometry score and CT texture analysis models in differentiating high-grade ccRCC groups from
low-grade ccRCC groups. (a) ROC curves of RNS model and R.E.N.A.L. score items. (b) ROC curve of texture analysis model. Then, the
calibration curves of R.E.N.A.L. nephrometry score and texture analysis models were used to predict Fuhrman grade in ccRCC patients.
The horizontal axis represents the prediction probability, and the vertical axis represents the actual probability. (c) RNS model. (d) CT
texture analysis model.
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between texture features and Fuhrman grade. Furthermore,
some studies have shown that in addition to higher
entropy, higher standard deviation, higher kurtosis, and
positive skewness are also considered to represent an
increase in intratumoral heterogeneity, indicating a worse
prognosis [30, 31], the results were also consistent with
our study. Nevertheless, the above studies on RCC texture
analysis only took single optimal feature as predictive
parameter, instead of modeling all optimal features to
enhance the diagnostic efficiency, which leads to the limita-
tions of application. In our research, all optimal texture fea-
tures are used to build models, which improve the
diagnostic efficiency and have better application prospects.
Since the Delong test showed that there was no statistical
difference between the RNS model and CTTA model in
the diagnostic efficiency, and their AUCs were both greater
than 0.9.Therefore, this study did not attempt to merge the
two models. The calibration curve shows that texture anal-

ysis model can more accurately predict ccRCC patients’
Fuhrman classification. Moreover, texture analysis digitized
patient images through data mining, which can effectively
eliminate subjective errors that may be caused by
R.E.N.A.L. nephrometry score and can make the diagnosis
more objective and accurate.

We were aware of limitations of our study. First of all,
this study was a single-center retrospective study. The lack
of multicenter verification and sample size limitations may
hinder the universality of the research results. Second, this
study had only one reviewer to evaluate CT images and per-
form CTTA delineation. However, previous studies have
shown that CTTA features had a robust interobserver agree-
ment. Comparing RNS model and texture analysis model,
we can find that they have similar diagnostic power, also
means that CTTA features with high objective not only have
good interpretability but also hope to free radiologists from
mechanical tumor CT evaluation.

(a) (b)

(c) (d)

Figure 7: A 75-year-old man with postoperative pathologically confirmed ccRCC in the right middle kidney. A region of interest (ROI) was
set in the corticomedullary phase of the tumor with the most significant enhancement possible. The remaining sections were scanned at the
same level as that set for the ROI. (a) Precontrast images, (b) corticomedullary phase, (c) nephrographic phase, and (d) excretory phase.
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5. Conclusions

To sum up, R.E.N.A.L. nephrometry score has a certain pro-
vocative effect on the Fuhrman pathological grading of
ccRCC. As a potential emerging technology, CTTA is
expected to replace R.E.N.A.L. nephrometry score in evalu-
ating patients’ Fuhrman classification, and this approach
might become an available method for assisting clinicians
in choosing appropriate operation.
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