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This paper incorporates the adaptive neurofuzzy inference system (ANFIS) technique to model the yield of bio-oil. The estimation
of this parameter was performed according to pyrolysis conditions and biomass compositions of feedstock. For this purpose, this
paper innovates two optimization methods including a genetic algorithm (GA) and particle swarm optimization (PSO). Primary
data were gathered from previous studies and included 244 data of biodiesel oils. The findings showed a coefficient determination
(R2) of 0.937 and RMSE of 2.1053 for the GA-ANFIS model, and a coefficient determination (R2) of 0.968 and RMSE of 1.4443 for
PSO-ANFIS. This study indicates the capability of the PSO-ANFIS algorithm in the estimation of the bio-oil yield. According to
the performed analysis, this model shows a higher ability than the previously presented models in predicting the target values and
can be a suitable alternative to time-consuming and difficult experimental tests.

1. Introduction

Bioenergy is by far the most successful and sustainable
future path [1]. The primary source of energy today is fossil
fuels that have enormously negative environmental conse-
quences, causing many issues around the world [2]. Thank-
fully, biomass energy with neutral carbons is a viable means
of addressing both energy needs and environmental issues
[3, 4]. In addition, a massive quantity of potential supplies
is analyzed each year [5–7]. Thermochemical and biochem-
ical conversions are the procedures appropriate for efficient
biomass consumption, which are currently being researched.
Thermochemical conversion has drawn the attention of
researchers in recent years due to the elevated level of con-
version performance besides minimal costs [8]. Pyrolysis is
a thermochemical conversion method that involves heating
feedstock in an inert environment or oxygen-deficient atmo-

sphere to generate biochar, bio-oils, and noncondensable gas
[9]. Bio-oils are liquid substances that typically contain over
350 chemicals, including several materials in short supply
[10]. Furthermore, provided bio-oil is properly improved,
it has the potential to be a viable alternative energy source,
compared to fossil fuels. Moreover, the bio-oil hydrogen
content typically represents the heating efficiency and chem-
ical composition (i.e., bio-oil efficiency), whereas the yield
refers to the amount of bio-oil. The quality of bio-oils and
their quantity are primarily determined by biomass feed-
stock as well as pyrolysis circumstances [11]. Using proxi-
mate and ultimate analyses can generally produce data on
various biomasses. The proximate analysis could be used to
establish the concentration of fixed carbon, ash, and volatile
material. The organic compartment in the biomass is deter-
mined by the amount of fixed carbon and volatile material,
whereas the ash usually reflects inorganic salts. In the
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meantime, the content of basic elements (i.e., C−H−N−O) is
primarily defined by ultimate analysis. The pyrolysis circum-
stances include the temperature, the size of the particles,
heating rate, and residence period during the pyrolysis pro-
cess. As a result, several inquiries have been launched in the
field of study. Akhtar and Amin reported that the intermedi-
ate pyrolysis temperature (500−550°C) normally increased
the yield of bio-oil to the maximum extent [12]. Gholizadeh
and colleagues reported that the production of bio-oil from
herbaceous biomass was smaller compared with that
obtained from woody biomass. In addition, the amount of
hydrogen in bio-oil was usually greater than in feedstock
[13]. Chiodo et al. realized that bio-oils extracted from
woody biomass possess more amounts of hydrogen than
that from algae, resulting in a greater thermal output [14].
Nonetheless, the relationship between bio-oil characteristics
containing biomass compositions and operational parame-
ters remains unclear, due to experimental and financial
constraints. The linear regression approach is the most com-
monly used method for detecting variable correlation. Li
et al. investigated the relationship between the distribution
of bio-oil compounds and feedstock features using linear
regression [15]. Oasmaa et al. established the association
between the organic and ash amounts [16]. While the output
of linear regression can be undesirable in the presence of a
nonlinear association between variables, after the emergence
of artificial intelligence, several new approaches were applied
to conventional studies and yielded suitable results [17–24].
Cao et al. used a least-squares support vector machine (LM-
SVM) and an artificial neural network (ANN) to reliably
estimate biochar yields from cattle manure [25]. Sun et al.
used the Levenberg Marquardt ANN approach to specifi-
cally assess the significance of every variable for the gas yield
[26]. Satisfactorily, the ANN method was used by Naqvi
et al. to research the mechanism of the reaction according
to data related to copyrolysis thermal decomposition [27].
SVM and ANN models were developed by Xing et al. to
thoroughly make an estimation of the biomass heating rate
by proximate and ultimate analyses [28]. The entire models
aided researchers in evaluating a specific outcome without
running tests, besides expanding their understanding of the
biomass pyrolysis mechanism. Nonetheless, these models
were mostly concerned with estimation, leaving the finer
knowledge to be retrieved. Random forest (RF) is defined
as an ensemble study approach focused on tree predictors
that can solve regression and classification problems [29].
Zhu et al. skillfully and accurately predicted biochar yields
by the use of the RF approach, and, at the same time, they
established associations between biochar production, bio-
mass structural details, and pyrolysis circumstances [30].
Using the RF model, Xing et al. accurately predicted the bio-
mass chemical composition from the ultimate analysis [31].
Due to the properties of the ensemble analysis, the RF
approach can achieve higher training rates and superior
productivity than other estimation techniques. Further,
high-dimensional properties and feature correlations can
be addressed and established using the RF procedure.

