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Curcumin (CUR) has interesting properties to cure cancer. Cold atmospheric plasma (CAP) is also an emerging biomedical
technique that has great potential for cancer treatment. Therefore, the combined effect of CAP and CUR on inducing
cytotoxicity and apoptosis of melanoma cancer cells might be promising. Here, we investigated the combined effects of CAP
and CUR on cytotoxicity and apoptosis in B16-F10 melanoma cancer cells compared to L929 normal cells using MTT method,
acridine orange/ethidium bromide fluorescence microscopic assay, and Annexin V/PI flow cytometry. In addition, the
activation of apoptosis pathways was evaluated using BCL2, BAX, and Caspase-3 (CASP3) gene expression and ratio of BAX
to BCL2 (BAX/BCL2). Finally, in silico study was performed to suggest the molecular mechanism of this combination therapy
on melanoma cancer. Results showed that although combination therapy with CUR and CAP has cytotoxic and apoptotic
effects on cancer cells, it did not improve apoptosis rate in melanoma B16-F10 cancer cells compared to monotherapy with
CAP or CUR. In addition, evaluation of gene expression in cancer cell line confirmed that CUR and CAP concomitant
treatment did not enhance the expression of apoptotic genes. In silico analysis of docked model suggested that CUR blocks
aquaporin- (AQP-) 1 channel and prevents penetration of CAP-induced ROS into the cells. In conclusion, combination
therapy with CAP and CUR does not improve the anticancer effect of each alone.

1. Introduction

The incidence of melanoma skin cancers has been increasing
over the past decades so the World Health Organization
(WHO) reported 132,000 confirmed cases of melanoma skin
cancers to occur globally each year (https://www.who.int/uv/
faq/skincancer/en/index1.html). Melanoma cells become
“bullet proof” against a variety of clinical managements,
including chemotherapy, radiotherapy, and immunotherapy
by exploiting their intrinsic resistance to apoptosis, repro-
gramming their proliferation and survival pathways during
melanoma progression [1].

Cold atmospheric plasma (CAP) has recently emerged as
a novel tool in biomedical applications [2]. It is an ionized
gas composed of reactive oxygen (ROS) and reactive nitro-

gen (RNS) species and an optical emission in the UV range
[3]. The significant rise of the CAP-induced reactive species
induces a selective cell death in multiple cancer cell lines,
including melanoma [4, 5], breast [6, 7], glioblastoma [8],
leukemia [9], and head and neck [10] cancer in vitro, and
decreases the size of solid tumors in vivo [11–15]. CAP kills
cancer cells and does not have a catastrophic effect on nor-
mal cells [3]. The selective anticancer mechanism of this
modality is due to a significant different level of ROS
between cancer and normal cells [3]. To explain this differ-
ence, two models have been proposed. The first model pro-
posed that cancer cells have a stronger metabolism and a
higher baseline ROS level than normal cells. When CAP-
induced ROS is applied to cells, total intracellular ROS in
cancer cells easily exceeds the threshold, but this does not
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occur in normal cells. Therefore, cancer cells experience
more apoptosis in comparison with normal cells [3, 16,
17]. The second model is based on the presence of aquaporin
(AQP) channels. These channels are transmembrane pro-
teins for the permeation of reactive oxygen species, includ-
ing H2O2, NO3

-, and NO into the cells [3]. The cancer
cells express more AQPs in comparison with normal cells.
Thus, CAP causes ROS to penetrate more and more into
cancer cells and thus causes more apoptosis in tumor cells
than in normal cells [18, 19].

Apart from the ameliorative activity of CAP, some natu-
ral compounds have been identified with anticancer proper-
ties [20]. Curcumin (CUR) is a natural compound that has
potentially anticancer properties [21]. It is a yellow pigment
from Curcuma longa. Its anticancer activity was reported in
various types of cancers such as ovarian, lung, breast, and
melanoma [22–27]. However, the mechanism of anticancer
action of CUR is not fully understood; some studies showed
it kills cancer cells by induction of apoptosis [26, 27].

