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Obesity is a public health problem characterized by increased body weight due to abnormal adipose tissue expansion. Bioactive
compound consumption from the diet or intake of dietary supplements is one of the possible ways to control obesity. Natural
products with adipogenesis-regulating potential act as obesity treatments. We evaluated the synergistic antiangiogenesis,
antiadipogenic and antilipogenic efficacy of standardized rebaudioside A, sativoside, and theasaponin E1 formulations (RASE1)
in vitro in human umbilical vein endothelial cells (HUVECs), 3T3-L1 preadipocytes respectively, and in vivo using a high-fat
and carbohydrate diet-induced obesity mouse model. Orlistat was used as a positive control, while untreated cells and animals
were normal controls (NCs). Adipose tissue, liver, and blood were analyzed after dissection. Extracted stevia compounds and
green tea seed saponin E1 exhibited pronounced antiobesity effects when combined. RASE1 inhibited HUVEC proliferation and
tube formation by suppressing VEGFR2, NF-κB, PIK3, and-catenin beta-1 expression levels. RASE1 inhibited 3T3-L1 adipocyte
differentiation and lipid accumulation by downregulating adipogenesis- and lipogenesis-promoting genes. RASE1 oral
administration reduced mouse body and body fat pad weight and blood cholesterol, TG, ALT, AST, glucose, insulin, and
adipokine levels. RASE1 suppressed adipogenic and lipid metabolism gene expression in mouse adipose and liver tissues and
enhanced AMP-activated protein kinase levels in liver and adipose tissues and in serum adiponectin. RASE1 suppressed the NF-
κB pathway and proinflammatory cytokines IL-10, IL-6, and TNF-α levels in mice which involve inflammation and progression
of obesity. The overall results indicate RASE1 is a potential therapeutic formulation and functional food for treating or
preventing obesity and inflammation.

1. Introduction

Obesity is defined as having a body mass index of ≥30 kg/m2

and is a major and complex metabolic disorder characterized
by high body fat accumulation. Obesity is associated with

type II diabetes mellitus, hypertension, coronary heart dis-
ease, fatty liver disease, and different types of cancer [1, 2].
Expansion of adipose tissue due to an imbalance between
energy intake and expenditure results in obesity. This excess
energy is stored in adipose cells, thereby enlarging or
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increasing cell numbers (hypertrophy and hyperplasia,
respectively) [3]. With over 2.1 billion cases being reported,
obesity remains a continuous global epidemic accounting
for approximately 5% of all deaths [4–6]. Obesity has been
reported to lead to cognitive dysfunction, depression, and
emotional trauma, resulting in a poor quality of life [4, 7].

In adipose tissue, adipokines, including monocyte che-
moattractant protein-1, tumor necrosis factor-alpha (TNF-
α), and interleukin 6 (IL-6), play major roles in inflamma-
tion in type 2 diabetes, insulin resistance, cardiovascular
diseases, and cancer [8, 9]. Macrophages associated with
adipocytes in adipose tissues play role in physiological
energy metabolism and homeostasis however in chronic
energy surplus conditions macrophages develop chronic
inflammation and contribute to the expansion and progres-
sion of the adipose tissues by secreting the proinflammatory
cytokines IL-1, IL-6, and TNF alpha [10, 11]. Hence, the
molecular mechanisms underlying adipocyte differentiation,
physiology, and morphology must be investigated to con-
tribute to the overall understanding of adiposity and to
develop new ways to combat inflammation, obesity, and
associated complications. Information regarding the role of
genes, proteins, and signaling intermediates regulating adi-
pogenesis is also of importance, with all these factors serving
as promising targets for the discovery of novel antiobesity
drugs. Molecular mechanisms of obesity mediated by cyto-
kines, adiponectin, and leptin have been correlated with
increased inflammation and oxidative stress, leading to met-
abolic disease development. Lipid metabolism has been tar-
geted for the treatment of obesity and obesity-related
metabolic diseases [12].

Adipogenesis is a complex mechanism of adipocyte differ-
entiation from preadipocytes and involves various transcrip-
tion factors, including peroxisome proliferator-activated
receptor gamma (PPARγ), CCAAT enhancer-binding pro-
tein alpha (C/EBPα), and the enzyme fatty acid synthase
(FAS) [13]. Adipocytes store excess energy as total triglycer-
ides (TGs), which are produced by lipogenic enzymes. This
process is regulated by TG synthesis factors, including lyso-
phosphatidic acid acyltransferase theta, diacylglycerol acyl-
transferase 1, and phosphatidate phosphatase [14].

