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The proliferation of pulmonary artery smooth muscle cells (PASMCs) is an important cause of pulmonary vascular
remodeling in pulmonary hypertension (PH). It has been reported that miR-137 inhibits the proliferation of tumor cells.
However, whether miR-137 is involved in PH remains unclear. In this study, male Sprague-Dawley rats were subjected to
10% O2 for 3 weeks to establish PH, and rat primary PASMCs were treated with hypoxia (3% O2) for 48 h to induce cell
proliferation. The effect of miR-137 on PASMC proliferation and calpain-2 expression was assessed by transfecting miR-
137 mimic and inhibitor. The effect of calpain-2 on PASMC proliferation was assessed by transfecting calpain-2 siRNA.
The present study found for the first time that miR-137 was downregulated in pulmonary arteries of hypoxic PH rats and
in hypoxia-treated PASMCs. miR-137 mimic inhibited hypoxia-induced PASMC proliferation and upregulation of calpain-2
expression in PASMCs. Furthermore, miR-137 inhibitor induced the proliferation of PASMCs under normoxia, and
knockdown of calpain-2 mRNA by siRNA significantly inhibited hypoxia-induced proliferation of PASMCs. Our study
demonstrated that hypoxia-induced downregulation of miR-137 expression promoted the proliferation of PASMCs by
targeting calpain-2, thereby potentially resulting in pulmonary vascular remodeling in hypoxic PH.

1. Introduction

Pulmonary hypertension (PH) is a rare vascular disorder,
now defined clinically as a mean pulmonary artery pressure
(mPAP) over 25mmHg at rest or over 30mmHg during
activity. Pulmonary vascular remodeling plays an important
role in PH pathology, which is mainly characterized by
endothelial cell injury, smooth muscle cell proliferation,
fibroblast muscularization, extracellular matrix increase, in
situ thrombosis, varying degree inflammation, and plexi-
form arterial changes [1, 2]. In these pathological changes,
the proliferation of pulmonary arterial smooth muscle cells

(PASMCs) is the most important cause of pulmonary
vascular remodeling in PH. Therefore, inhibition of
PASMC proliferation is expected to be a crucial pathway
for PH treatment.

Calpain is a Ca2+-dependent cysteine protease that has been
found to contain at least 15 subtypes, calpain-1 (μ-calpain) and
calpain-2 (m-calpain), which are the two best-characterized
members of the calpain family and are ubiquitously expressed
in mammals [3]. Calpain-1 and calpain-2 constitute a distinct
larger catalytic subunit, and calpain-4 as a common smaller
subunit is responsible for maintaining calpain activity [4].
Recent studies have linked calpain with a variety of diseases,
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such as Alzheimer’s and Parkinson’s diseases, cancer, diabetes,
atherosclerosis, and PH [5]. In hypoxia and monocrotaline-
induced PH of mice and rats, the expression of calpain-1/2/4
in the lung tissues and pulmonary arteries was significantly
increased [6–8]. Research focusing on the role of calpain-2
in hypoxia-induced PH becomes a meaningful work.

It has been reported that a variety of miRNAs participate
in the pathogenesis of PH. For example, miR-223 [9] and
miR-let-7g [10] have been found to regulate the proliferation
of PASMCs participating in pulmonary vascular remodeling
of PH. To fully reveal the role of miRNAs in hypoxic PH, we
did the pilot microarray assay in pulmonary arteries of hyp-
oxic PH rats and found that the expression of miR-137 was
significantly downregulated. It has been reported that miR-
137 inhibits the proliferation and migration of a variety of
tumor cells [11, 12]. Over 1000 genes have been predicted
to be targets of miR-137 by using a bioinformatic approach,
and highlighted target genes are involved in a large number
of pathways including neural development, cell cycle, differ-
entiation, and proliferation [13]. However, whether miR-137
is involved in PH remains unclear. Bioinformatic analysis
suggests that the 3′-UTR of calpain-2 contains a potential
binding element for miR-137 with a 7-nt match to the
miR-137 seed region, and miR-137 has been found to
directly target calpain-2 in motoneurons [14]. We therefore
hypothesize that miR-137 contributes to hypoxic PH by
targeting calpain-2 and designed this study to explore the
regulatory role of miR-137 in hypoxia-induced PASMC
proliferation and pulmonary arterial remodeling in rat hyp-
oxic PH, and the regulating effect of miR-137 on calpain-2
expression was also certificated.