In this paper, for the first time, attempts have been made
to estimate models using the two models GA- and PSO-
ANFIS. For this purpose, first, the relevant input data affect-

ing the output parameter were collected, and then, this issue
was modeled. Finally, in order to evaluate the strength of
these models, various statistical analyses were used.

2. Theory

2.1. The Adaptive Neurofuzzy Inference System. As a general
guideline, a Takagi-Sugeno fuzzy rule and input-output var-
iables form the basis of an adaptive neurofuzzy inference
system (ANFIS). Generally, an adaptive neurofuzzy infer-
ence system (ANFIS) involves input-output variables and a
Takagi-Sugeno fuzzy rule [32–34]. An adaptive, multilayer,
and feed-forward network described by ANFIS can be sim-
plified by expressing it as two inputs ðx, yÞ and one output
ðzÞ. The ANFIS model is an adaptive, multilayer, and feed-
forward network that, for the sake of simplicity, can be
expressed with two inputs ðx, yÞ and one output ðzÞ. Follow-
ing that, two different if-then fuzzy rules are set for a first-
order Sugeno fuzzy model to determine the matching
principle. Next, the matching principle is set with two differ-
ent if-then fuzzy rules for a first-order Sugeno fuzzy model:

Rule 1 : if x isA1 and y isB1, thenZ1 = P1x + q1y + r1,

Rule 2 : if x isA2 and y isB2, thenZ2 = P2x + q2y + r2:

ð1Þ

This equation evaluates entries through linguistic B1 as
well as A1 variable entries of this equation are evaluated
through linguistic A1 and B1 variables. In order to calculate
the outcome of every rule, the inputs with the constant term
(r) can be linearly combined. The results of each rule can be
calculated using a linear combination of the inputs with the
constant term (r). There are five layers in ANFIS architec-
ture, with the first layer undergoing fuzzification to map
the x and y variables (inputs) into fuzzy sets (that is, A1,
A2, B1, and B2). The membership grades for square nodes
are determined by node functions. Each square node gener-
ates membership grades using node functions. An alterna-
tive to linguistic labels (for example, high and low) uses
symbols such as A and B. Instead of linguistic labels (e.g.,
high and low), characters such as A and B are used. The
labels are classified according to their membership func-
tions; for example, different membership functions serve to
characterize the labels, e.g., the sigmoid, triangular, and gen-
eralized bell functions. Various sets of fuzzy inputs and
firing strength are used in layer two. There exist combina-
tions of fuzzy sets of inputs in layer two and the use of firing
strength. The fuzzy conjunction “and” is successfully utilized
by the G-norm operator to locate the output in this layer. In
this layer, a G-norm operator successfully performs the
fuzzy conjunction “and” to find the output. Calculation of
the ith rule ratio is done at the third layer. The third layer
involves calculating the ratio of the ith rule. At the fourth
layer, a function of the Sugeno fuzzy rule is multiplied by
the output of the three previous layers. Next, in the fourth
layer, the output of the three former layers is multiplied by
the function of the Sugeno fuzzy rule. One node in the fifth
and last layer is responsible for computing and summarizing
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each rule output from the previous layer. The fifth and final
layer, which contains a single node, involves the summation
and calculation of the outputs associated with each rule from
the fourth layer. The next step is the application of the
weight average method to perform defuzzification. Next,
the weight averaged approach is incorporated to carry out
the defuzzification process. During this process, fuzzy out-
puts are transformed into crisp ones. This process results

in a crisp output by transforming the fuzzy outputs. ANFIS
parameters fall into the consequent and the premise parts
depending on whether linear or nonlinear parameters are
used. ANFIS parameters can be classified into two catego-
ries: linear parameters in the consequent part and nonlinear
in the premise part. The parameters can be optimized by
gradient descent or steepest descent, among other methods.
These parameters can be optimized through a variety of
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Figure 1: Simultaneous and visual comparison between actual and modeled output data for models (a) GA-ANFIS and (b) PSO-ANFIS.