AMP-activated protein kinase (AMPK) is a central regu-
lator of energy metabolism and mitochondrial biogenesis in
adipocytes [15]. AMPK activation deactivates acetyl-CoA
carboxylase (ACC), resulting in decreased fatty acid synthe-
sis and increased fatty acid oxidation (FAO) [16]. ACC pro-
motes intracellular lipid synthesis in late-stage adipogenesis.
Thus, regulation of adipogenic transcription factors is
important for attenuating adipocyte differentiation. Addi-
tionally, AMPK activation elevates the mitochondrial oxida-
tive capacity and the expression of factors involved in
thermogenesis, including PRDM16, PGC1α, and UCP1
[17, 18]. Recent studies suggest that AMPK is necessary for
brown adipose tissue (BAT) development in obese mice,
which is associated with PRDM16 expression. Additionally,
PGC1α is induced not only by PRDM16 but also by AMPK
activation [19, 20]. Consequently, researchers have been
exploring plant materials containing antioxidants as alterna-
tives to previously adopted conventional approaches, includ-

ing surgery and antiobesity drugs that lack enduring effects,
have side effects [21], or have a yo-yo effect [22]. Therefore,
identifying natural products with antioxidant properties for
the treatment and/or prevention of obesity and its comor-
bidities would be insightful.

An unhealthy diet is one of the major risk factors for
obesity and diabetes, with dietary fat intake widely accepted
as being directly or indirectly related to obesity, diabetes,
high cholesterol, and other diseases [23]. Adipogenesis
involves several complex signaling pathways and is consid-
ered a crucial target for obesity control, as it contributes to
the pathophysiology of obesity and related complications.
Natural products with adipogenesis-regulating potential act
as therapeutics that are safe to use for the treatment of
obesity.

Several bioactive compounds, such as isoflavonoids,
anthocyanins, glucosinolates, alkaloids, phenolic acids of
Asteraceae, coumarins, coumestans, curcuminoids, tannins,
glucosinolates, isothiocyanates, secoiridoids, and flavonols,
inhibit adipocyte differentiation (adipogenesis), as evidenced
by studies on various signaling molecules, transcriptional
factors, and genes [24, 25].

Bioactive compound consumption from the diet or
intake of dietary supplements is one of the possible ways to
control obesity, thus, preventing or reducing the risk of
developing various obesity-related diseases. Saponins and
phenolics from food legumes possess biological activities,
including anti-inflammatory [24], anticancer [25], and anti-
hypertension activities [26]. Adzuki bean, mainly produced
and consumed in China and other East Asian countries,
has been used as a traditional Chinese herbal medicine and
food for thousands of years. Its effects include antitumor,
antidiabetic [27], and antioxidant activities [28].

Additionally, the anti-inflammatory [29], antiarthritic
[30], antibacterial [31], antiangiogenic [32], antioxidative
[33], antiviral [34], and neuroprotective effects [35] of green
tea and its constituents have frequently been examined. The
hypolipidemic and antiobesity effects of green tea in ani-
mals and humans have slowly become a hot topic for
molecular nutrition and food research. Over the past
decade, studies have shed light on the role of green tea cat-
echins in controlling hyperlipidemia and fat mass gain in
high-fat diet-induced obese rodent models. However, little
is known regarding the exact antiobesity effects of green
tea in humans, and the underlying mechanism of body
weight management, especially regarding the regulation
pathway.

Stevia rebaudiana (SR) is often used in the food industry
owing to its steviol glycoside content, a suitable calorie-free
sweetener. Furthermore, both in vitro and in vivo studies
indicate that these glycosides and SR extracts have pharma-
cological and therapeutic properties, including antioxidant,
antimicrobial, antihypertensive, antidiabetic, and anticancer
properties. However, there is no evidence that they offer
weight-loss advantages over other nonnutritive sweeteners
[36]. It has been reported that Stevia leaf extract possesses
antiadipogenic effects in high-fat diet-induced obese mice.
However, the pure compounds responsible for such effects
have not been identified [37].
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2. Results

2.1. Identification, Structure Elucidation, and Quantification
of the Isolated Compounds. The whole process of com-
pounds isolation is given in Supplementary File 1. Purified
fractions isolated from S. rebaudiana ethanolic extracts by
resin column chromatography followed by preparative
HPLC were analyzed by LC/TOF-MS and NMR for identifi-
cation, structure elucidation, and quantification of the com-
pounds present (Figure 1; Supplementary File 2 & File 3).

Steviosidea, rebaudioside A, rebaudioside B, and rebau-
dioside D were found in the isolated fraction. The fraction
was resubjected to HPLC, and a pure stevioside and rebau-
dioside A fraction with traces of rebaudioside B and D was
obtained. Theasaponin E1 was isolated by HPLC from the
purified green tea seed extract saponin-rich fraction. All
identification, quantification, and determination data of
LC/TOF-MS and NMR are provided in the supplementary
materials (Supplementary File 4 & File 5, respectively).
LC/TOF-MS data of green tea seed saponins are presented
in Figure 2.