2. Materials and Methods

2.1. Animal Experiments. About 180-220 g, male Sprague-
Dawley (SD) rats were purchased from the Laboratory Ani-
mal Center of Xiangya School of Medicine, Central South
University, Changsha, China (SCXK (XIANG) 2019-0014).
All protocols of animal experiments (No. CSU2017009)
were approved by the Central South University Veterinary
Medicine Animal Care and Use Committee. Regarding the
methodology, we followed the PH preclinical guidelines as
previously described [15].

SD rats were randomly divided into hypoxia group and
control group. Rats were exposed to continuity hypoxia
(10% O2) for up to 21 days in the hypoxia group while main-
tained in a normal oxygen condition (21% O2) in the control
group. At the 21 days after subjected to hypoxia, the rats
were weighed and anesthetized by intraperitoneal injection
of 2% sodium pentobarbital (60mg/kg). A Vevo 2100
(VisualSonics, Canada) ultrasound system equipped with
21MHz probe was used for echocardiographic assessment
of pulmonary arterial acceleration/ejection time ratio
(PAAT/PAET). Right-sided heart catheterization was con-
ducted to detect right ventricular systolic pressure (RVSP)
and mPAP. The right ventricle (RV) was separated from left
ventricle and septum (LV+S) and weighed. The ratio of RV
to (LV+S) was calculated to assess the extent of right ventri-
cle hypertrophy. The pulmonary arterial samples were

collected for mRNA and protein expression analysis. The
right lower lung was fixed in 4% paraformaldehyde for
hematoxylin-eosin (HE) staining and in situ hybridization
analysis of miR-137.

2.2. HE Staining. For HE staining, the fixed lungs were
embedded in paraffin and then cut into approximately
5μm thick sections by microtome. HE staining of right lung
was conducted in accordance to the same method used in
our previous study [6].

2.3. In Situ Hybridization. In situ hybridization kit (Boster,
Wuhan, China) was used to detect the expression of miR-137
in lung tissues according to the manufacturer’s instructions.
In brief, 5μm sections were used for sodium citrate antigen
retrieval and then incubated with blocking buffer overnight
with miR-137 detection probe which was labeled with 3′ and
5′ digoxigenin. After washed with phosphate-buffered saline
(PBS) and SSC buffer, immunodetection was performed with
a biotinylated anti-DIG antibody at 37°C for 60min and the
avidin-biotin-peroxidase complex (ABC kit, Vector Laborato-
ries, Burlingame, CA) at 37°C for 20min. After washed with
PBS, the slides were detected by 3,3-diamino benzidine
(DAB) staining.

2.4. Preparation of Primary Rat PASMCs. As our previous
study described, primary rat PASMCs were extracted from
the pulmonary arteries using tissue block anchorage method
[10]. Dulbecco’s modified Eagle’s medium (DMEM) supple-
mented with 20% (v/v) fetal bovine serum was used to
culture primary rat PASMCs at 37°C in a humidified atmo-
sphere of 5% CO2. Smooth muscle α-actin (α-SMA)
immunohistochemistry and immunofluorescence using anti-
rat α-SMA antibody (1 : 50, ab7817, Abcam) were used to
identify PASMCs. The three to five passages of PASMCs were
used for all experiments.

2.5. Cell Transfection. PASMCs reached 60% to 70% of con-
fluence were starved with low serum sputum (2% FBS) for
24 h. To validate the effects of miR-137 and calapin-2 on
hypoxia-induced PASMC proliferation and gene expression,
the mimic and inhibitor of miR-137 and calpain-2 siRNA
(Ribobio Co. Ltd., Guangzhou, China) were transiently
transfected by ribo FECT™ CP transfection kit (Ribobio
Co. Ltd., Guangzhou, China) according to the manufac-
turer’s instructions. Then, the cells were maintained in
hypoxia (3% O2) or normoxia chamber for up to 48h
according to grouping. Quantitative real-time polymerase
chain reaction was used to detect the transfection efficiency
of miR-137 mimic. Real-time PCR and Western blot were
used to test the expression of calpain-2 mRNA and protein
to detect the transfection efficiency of calpain-2 siRNA.
The target sequences of calpain-2 siRNAs were CCAATT
TGTTCAAGATCAT.