Table 1: The values of different statistical parameters obtained for the models.

Model Phase R2 MRE (%) MSE RMSE STD

GA-ANFIS

Train 0.937 5.077 4.244909156 2.0603 1.4186

Test 0.937 5.693 4.432311766 2.1053 1.3085

Total 0.937 5.231 4.291759808 2.1053 1.3910

PSO-ANFIS

Train 0.968 3.323 2.180267641 1.4766 1.0671

Test 0.969 3.876 2.086124383 1.4443 0.9936

Total 0.968 3.461 2.156731826 1.4443 1.0473
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methods, such as gradient descent and steepest descent
methods. However, the hybrid learning method is much
more effective. Yet, much higher efficiency can be achieved
through the hybrid learning method [32].

2.2. Particle Swarm Optimization (PSO). The fundamental
knowledge for PSO came from configuring natural popula-
tions (e.g., birds) [35, 36]. In PSO, the optimizing problem
is the particle and the answer is obtained through generation
update. The swarm denotes the total number of particles
[37]. This way, the particle is considered as an individual
and the swarm as a population. The above expressions also
exist in most other evolutionary methods, such as genetic
algorithms (GA) [38]. However, the evolutionary type oper-
ators (e.g., mutations) do not exist in PSO [37]. Particles,
during the process of finding the optimal answer, search
for the problem domain and, in the meantime, are affected
by their topological neighborhoods (e.g., queen, physical,
and social) [39]. Equation (2) calculates the ith particle
velocity. In this equation, vi ðtÞ depicts the velocity vector
and xi ðtÞ represents the position vector [38, 40].

vid t + 1ð Þ = c1r1 pbest, id tð Þð Þ − xid tð ÞÞ +wvid tð Þ
+ c2r2 gbest, id tð Þ − xid tð Þð Þ, d = 1, 2,⋯,D:

ð2Þ

Additionally, pbest, id represents the best position, w is
representative of the inertia’s weight, and gbest, id represents
the best global position of the ith particle. Random coeffi-
cients are represented by r1 and r2, together with the degrees
of learning by c1 and c2 [41]. In Equation (2), the first term is
a cognitive element directing the movements in particles and
the second term denotes the previous movement route
memory, and finally, the last term serves to assess the parti-
cle action in comparison with its neighborhood [35, 38].
Equation (3) provides an integrating process that helps cal-
culate the position vector.

xid t + 1ð Þ = xid tð Þ + vid t + 1ð Þ, d = 1, 2,⋯,D: ð3Þ

2.3. Genetic Algorithm (GA). An evolutionary heuristic algo-
rithm such as GA imitates the natural process of evolution to
optimization. To resolve optimization issues, the GA can be
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Figure 2: Cross-plot diagrams obtained using different models: (a) GA-ANFIS and (b) PSO-ANFIS.
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used to calculate the best solution. Holland developed GA
when he utilized a common functional framework in 1975
[42, 43]. The development of the algorithm was inspired
by Darwin’s natural selection theory. In fact, the GA method
makes it possible to renew the genetic behavior observed in a
biological population. Generally, chromosomes, also known
as individuals, are referred to as candidate answers to a par-
ticular problem in the GA which typically comprises a linear
array of genes. By randomly using the generated design pop-
ulations, the search process is started. The search process
does not require the definition of starting points because it
is iterative. In the GA technique, the multiplication from
one generation to the subsequent generation is performed
by three operators during the optimization. When GA takes
into account the theory of a greater chance of survival in
order to generate design solutions, the “Selection” operator
is the first operand. At all stages of the process of selection,
these solutions must be compatible with their environment.
“Crossover” is the second operator, and it triggers mating
among the biological populations. Crossover operators
ensure that fitting surviving characteristics are transferred

from the current to subsequent populations. With this
method, it is more likely that arbitrarily surviving will be
included in the population. “Mutation” is the third operator
responsible for creating heterogeneity in the characteristics
of the population. According to Dutch (1975), Hasan, and
Cohanim et al. (2005), mutation operator performs the
worldwide search in the search space and also does not allow
the genetic algorithm located in local minima.

3. Data Bank

From previous researches, a total of 244 samples involving
biodiesel oil yield on the basis of pyrolysis conditions and
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Figure 3: Relative derivation diagrams of (a) GA-ANFIS and (b) PSO-ANFIS models to evaluate their accuracy.