It can be assumed that the combined use of CAP with
another anticancer agent may have a synergistic effect in
the treatment of cancer [15, 28–31]. Therefore, the aim of
this study was to evaluate the effect of CAP and CUR com-
bination therapy on apoptosis of B16-F10 melanoma cell
line in comparison with normal L929 fibroblast cell line.
Also, in silico study investigated their potential molecular
interactions.

2. Materials and Methods

2.1. Chemicals and Reagents. MTT (3-(4, 5-dimethylthiazol-
2-yl)-2, 5-diphenyltetrazolium bromide) and dimethyl
sulphoxide were purchased from Sigma-Aldrich, USA.
RPMI-1640 and penicillin-streptomycin were obtained from
Biowest, Germany. Fetal bovine serum and trypsin were pur-
chased from bioMerieux, France, and Gibco, USA. Ethidium
bromide and acridine orange were purchased from Merck,
Germany. Cell culture plates and flasks were purchased from
SPL, Korea, and the micro tubes were purchased from Ratio-
lab, Germany. All primers were synthetized by Metabion,
Germany. The used kits in the study include RNA extraction

kit (FAVORGEN, Taiwan), cDNA synthesis kit (Addbio,
Korea), and FITC Annexin V Apoptosis Detection Kit (Bio-
science, USA).

2.2. Cold Atmospheric Plasma Device. The experiments were
performed with a plasma jet, which is generated from an
argon flow. The distance between the target cells and plasma
source nozzle was 3 centimeters. Technical details of the
device were described previously [32–34].

2.3. Cell Culture. B16-F10 and L929 cell lines were cultured
in RPMI-1640 containing 10% (v/v) fetal bovine serum,
100U/ml penicillin, and 100mg/ml streptomycin. The cells
were maintained at 37°C in a humidified incubator contain-
ing 5% (v/v) CO2 [20]. When the cells reached 70%

Table 1: Primer sequences used for stem-loop RT-PCR assays.

Accession
number

Gene
name Primers 5′→3′

NM_007527.3 BAX
Specific forward primer: GCGGCTGCTTGTCTGGATC

USI RT-PCR primer: GTCGTATCCAGTGCTGCGACCGTATGGATGTGTCTGCGGCGTTTTATCATG
CACTGGATACGACCGGTGAGGACTC

NM_009741.5 BCL2
Specific forward primer: CTACGAGTGGGATGCTGGAGATG

USI RT-PCR primer: GTCGTATCCAGTGCTGCGACCGTATGGATGTGTCTGCGGCGTTTTATCATG
CACTGGATACGACGCTGGAAGGAGA

NM_
001284409.1

CASP3
Specific forward primer: CTCTACAGCACCTGGTTACTATTCC

USI RT-PCR primer: GTCGTATCCAGTGCTGCGACCGTATGGATGTGTCTGCGGCGTTTTATCATG
CACTGGATACGACGTTGCCACCTTC

NM_
001289726.1

GAPDH
Specific forward primer: TTGTCAAGCTCATTTCCTGGTATG

USI RT-PCR primer: GTCGTATCCAGTGCTGCGACCGTATGGATGTGTCTGCGGCGTTTTATCATG
CACTGGATACGACGGAGGCCATGTAG
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Figure 1: Effect of curcumin on the viability of B16-F10 and L929
cell lines. The cells were treated with different concentrations of
curcumin for 24 h. Results are presented as mean ± SD. Statistical
analysis was performed using a Student t-test and a one-way
ANOVA test followed by Tukey’s post hoc test for comparisons.
CUR: curcumin.
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confluence, they were harvested using 0.25% trypsin and
used for 2.4-2.6 stages. The number of cell passages was 0-
2 times for each test.