2.6. Assay of Cell Proliferation. For the MTS assay as
described previously [10], PASMCs were seeded in 96-well
culture plates (6 × 103 cells/well) and then starved with low
serum sputum (2% FBS) for 24h. After treatment, the cells
were washed with PBS. According to the manufacturer’s
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instructions, each well was added 10μL of MTS solution and
incubated at 37°C for 2.5 h after the treatment. Colorimetric
analysis was determined by an ELISA plate reader (DTX880;
Beckman, Miami, FL) at 490nm.

For EDU proliferation assay, 5 × 103 cells/well were
seeded into 96-well culture plates. According to the
manufacturer’s instructions, each well was added 50μmol/L
of 5-ethynyl-2′-deoxyuridine (EDU, Ribobio, China) and
incubated at 37°C for 4 h. The cells were fixed by using 4%
formaldehyde for 15min and then treated with 50μL
2mg/mL glycine for 5min at 25°C. Then, the cells were
treated with 100μL 0.5% TritonX-100. After washing with
PBS for 3 times, 100μL of 1×Apollo® reaction cocktail was
added in each well and reacted for 30min. Then, the cells
were stained with 100μL of Hoechst 33342 (5μg/mL) for
30min and visualized under a fluorescent microscope.

2.7. RNA Isolation and Real-Time PCR Analysis. The mRNA
levels of miR-137 and calpain-2 were quantified by real-time
PCR. In brief, total RNA of pulmonary arteries and PASMCs
was extracted by TRIzol reagent (Invitrogen, Carlsbad, CA)
and the concentration and quality of RNA were confirmed
by spectrophotometric method. Prime Script reverse tran-
scription reagent Kit (DRR037S; TaKaRa) was used for
RNA reverse transcription reaction. ABI Prism 7300 real-
time PCR system (Applied Biosystems) with SYBR Premix
Ex Taq (DRR041A; TaKaRa) was used for quantitative anal-
ysis of mRNA expression. Primers for calpain-2: (F) CCAG
AAGTTGGTGAAAGGACA and (R) CTGCCGTTCTG
TTAGATTTGC and β-actin: (F) TGTCACCAACTGGG
ACGATA and (R) ACCCTCATAGATGGGCACAG. For
the detection of miR-137, Bulge-Loop miRNA Primers
(Ribobio) were replaced oligo and random primers during
reverse transcription reaction. Data analysis was performed
by comparative Ct method using the ABI software. β-Actin
and U6 were used to normalize the expression level of
mRNAs and miRNAs, respectively.

2.8. Reverse Transcriptase Polymerase Chain Reaction
(RT-PCR). Preparation of cDNA was carried out from 2μg
of total RNA using the TranScript One-Step gDNA Removal
and cDNA Synthesis SupperMix for RT-PCR (TransGen
Biotech, China) according to the manufacturer’s instructions.
Semiquantitative RT-PCR cDNA was amplified in a 25μL
reaction volume containing 2.5mM dNTPs, 10μM specific-
primers, 10×EasyTag buffer, and 1U of EasyTag DNA Poly-
merase (TransGen Biotech, China). After initial denaturation
at 94°C for 5min, PCR was carried out for 35 cycles with
denaturation for 30 s at 94°C, annealing for 30 s at 56°C for
PCNA and beta-actin, and extension for 1min at 72°C
followed by afinalextension of 10min at 72°C. Primers for
PCNA: (F) TACAAGCAACTTCCCATTCCA and (R)
TCAGCAAACACAACTCCTCCT and β-actin: (F) CCCA
TCTATGAGGGTTACGC and (R) TTTAATGTCACGCA
CGATTTC. The PCR products were visualized by electro-
phoresis with an ethidium bromide-stained 1.5% agarosegel.
The densitometric analysis was conducted with UVP Bioi-
maging System (BioDoc, USA).