Table 2: Statistical comparison of the performance of different
models in assessing the target values.

Model R2 RMSE

RF 0.87 3.05

MLR 0.284 7.96

PSO-ANFIS 0.968 1.4443

5BioMed Research International



biomass compositions of feedstock were gathered [44]. The
samples were categorized into a training cluster (183 sam-
ples) and a test group (61 samples).

4. Model Results

Methods such as STD, MSE, RMSE, MRE %, and R2 were
used to analyze the obtained yield values (Table 1) against
real data. The statistical parameters were derived from the
formulas as follows [45–49]:

R2 = 1 −
∑n

i=1 xsimi − xexpi

� �2
∑n

i=1 xsimi − xm
� �2 , xm =

∑n
i=1x

exp
i

n
, ð4Þ

MRE =
1
N
〠
N

i=1

xexpi − xsimi
�� ��

xexpi

, ð5Þ

MSE =
1
n
〠
n

i=1
xexpi − xsimi
� �2, ð6Þ

RMSE =
1
N
〠
N

i=1
xexpi − Yxsimi
� �2

 !0:5

, ð7Þ

STD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
n

i=1

xsimi − xm
� �2

n

 !
:

vuut ð8Þ

In Equations (4)–(8), the character xexpi denotes the
experimental target value, and xsimi represents the simulated
value. The number of experimental data is shown by n.

Table 1 displays the data calculated for these parameters. A
more favorable model has smaller RMSE, MRE, MSE, STD,
and larger R2. As is observed, the GA-ANFIS method is
not as precise in training, testing, and total datasets com-
pared with the PSO-ANFIS model (see Table 1).

Figure 1 outlines empirical data and the estimated yield
values to represent predictive capability and the liability of
the models. As can be observed, the concordance between
the obtained and actual data regarding the efficiency of the
models is exceptional.

Figure 2 displays the yield values obtained through
models and experimental data. It shows a nearly straight line
at the angle of 45° which confirms the ability of the model in
producing accurate results. The displayed data indicates a
higher level of R2 for the PSO-ANFIS model.

Figure 3 displays the relative derivations of both models.
In estimating the yield values of diesel oils, the maximum
absolute relative derivations of GA-ANFIS is 40% and of
PSO-ANFIS is 23%. The corresponding values for biodiesel
oils are 28 and 21, respectively. The statistical parameters
indicate that the PSO-ANFIS model performs with the high-
est efficiency.

The present study, by comparing and assessing previous
models developed by Tang et al. employing the same dataset
on biodiesel oils [44], concluded that the PSO-ANFIS model
performs more favorably in estimating the yield values. As
seen in Table 2, this model boasts a more precise perfor-
mance in estimation results than other models. The R2 and
RMSE values for different models are as follows.

4.1. Sensitivity Analysis. In Equation (9), the relevancy factor
examines the input parameters affecting yield values [50, 51].
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r =
∑n

i=1 Xk,i − �Xk

� �
Yi − �Y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i=1 xk,i − �xkð Þ2∑n
i=1 Yi − �Y
� �2q : ð9Þ

The ith output is shown by Yi, the output average is shown
by �Y , Xk,i denotes the kth input, and xk denotes the input. The
r value for each parameter is continually less than unity. The
relevancy factor of biodiesel oil yield is shown in Figure 4. It
can be observed that PS, O, N, and V have a negative effect
on yield, and the effect of FR, HR, HTT, H, and C on the out-
put is positive. This means that yield values of biodiesel oils are
decreased by reducing the later parameters. In this figure, the
relevancy factor of diesel oil yield is displayed. The largest
impact on diesel oil yield is indicated for HR and the lowest
for V.

5. Conclusion

The current paper is aimed at estimating the yield for diesel
and biodiesel oils according to pyrolysis conditions and bio-
mass compositions. For this purpose, the present study
designed models using PSO-ANFIS and GA-ANFIS tech-
niques and became the first to succeed in employing these
techniques to estimate the output values. The PSO-ANFIS
model boasts the most precise prognostication of target
values. The raw data incorporated in this study was gathered
from previous accredited researches, and statistical parame-
ters (e.g., R2, %MRE, RMSE, MSE, and STD) in association
with graphical valuations were employed in the testing and
training stages of the model development. The findings
attest to the high quality of performance and accuracy of
the proposed PSO-ANFIS model. Therefore, it can be used
to estimate output values with high accuracy in all related
industries and processes.
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