2.4. Cell Survival Assay. MTT assay was used to measure
cytotoxicity effect of each treatment [35]. Firstly, 8 × 103
cells/well of B16-F10 and 1 × 104 cells/well of L929 were
seeded in 96-well cell culture plates in triplicate. To treat
by CUR, after initial 24 h incubation, the cells were culti-
vated with fresh media containing different concentrations
(0-100μM) of CUR (culture medium and 0.5% (v/v) DMSO
was used as solvent). To evaluate the therapeutic effect of
CAP, the cells were exposed to CAP in various times
(untreated, 20, 30, 40, 50, and 60 seconds (s)) and then incu-
bated for 24 or 48 h. To assess the combination effect of
CUR and CAP, the cells were treated simultaneously with
CUR and immediately with CAP. Overall, to evaluate the
cytotoxic effect of CUR and CAP combined therapy, we used
optimal dose of each treatment. Therefore, four experiment
groups were considered as untreated that received no treat-
ment, CAP treated, CUR treated, and combined CAP and
CUR treated. The cells in each study group were then treated
with 20μl of MTT reagent (5mg/ml in sterile phosphate-
buffered saline (PBS)) and incubated at 37°C for 4 h. Finally,
the culture medium was removed and 200μl of DMSO was
added to dissolve the formazan crystals. Optical density of
each well was measured at 570nm by a microplate reader
(BioTek, Instruments Inc., Vermont, USA). The percentage
of cell viability was calculated based on the optical density
of the wells. IC50 was developed by an inhibition curve and
recorded as the mean ± standard deviation of three indepen-
dent experiments [20].

2.5. Acridine Orange/Ethidium Bromide (AO/EB) Staining
for Apoptosis Detection. 8 × 103 cells/well of B16-F10 and 1
× 104 cells/well of L929 were seeded in each well of the
96-well culture plate. After 24 hours of incubation, the cells

were treated with combined CUR and CAP for 24 hours.
Then, cells were washed twice with PBS and stained with
10μl of AO (50μg/ml) and 10μl of EB (50μg/ml). The cells
were observed using a fluorescent microscope (Motic,
China) in 470/40 nm at ×1000 magnification [20].

2.6. Flow Cytometric Analysis. Analysis of cell death was
determined by staining the cells with an Annexin V/propi-
dium iodide (PI). The cells were incubated for 24 hours in
6-well cell culture plates after treatment with CUR, CAP,
or the combination of CAP and CUR. The cells were then
harvested, washed with PBS, and suspended in Annexin V
binding buffer. They were incubated for 15min at room
temperature. Subsequently, FITC-Annexin V reagent was
added to each tube and the tubes were incubated for
10min at room temperature. Then, the cells were stained
by PI. Finally, the pattern of cell death was analyzed using
FACSVerse (Partec, Germany).

2.7. qRT-PCR. Total RNA was extracted using the RNA
extraction mini kit (FAVORGEN, Taiwan) according to
the manufacturer recommendations. Then, qRT-PCR was
performed by stem-loop TaqMan real-time PCR assay, using
unique sequence index (USI) barcodes and probe described
by Fattahi et al. [33, 36]. Gene amplification was carried
out using a StepOnePlus™ real-time PCR system (Applied
Biosystems, CA, USA), and the results were expressed as
the fold change calculated using the 2-ΔΔCt method relative
to the control sample. GAPDH was used as a housekeeping
gene to normalize gene expression. Primer sequences were
designed by AlleleID 6.0 software and showed in Table 1.
To amplify the genes, we used the following thermal profile:
initial denaturation at 95°C for 5 minutes and then 40 repe-
titions at 95°C for 15 seconds and 60°C for 60 seconds.