2.9. Western Blot Analysis. Proteins were extracted from cul-
tured PASMCs and pulmonary arteries with RIPA buffer
(contain 1% PMSF) for 30min on ice and quantified by
BCA kit (P0010, Beyotime, China). About 20~60μg protein
of each sample was separated by 10% SDS-polyacrylamide
gels and transferred onto PVDF membranes. Membranes
were blocked with 5% skim milk for 1 h and then incubated
with primary antibodies for calpain-2 (ab39165, Abcam,
1 : 1000), PCNA (A0264, ABclonal, 1 : 1000), and β-actin
(AF0003, Beyotime, 1 : 1000) and subsequently incubated
with horseradish peroxidase- (HRP-) coupled goat anti-
rabbit (A0208, Beyotime, 1 : 1000) and HRP-coupled goat
anti-mouse (A0216, Beyotime, 1 : 1000). The chemilumines-
cence signals were visualized with the LuminataTM Crescendo
substrate (WBLUR0100,Millipore). The densitometric analysis
was conducted with ChemiDoc XRS+ system (Bio-Rad Co.
Ltd., USA).

2.10. Luciferase Assay. The 3′-UTR of calpain-2 mRNA with
putative/mutant miR-137 binding site was cloned into the
firefly luciferase reporter construct pmiR-RB-ReportTM
Vector (Ribobio, Guangzhou, China). Firefly luciferase
(Luc) acts as a control, and renilla luciferase (Rluc) acts as
a reporter. For the reporter assay, PASMCs grown in
96-well plates were cotransfected with calpain-2-3′-UTR-
Luc (2μg) and miR-137 mimic (50 nM) by ribo FECT™ CP
transfection kit. Dual-Luciferase® Reporter Assay System
(E1910, Promega) was used to detect the renilla and firefly
luciferase activities after incubation for 48 h.

2.11. Statistics. Data were shown as mean ± S:E:M:ðstandard
errorsÞ. Statistical analysis was performed by the permutation
test when the sample size is only 3 and by Student’s t-test for
two groups or by one-way ANOVA followed by Student-
Newman-Keuls test for multiple groups when the sample size
is greater than 3. A value of p less than 0.05 was considered to
be statistically significant. All statistical analyses were per-
formed by the SPSS18.0 software, and GraphPad Prism 7
was used for drawing figures.

3. Results

3.1. miR-137 Was Downregulated in Remodeled Pulmonary
Arteries and Hypoxia-Treated PASMCs in Hypoxic PH. To
induce hypoxic PH, the rats were exposed to hypoxia (10%
O2) for 21 days. As keeping with our previous study [10],
PAAT/PAET (Figure 1(a)) was markedly decreased in the
hypoxia group; meanwhile, mPAP (Figure 1(b)), RVSP
(Figure 1(c)), and the right heart remodeling index
RV/(LV+S) (Figure 1(d)) were significantly increased in the
hypoxia group. The body weight of hypoxic PH rats was
decreased compared with the control group (Figure 1(e)).
HE staining demonstrated that hypoxia induced obvious
thickening of the pulmonary vascular wall and the stenosis
of the lumen (Figure 1(f)).

Accordance to our pilot study based on the microarray
assay (mentioned in Introduction), the expression of miR-
137 was measured in pulmonary arteries and PASMCs. As
shown in Figures 1(g) and 1(h), hypoxia significantly
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downregulated the expression of miR-137 in pulmonary arter-
ies of hypoxic PH rats. As expected, PASMCs exposed to 3%
O2 for different times (6h, 12h, 24h, 48h, and 72h) showed
significant proliferation in a time-dependent manner
(Figures 1(i) and 1(j)). With the proliferation of hypoxia-
induced PASMCs, hypoxia also significantly downregulated
the expression of miR-137 in PASMCs (Figure 1(k)).

3.2. miR-137 Inhibited Hypoxia-Induced Proliferation of
PASMCs. As mentioned above, miR-137 regulates the prolif-
eration of a variety of tumor cells [11, 12]. We therefore
explored the regulatory effect of miR-137 on hypoxia-
induced proliferation of PASMCs by transfecting the mimic
of miR-137. The results demonstrated that the transfection
of miR-137 mimic significantly increased the expression of
miR-137 (Figure 2(a)) and remarkably relieved hypoxia-
induced the proliferation of PASMCs (Figures 2(b)–2(f)).

3.3. miR-137 Inhibitor Induced the Proliferation of PASMCs.
To further confirm the role of miR-137 in the proliferation
of PASMCs, we transfected the inhibitor of miR-137
(100 nM) to PASMCs under normoxia. As Figure 3 shown,
miR-137 inhibitor decreased the expression of miR-137
(Figure 3(a)) and induced the proliferation of PASMCs
(Figures 3(b)–3(f)).

3.4. Hypoxia Induced the Expression of Calpain-2. It has well
been documented that calpain-2 is mediated in promoting
the proliferation of PASMCs, thereby resulting to pulmo-
nary arterial remodeling in hypoxic PH [6–8]. In our setting,
we therefore measured the expression of calpain-2 and found
that exposure of rats to continuity hypoxia (10% O2) for 21
days significantly upregulated the protein expression of
calpain-2 in pulmonary arteries (Figure 4(b)) but not the
expression of calpain-2 mRNA meanwhile (Figure 4(a)).
Accordantly, treatment of PASMCs with 3% O2 for 6h, 12h,

24h, and 48h also upregulated the mRNA and protein expres-
sion of calpain-2 in a time-dependent manner (Figures 4(c)
and 4(d)).

3.5. miR-137 Inhibited Hypoxia-Induced Upregulation of
Calpain-2 Expression. It has been documented that miR-
137 inhibits the mRNA of calpain-2 by directly targeting at
3′-UTR of calpain-2 [14, 16]. To explore whether miR-137
targets 3′-UTR of calpain-2 mRNA in PASMCs, we mutated
the putative binding site (Figure 5(a)). As shown in
Figure 5(b), miR-137 mimic significantly downregulated
the fluorescence values of wild-type vectors, whereas lucifer-
ase activity was unchanged using 3′-UTR binding site-
mutated construct. These results indicated that miR-137
repressed the translation of calpain-2 mRNA by binding to
its 3′-UTR. We then observed the effect of the transfection
of miR-137 mimic on the expression of calpain-2 in
PASMCs and found that miR-137 mimic downregulated
the expression of calpain-2 mRNA and protein expression
under normoxic condition (Figures 5(c) and 5(d)). It is of
note that miR-137 mimic (25 nM) reversed the upregulated
expression of calpain-2 (both mRNA and protein) induced
by hypoxia (Figures 5(e) and 5(f)).

3.6. Knockdown of Calpain-2 Inhibited Hypoxia-Induced
PASMC Proliferation. Inhibition of calpain-2 has been
shown to attenuate proliferation of PASMCs induced by
PH mediators (platelet-derived growth factor [PDGF], sero-
tonin [5-HT], and interleukin 6 [IL-6]) [17, 18]. In this
study, we therefore used the calpain-2 small interfering
RNA (siRNA) to knock down the expression of calpain-2
mRNA to explore whether calpain-2 mediates hypoxia-
induced PASMC proliferation. Different fragments and dif-
ferent concentrations of calpain-2 siRNA were transfected
into PASMCs, resulting in the decrease of calpain-2 mRNA
and protein expression in PASMCs, especially the effect of
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fragment 2 of calpain-2 siRNAs in a concentration-dependent
manner (Figures 6(a) and 6(b)). Then, we used the fragment 2
of calpain-2 siRNAs at the concentration of 40nM for the sub-
sequent experiments. The MTS and EDU assay showed that
knockdown of calpain-2 inhibited hypoxia-induced prolifera-
tion of PASMCs (Figures 6(c)–6(e)).

4. Discussion

This study represents the first evidence of the role of miR-
137 in mediating hypoxia-induced proliferation of PASMCs,
thereby potentially contributing to pulmonary arterial
remodeling in PH. The main findings of the present study
are as follows: (1) miR-137 was downregulated in pulmo-
nary arteries of hypoxic PH rats and hypoxia-treated
PASMCs; (2) miR-137 mimic inhibited hypoxia-induced
proliferation of PASMCs by targeting calpain-2, and miR-
137 inhibitor induced the proliferation of PASMCs under
normoxia; (3) knockdown of calpain-2 by siRNA suppressed
hypoxia-induced proliferation of PASMCs.