2.8. Computational Modeling. CUR interaction with AQP-1
was investigated to study the effect of CUR on blocking
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Figure 2: Effect of cold atmospheric plasma on the viability of B16-F10 and L929 cell lines. The cells were exposed by various times (0 to 60
seconds) of CAP and then incubated for (a) 24 h or (b) 48 h. Results are presented as mean ± SD. Statistical analysis was performed using a
Student t-test and a one-way ANOVA test followed by Tukey’s post hoc test for comparisons. CAP: cold atmospheric plasma.
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ROS transportation into aquaporin channels. Then, this
docking model was compared with the docking model of
the acetazolamide interaction and AQP-1. Ligand structures
of CUR and acetazolamide were obtained from the Pub-
Chem database and stored in SDF format. These structures
were converted to PDB format using Open Babel GUI.
Hydrogen atoms were added by Discovery Studio 4.5 and
subjected to ligand preparation to generate possible confor-
mations and PDBQT format using AutoDock tools 1.5.6.
Protein structure of AQP-1 with the code 1H6I was obtained
from the PDB database and stored in PDB format. Then, all
the crystallographic water molecules were removed and
hydrogen polar atoms were added using Discovery Studio

4.5. Finally, AutoDock tools 1.5.6 removed all the crystallo-
graphic water molecules and converted protein structure to
PDBQT format. Protein-protein docking of the AQP-1
structure (as a receptor) with CUR and acetazolamide (as
ligands) was performed by AutoDock Vina, and the results
were shown in PDB format using Discovery Studio 4.5 soft-
ware [37].

2.9. Statistical Analysis. Quantitative data were presented as
mean ± SD or SE, appropriately. The Student t-test and
one-way ANOVA were used to compare quantitative vari-
ables. In addition, Tukey post hoc test was used for compar-
ison between groups.
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Figure 3: Cytotoxic effect of combination therapy with CAP and CUR on B16-F10 melanoma cancer and L929 normal cell lines. (a)
Morphological alterations visualized under the light convert microscope. The black arrows showed rounded and wrinkled membrane
cells. (b) Cell viability was shown using MTT test after 24 h treatment. (c) Cell viability was shown using MTT test after 48 h treatment.
CAP: cold atmospheric plasma; CUR: curcumin; CAP+CUR: combination therapy of cold atmospheric plasma and curcumin; N-S:
nonsignificant.
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3. Results

3.1. Effect of CUR on Cell Viability. To determine the CUR
cytotoxicity, B16-F10 and L929 cell lines were treated with
various concentrations of CUR for 24 h and viability of cells
was measured using MTT assay. As Figure 1 shows, the via-
bility of untreated cells (treated cells with solvent and no
CUR) did not decrease. CUR decreased the cell variability
in a dose-dependent manner. On the other hand, the cyto-
toxicity effect of CUR on B16-F10 tumor cells was signifi-
cantly higher than that on L929 cells (P < 0:0001). IC50s of
CUR on B16-F10 and L929 cells were 16 and 22μM, respec-
tively. In this manner, three concentrations of 15, 20, and 25
(μM) showed approximately the same results in the cytotox-
icity assay. The concentration of 20μM which has the best
cytotoxic effect on tumor cells with less side effect on the
normal cells was used in subsequent experiments (Figure 1,
Figures S1 and S2).

3.2. Effect of CAP on Cell Viability. Following 24 h incuba-
tion after CAP exposure, the survival of B16-F10 cells
decreased significantly in a dose-dependent manner, while
L929 cell viability did not change significantly
(Figure 2(a)). Increasing in incubation time from 24 to
48 h caused a significant reduction in the viability of B16-
F10 cells but not in L929 normal cells (Figure 2(b)). 40-
second CAP exposure had the highest cytotoxic effect on
B16-F10 cancer cells without significant detrimental effect
on normal cells. Therefore, this time was considered as the
appropriate CAP exposure time in subsequent experiments.

3.3. Effect of Combined CUR and CAP on Cell Viability.With
regard to the cytotoxicity of CAP and CUR on the cancer
cells, we decided to assess the cytotoxic effect of combination
therapy of these modalities on the B16-F10 cancer and L929
normal cells. Microscopic images showed that all treatments
had a significant effect on the morphology of the B16-F10
melanoma cells. As Figure 3 shows, these cells became
rounded, and their membranes wrinkled. CAP did not alter

the morphology of L929 cells compared to untreated cells,
whereas CUR significantly altered the morphology of these
cells. In other words, CUR rounds L929 cells and weakens
their attachment to the bottom of the plate. Combination
therapy of CUR and CAP caused more damage to the mor-
phology of cancer cells than CUR alone. Comparison of the
cell morphology of two cell lines showed CAP has selective
toxicity on tumor cells. Interestingly, the combined CUR
and CAP had a more catastrophic effect on the morphology
of the B16-F10 cancer cells compared to normal L929 cells.
Furthermore, to quantify cytotoxicity effect of each treat-
ment on tumor cells, MTT assay was used. After 24h and
48 h of treatment, all treatment modalities inhibited signifi-
cantly the viability of B16-F10 cells when compared to the
untreated control (P < 0:0001). The toxic effect of combina-
tion therapy of CUR and CAP on melanoma cells was not
significantly higher than the monotherapy with CAP. In
the periods of 24h and 48 h, treatments of CAP and CUR
showed the inhibitory effects on the viability of melanoma
cells compared to untreated cells, but combination therapy
had no more cytotoxicity effect on melanoma cancer cells
than fibroblast normal cells.

3.4. Assessment of Apoptosis by AO/EB Staining. AO/EB
double fluorescent assay was performed to indicate cell apo-
ptosis in B16-F10 and L929 cell lines. AO permeates all cells
and represents the cells fluorescence green while EB stained
dead cells, which shows the nuclei to be the red color. There-
fore, the live cells appeared green color while the apoptotic
cells illuminated by red nuclei and condensed or fragmented
chromatin. Uniformly red cells indicate direct necrosis. The
results showed CAP induces apoptosis in the B16-F10 can-
cer cells but has no toxic effect on L929 normal cells, while
CUR alone or in combined therapy induces apoptosis and
necrosis on both cancer and normal cells (Figure 4).

3.5. Detection of Death Pattern by Flow Cytometry. Annexin
V/PI assay was used to quantify the death pattern in mela-
noma B16-F10 and normal L929 cells. Figure 5 shows that

Untreated CAP CAP + CURCUR

B16-F10 cells

L929 cells

Figure 4: AO/EB staining of L929 normal fibroblast and B16-F10 melanoma cells. The cells were treated with CAP (40 seconds), CUR
(20 μM), or combination therapy with CUR and CAP. Live cells are green in color while apoptotic cells are indicated by yellow arrows
and necrotic cells with red arrows. CAP: cold atmospheric plasma; CUR: curcumin; CAP+CUR: combination therapy of cold
atmospheric plasma and curcumin.
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CAP did not significantly induce apoptosis or necrosis in
normal L929 cells, whereas the apoptosis rate was higher
in tumor and normal cells when treated by CUR alone or
in the combination therapy compared to untreated cells.
On the other hand, all therapeutic approaches induced apo-
ptosis in the B16-F10 tumor cells, and in addition, combina-
tion therapy increased necrosis compared to the CAP or
CUR monotherapy.

3.6. Expression of Apoptosis-Related Genes. The expression of
apoptotic genes including BAX, BCL2, and CASP3 was eval-
uated in B16-F10 melanoma cancer and L929 cells by real-