Hypoxia is one of the commonest causes of PH [19].
Hypoxia not only causes vasoconstriction by activating
voltage-gated calcium channels resulting to increased cyto-
solic calcium of PASMCs, but also leads to pulmonary
vascular remodeling by activating rho kinase and hypoxia-
inducible factor- (HIF-) 1α [20]. Hypoxia also compels the
differential expression of miRNAs through response ele-
ments in their promoters of HIF-1 or through indirect
hypoxia-associated stimulus [21]. The role of several miR-
NAs including miR-206 [22], miR-130/301 [23], miR-
103/107 [24], miR-150 [25], miR-let-7g [6, 10], miR-17/92
[26], miR-92b-3p [27], miR-204 [28], and miR-27a [29] in

hypoxic pulmonary arterial remodeling has been reported.
The present study found for the first time that miR-137
was downregulated in pulmonary arteries of hypoxic PH rats
and hypoxia-treated PASMCs. Studies have reported that
the downregulation of miR-137 expression is caused by the
ubiquitous in hypoxic-microenvironment [30], and that
miR-137 is silenced by methylation and reduction of hyper-
methylation of the miR-137 promoter by inhibiting DNA
methyltransferase which promotes its reexpression in hypoxia
condition [31, 32]. In our setting, whether these potential
mechanisms are involved in hypoxia-induced, the downregu-
lation of miR-137 expression needs further investigation.

In a variety of cancer cells, miR-137 is significantly
downregulated, and transfection of miR-137 mimic to
restore miR-137 expression results in significant inhibition
of cell proliferation, migration, and epithelial-mesenchymal
transition [11, 12, 33]. miR-137 also regulates nervous sys-
tem development and synaptic plasticity [13, 34]. In high
glucose-induced human umbilical vein endothelial cell
injury, miR-137 is significantly upregulated and inhibition
of miR-137 inhibits oxidative stress and cell apoptosis [35].
In PDGF-induced proliferation of vascular smooth muscle
cells, miR-137 is significantly downregulated and overex-
pression of miR-137 suppresses the cell proliferation and
migration by suppressing the activity of mTOR/Stat3 signal-
ing [36]. As we described above, excessive proliferation of
PASMCs is the most important cause of pulmonary vascular
remodeling in PH [37]. In this study, we for the first time
found that miR-137 mediated the pathogenesis of hypoxic
PH by inhibiting the proliferation of PASMCs. However,
the destruction of vascular intima after vascular endothelial
cell injury is usually the starting point of cardiovascular
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proliferation of PASMCs was detected by MTS assay (n = 6). (c) Statistic diagram of EDU staining (n = 3). (d) PASMCs were transfected
with miR-137 mimic (25 nM), and the proliferation of PASMCs was detected by EDU staining. (e) PASMCs were transfected with miR-137
mimic (25 nM), and RT-PCR was used to detect the mRNA expression of PCNA, a marker of cell proliferation (n = 3). (f) PASMCs were
transfected with miR-137 mimic (25 nM), and Western blot detected the protein expression of PCNA (n = 3). The data are presented as
means ± S:E:M:; ∗p < 0:05 and ∗∗p < 0:01 vs. control and #p < 0:05 and ##p < 0:01 vs. hypoxia.
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Figure 3: miR-137 inhibitor induced the proliferation of PASMCs. (a) PASMCs were transfected with miR-137 inhibitor (100 nM), and the
expression of miR-137 was detected by real-time PCR (n = 4). (b) PASMCs were transfected with miR-137 inhibitor (100 nM), and the
proliferation of PASMCs was detected by MTS assay (n = 4). (c) Statistic diagram of EDU staining (n = 3). (d) PASMCs were transfected
with miR-137 inhibitor (100 nM), and the proliferation of PASMCs was detected by EDU staining. (e) PASMCs were transfected with
miR-137 inhibitor (100nM), and RT-PCR was used to detect the mRNA expression of PCNA (n = 3). (f) PASMCs were transfected with
miR-137 inhibitor (100 nM), and Western blot detected the protein expression of PCNA (n = 3). The data are presented as means ± S:E:M:;
∗p < 0:05 and ∗∗p < 0:01 vs. control.
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diseases. In the process of PH, apoptosis, necrosis, and endo-
thelial to mesenchymal transition occur in pulmonary arte-
rial endothelial cells [38]. Therefore, the role of miR-137 in
pulmonary arterial endothelial functions also deserves to
be further studied.