time PCR assay. As Figure 6 shows, the expression of all
genes and the BAX/BCL2 ratio were significantly changed
after CAP treatment in B16-F10 tumor cells in comparison
to untreated controls (BAX (P = 0:028), BCL2 and CASP3
(P = 0:014), and BAX/BCL2 (P < 0:0001)). CUR significantly
changed the mRNA expression of BCL2 and CASP3 in B16-
F10 tumor cells in comparison to untreated control cells
(BCL2 (P = 0:039) and CASP3 (P = 0:031)). However, the
BAX gene did not significantly increase in the CUR-treated
cells, and BAX/BCL2 ratio was significantly increased in
B16-F10 tumor cells (P < 0:0001). The expression of BAX
(P = 0:034), BCL2 (P = 0:042), and BAX/BCL2 ratio
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Figure 5: Flow cytometric chart of Annexin V/PI staining of L929 normal and B16-F10 cancer cell lines after harvesting by trypsinization.
(a) Vital (Annexin V-PI-), early apoptosis (Annexin V+PI-), late apoptosis and necrosis (Annexin V-PI+), and necrosis (Annexin V+PI+). Dot
blots are representative of a group of particles.
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(P < 0:0001) but not CASP3 was significantly altered after
combination therapy in B16-F10 cells in comparison with
untreated cells. CAP and CUR treatments had no significant
effects on the expression of apoptotic genes in L929 normal
cells. However, the expression pattern of apoptotic genes in
receiving the CAP and CUR combination L929 cells was
slightly different. Simultaneous CAP and CUR treatment
increased the expression pattern of CASP3 (P = 0:014) and
BAX/BCL2 ratio (P < 0:0001), along with decreasing BCL2
(P = 0:027) but had no effect on BAX expression. The com-
parison of combination therapy with monotherapy with
CAP or CUR revealed that CAP and CUR combination

had no significant effect on apoptotic gene expression in
comparison with CAP or CUR monotherapy.

3.7. Blocking of AQP-1 by CUR. Analysis of docking was car-
ried out between AQP-1, CUR, and acetazolamide sepa-
rately. The lowest binding energy of each complex shows
the highest binding affinity between the structures in the
complex. The binding energy of CUR is near to the binding
energy of acetazolamide (-6.3 and -4.5 kcal/mol, respec-
tively). The docked complexes are shown in Figure 7. As it
indicated, CUR and acetazolamide bind to AQP-1 in a sim-
ilar location. Also, amino acids of GLY121, THR120,
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Figure 6: Expression of apoptotic genes after treatment of CAP, CUR, or combination therapy of CUR and CAP: (a) BCL2 gene, (b) BAX
gene, (c) BAX/BCL2 ratio, and (d) CASP3 gene. Data are the mean ± SE of three independent experiments. Statistical analysis was
performed using a Student t-test and a one-way ANOVA test followed by Tukey’s post hoc test for comparisons. CAP: cold atmospheric
plasma; CUR: curcumin; CAP+CUR: combination therapy of cold atmospheric plasma and curcumin.
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LEU124, PHE35, LYS36, and TYR34 were the same binding
sites of CUR and acetazolamide.

4. Discussion

In the last few years, the combination therapy with CAP and
other treatments has claimed that may promise cure of can-
cer [15, 29–32, 38–42]. This study revealed that CAP had
more cytotoxic effect on tumor cells and did not have a toxic
effect on normal cells. In addition, the results of the AO/EB
staining and flow cytometry analysis confirmed that CAP
induces significant apoptosis in the melanoma cancer cells
but not in normal cells. Analysis of apoptosis-related genes,
including BAX, BCL2, and CASP3, and also BAX/BCL2
ratio indicated CAP induces apoptotic pathway selectivity
in tumor cells. Our results are in line with other studies that
reported the effect of CAP on cytotoxicity and apoptosis in
tumor cell lines [5, 6, 8, 40, 43–48]. Other studies proved evi-
dences that CUR has a cytotoxic effect and induces apoptosis
in cancer cell lines [49–56]. In this study, for the first time,
we compared the effect of CUR on cytotoxicity and apopto-
sis of the B16-F10 cells in comparison with L929 normal
cells. Our results showed CUR significantly decreased the