miRNAs bind to the 3′-UTR of target genes, resulting in
inhibition of the target genes, to participate in physiological
process and the pathogenesis of diseases. Bioinformatic anal-
ysis suggests that a potential binding element for miR-137 is
contained in the 3′-UTR of calpain-2. Studies have demon-
strated that miR-137 binds to 3′-UTR of calpain-2 to inhibit
the expression of calpain-2 [14, 16, 39]. In this study, miR-
137 also suppressed the translation of calpain-2 mRNA by
binding to its 3′-UTR, suggesting that the calpain-2 is a
direct target of miR-137 in hypoxia which induced the pro-
liferation of PASMCs. Moreover, as we described above,
miR-137 mediates the PDGF which induced the prolifera-
tion of VSMCs by regulating the activity of mTOR/Stat3 sig-
naling. Stat3 has been demonstrated as a key mediator of PH
pathology, and the inappropriate Stat3 activation in PH has
been linked to miRNA expression, such as miR-204 and

miR-17/92 [40]. Therefore, whether not only calpain-2 but
also Stat3 participates in the proliferation of PASMCs medi-
ated by miR-137 in hypoxic PH or other category of PH
needs further investigation.

Calpain-2 (m-calpain) belongs to calpain family, which
is activated by hypoxia-induced intracellular calcium fluxes.
Our previous study found that calpain-1/2/4 expression was
increased in pulmonary arteries of hypoxic PH rats, and the
specific calpain inhibitor MDL28170 inhibited hypoxia-
induced PASMC proliferation [7]. Others have also reported
that global knockout or smooth muscle specific knockout of
calpain-4 and MDL28170 prevent pulmonary vascular
remodeling of MCT- or hypoxia-induced PH and EGF-
and PDGF-BB-induced cell proliferation of PASMCs [8,
17, 18]. In this study, knockdown of calpain-2 by siRNA
inhibited hypoxia-induced proliferation of PASMCs. Bioin-
formatic analysis showed that calpain-1/4 may be not targets
of miR-137 (data not shown). Notably, calpain-1 has been
implicated strongly in cell motility and adhesion, while
calpain-2 has been implicated strongly in cell proliferation
[41]. Emerging evidence has suggested an important role of
calpain-2 in proliferation of PASMCs. In hyperproliferated
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Figure 4: Calpain-2 was upregulated in remodeled pulmonary arteries and hypoxia-treated PASMCs. (a) The mRNA expression of calpain-2 in
the pulmonary arteries of rats (n = 8). (b) The protein expression of calpain-2 in the pulmonary arteries of rats (n = 8). (c) ThemRNA expression
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Figure 5: miR-137 inhibited hypoxia-induced upregulation of calpain-2 expression. (a) The putative binding site of miR-137 in 3′-UTR of
calapin-2 mRNA. (b) Luciferase analysis for examining whether miR-137 targets 3′-UTR of calpain-2 mRNA (n = 3). (c) The mRNA
expression of calpain-2 in PASMCs after transfecting miR-137 mimic under normoxic condition (n = 5). (d) The protein expression of
calpain-2 in PASMCs after transfecting miR-137 mimic (25 nM) under normoxic condition (n = 3). (e) The mRNA expression of
calpain-2 in PASMCs after transfecting miR-137 mimic (25 nM) under hypoxic condition (n = 4). (f) The protein expression of calpain-2
in PASMCs after transfecting miR-137 mimic (25 nM) under hypoxic condition (n = 4). WT: wild type; Mut: mutant; NC: negative
control. The data are presented as means ± S:E:M:; ∗p < 0:05 and ∗∗p < 0:01 vs. control or WT+NC control and ##p < 0:01 vs. hypoxia.
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Figure 6: Knockdown of calpain-2 inhibited hypoxia-induced proliferation of PASMCs. (a) PASMCs were transfected with calpain-2 siRNA,
and the mRNA expression of calpain-2 was detected by real-time PCR (n = 3). (b) PASMCs were transfected with calpain-2 siRNA, and the
protein expression of calpain-2 was detected by Western blot (n = 3). (c) PASMCs were transfected with calpain-2 siRNA (40 nM), and
the proliferation of PASMCs was detected by MTS assay (n = 4). (d) PASMCs were transfected with calpain-2 siRNA (40 nM), and the
proliferation of PASMCs was detected by EDU staining. (e) Statistic diagram of EDU staining (n = 3). The data are presented as
means ± S:E:M:; ∗∗p < 0:01 vs. control and ##p < 0:01 vs. hypoxia.
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PASMCs treated with PH mediators (PDGF, 5-HT, and IL-6),
the extracellular signal-regulated kinase (ERK) 1/2 activated
calpain-2 through phosphorylation of calpain-2 at Ser50 and
ERK-1/2 inhibitor PD98059 or knockdown of calpain-2 pre-
vented calpain activation, resulting in inhibition of prolifera-
tion of PASMCs [21, 42]. In this study, we demonstrated
that miR-137 mimic reduced the expressions of calpain-2,
but not measured the activity of calpain-2. However, there is
a study showing that miR-137 mimic pretreatment effectively
prevented the oxygen-glucose deprivation and reperfusion-
induced [Ca2+] increase, whereas the miR-137 inhibitor
aggravated the [Ca2+] increase [39]. Given that increased intra-
cellular [Ca2+] levels can activate calpain-2, we speculate that
miR-137 mediates the activation of calpain-2 by regulating
the concentration of [Ca2+] in hypoxic PH. Calpain-2 upregu-
lated Akt phosphorylation via an intracrine transforming
growth factor-β 1 (TGF-β1)/mammalian target of rapamycin
complex 2 (mTORC2) mechanism, resulting in proliferation
of PASMCs treated with PDGF [17]. Intracrine TGF-β1 path-
way is initiated by calpain-mediated cleavage and activation of
latent TGF-β1 in the Golgi complex [8]. Study has reported
that bone morphogenetic protein 4 (BMP4) inhibits PDGF-
stimulated calpain activation and subsequent intracrine TGF-
β1-Smad 2/3 pathway in PASMCs [43]. All findings suggest
that calpain-2 is expected to be a potential therapeutic target
for proliferation of PASMCs, further for PH (Figure 7).

In the present study, we found that calpain-2, as a target of
miR-137, was upregulated with the downregulation of miR-
137 in hypoxic PH. However, studies have also demonstrated
that protein level of calpain-2 is regulated by miR-223 acting
directly on the 3′-UTR of calpain-2 mRNA as well as by
miR-145, which acts via an increase in histone deacetylase 2,
and histone deacetylase 2 transcriptionally inhibits calpain-2
expression by hyperacetylation of the promoter of calpain-2
gene in endothelial cells [9, 44]. Therefore, whether there also
exist other miRNAs targeted calpain-2 to participate in the
proliferation of PASMCs in hypoxic PH or other category of
PH needs further investigation. Furthermore, besides calcium
channels, potassium channels have also been reported to reg-
ulate calpain activity. Potassium channel dysfunction in
PASMCs is a hallmark of PH. Transient transfection of a Kv
channel or a K+ channel activator increases K+ efflux to
enhance PASMC death [45, 46]. The decrease of K+ channel
expression, such as Kv1.5 and Kv1.2, leads to the proliferation
of PASMCs [47]. The opening of potassium channels pro-
motes cell membrane hyperpolarization and reduces calcium
overload. In a hypoxic environment, cell membrane depolari-
zation inhibits the opening of potassium channels, which in
turn promotes the increase of cytoplasmic free calcium con-
centration resulting in calpain-2 activation [48]. Therefore,
the activation of calpain-2 may also be involved in the potas-
sium channel-mediated proliferation of PASMCs.

In spite of the foregoing important findings, the present
study has indeed some limitations. Transgenic or gene knock-
out animals of miRNA-137 and calpain-2 need to be intro-
duced to further prove the in vivo functions of miRNA-137
and calpain-2 in pulmonary vascular remodeling and further
confirm the inhibitory effect of miR-137 in hypoxia-induced
proliferation of PASMCs by targeting calpain-2.

In conclusion, the present study for the first time
demonstrated that hypoxia-induced downregulation of miR-
137 promoted PASMC proliferation by targeting calpain-2.
miR-137, a new miRNA involved in proliferation of PASMCs,
further in pulmonary vascular remodeling of PH, would be a
novel potential therapeutic target for PH.
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