viability of B16-F10 tumor cells and with a less intensity on
L929 normal cells. Also, CUR activates apoptosis pathways
in B16-F10 melanoma cells more than in L929 normal cells
by increasing the expression of CASP3 and decreasing BCL2
expression. The combination therapy of CAP and CUR
showed more toxic effect on tumor cells than the CUR treat-
ment but not significant toxicity compared to the CAP mono-
therapy in 24 and 48 hours. AO/EB fluorescence staining and
flow cytometry analysis also revealed that CAP and CUR each
alone induced apoptosis and necrosis in B16-F10 melanoma
cells. However, the combination therapy did not induce apo-
ptosis in the cancer cells more than the monotherapy with
CAP or CUR. Analysis of apoptosis-related genes, including
BAX, BCL2, and CASP3 expression, suggested that the combi-
nation therapy did not have more effect in inducing apoptotic
pathways in both cancer and normal cell lines in comparison
with CAP or CUR alone. The BAX/BCL2 ratio demonstrates
the stability and balance between the expression levels of
pro- and antiapoptotic genes [57]. Our results showed the
combination therapy increased BAX/BCL2 ratio in both
tumor and normal cell lines than CAP or CUR treatments.
In addition, all three treatment approaches showed a signifi-
cant increase in the BAX/BCL2 ratio in B16-F10 cells in com-
parison with L929 cells. Therefore, it can be concluded that
combination therapy does not have a better effect than treat-
ment with any of CUR or CAP.

The inhibitory activity of CUR on aquaporin channels is
a probable molecular mechanism for reducing the simulta-
neous effect of combination therapy on the apoptosis of
the cancer cells. Previous studies indicated CUR has an
inhibitory activity on aquaporin channels despite its ROS
production and decreased entrance of reactive species into
the cell via these channels [58–60]. The findings of docking
modelling were in line with previous studies. Interaction of
CUR with AQP-1 structure was the same in interacting loca-
tion and intensity as interaction of acetazolamide, a carbonic
anhydrase inhibitor of AQP-1 and AQP-4 [61–65], with this
channel. In other words, like acetazolamide, curcumin
inhibits the penetration of CAP-induced excess ROS into
cancer cells by occupying AQP channels. Cancer cells
express more AQPs in their cytoplasmic membrane than
normal cells; thus, combination therapy of CAP and CUR
has more effect on B16-F10 when compared to the L929 cell
line. Previous studies reported the solvent can affect the
physicochemical properties of CUR [66–68]. Therefore,
DMSO and culture medium may have a role in the interac-
tions between CUR and AQP channels. More investigations
are required to prove this hypothesis. Other reasons that can
justify this event include aquaporin channels are the most
important ROS transporters into the cell; however, the rate
of ROS transporter into the cell has a certain capacity [69,
70]. When B16-F10 cells are treated with a combination of
CAP and CUR, the penetration of ROS in these cells is
reduced, because these cells are saturated with ROS. Also,
infiltration of high levels of ROS into the cells causes cellular
oxidation and induction of necrosis instead of apoptosis
[71–74], although CUR can inhibit melanoma cancer via
other pathways [75]. Therefore, combination therapy has
some cytotoxic effect on the cancer cells.

Acetazolamide-AQP1

CUR-AQP1

Figure 7: Comparison of interaction between AQP-1 with CUR
and acetazolamide using AutoDock docking model Vina. To
visualize interaction points and ligands more, interacting residues
of the protein with ligands are shown and labeled. Two ligands
(CUR and acetazolamide) interacted in the same interaction
binding with the receptor. The docked model was visualized by
Discovery Studio 4.5 software. CUR: curcumin; AQP1:
aquaporin-1.
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5. Conclusions

Our findings suggest CAP to selectively induce apoptosis in
tumor cells. In addition, CUR induced apoptosis in cancer
cells more than normal cells. Combination therapy with
CUR and CAP induces cell death in cancer cells more than
normal cells, but does not improve cytotoxicity and apopto-
sis in melanoma B16-F10 cancer cells compared with mono-
therapy with CAP or CUR.
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