2.2. Cell Viability. The toxicity of pure compounds of the
isolated stevia fraction, green tea seed saponin, E1, stevia
fraction, and E1 (RASE1) combination in HUVECs and
3T3-L1 cells was determined by MTT assay. Safe and toxic
doses were determined from cell viability measured by
MTT assay. Cell viability results of the test samples are
shown in Figure 3, which also shows that the purified stevia
fraction of stevioside and rebaudiosides and the combined
RASE1 sample did not pose toxic effects to HUVEC and
3T3-L1 cell viability up to the working concentration range
of 5–100μg/mL. Theasaponin E1 alone was safe at the dose
rate of 5–25μg/mL.

2.3. Antiangiogenesis Effect. The effect of isolated stevia
extract fraction alone, containing steviosides and rebaudio-
sides, and the combination of the isolated stevia fraction
with green tea seed saponins was examined on endothelial
cell tube formation by the quantitative analysis of the tube
length formed on the Matrigel. Each purified stevia extract
fraction and RASE1 exhibited significant inhibitory effects
on capillary tube formation in a dose-dependent manner
when HUVECs were supplemented with increasing doses
(5, 15, 30, 50, and 100μg/mL) of test samples. The lowest
concentration of samples significantly inhibiting the tubular
structure formation was 10μg/mL, and the complete disrup-
tion of capillary tubes was observed at 100μg/mL. Results
demonstrated that the extracted stevia compound and thea-
saponin E1 effectively inhibited HUVEC proliferation and
tube formation on Matrigel. Total tube length was signifi-
cantly decreased with increasing sample concentration com-
pared to control cell tube length (Figure 4(a)). Inhibitory
effects of samples on HUVEC proliferation and capillary
tube formation in Matrigel are obvious from the images
shown in Figure 4(b), taken from cells of each concentration.

To evaluate the mechanism of antiangiogenic effects of
stevia and saponin samples, the effects on VEGFR-2 expres-
sion and the PI3K/AKT/ERK pathway were further investi-

gated in HUVECs using safe sample concentration ranges.
The regulatory effect on the gene expression level was deter-
mined by RT-PCR using gene-specific primers (Table S1
supplementary File 6).

Samples reduced VEGFR-2 and VE-Cadherin complex
expression via NF-κB downregulation, an important
growth factor for proliferation and vascular remodeling.
Various growth factors play important roles in PI3K/AKT
and ERK pathway activation. RT-PCR results showed the
AKT and ERK mRNA level inhibition via VEGFR-2 down-
regulation in a dose-dependent manner. Treatment with
RASE1 median concentration (100μg/mL) led to signifi-
cant PI3K, AKT, ERK, VEGFR-2, NF-κB, and β-catenin
mRNA expression inhibition. Evidently, the extracted ste-
via compounds and GTS downregulated PI3K/AKT and
ERK pathways by the suppression of VEGFR expression
(Figure 5).

2.4. Lipid Accumulation Inhibition in 3T3-L1 Preadipocytes.
To investigate the effect of the stevia-derived purified com-
pound fraction and adipocyte differentiation, preadipocyte
3T3-L1 cells were differentiated into mature adipocytes in
the presence of various sample concentrations. Cell treat-
ment with the stevia-derived fraction and RASE1 during
differentiation suppressed lipid accumulation in a dose-
dependent manner as measured by Oil red O staining
(Figure 6(a)). The TG amount was significantly decreased
in the treated group compared with that of the controls.
The inhibitory effect of samples on adipogeneses and lipo-
genesis significantly increased with increasing sample con-
centrations. Fat accumulation inhibition in 3T3-L1 cells by
various samples and control doses is shown in Figure 6(b).

2.5. Effects on mRNA Expression Levels of Adipogenesis- and
Lipogenesis-Related Genes. Mechanisms of AnT-Fr antihy-
perlipidimic activity on 3T3-L1 proliferation and lipid accu-
mulation were analyzed by RT-PCR. RT-PCR results
showed that AnT-Fr significantly inhibited the expression
levels of adipogenesis- and lipogenesis-related genes and sig-
nal molecules, including PPARγ, C/EBPα, aP2, and sterol
regulatory element-binding protein (SREBP-1c), in a dose-
dependent manner (Figure 7).

2.6. AMPK Activation. The effects of extracted stevia com-
pounds of an isolated fraction on the activation of AMPK
levels were investigated in 3T3-L1 preadipocytes. After cell
treatment with samples and protein extraction, activation
(phosphorylation) was determined by western blotting.
Results showed that the samples enhanced AMPK-to-p-
AMPK activation in a dose-dependent manner (Figure 8).

2.7. In Vitro Lipolysis Activity. Lipid breakdown potentials of
extracted stevia compounds and green tea seed saponins
were investigated in vitro using 3T3-L1 preadipocytes. Fol-
lowing cell differentiation and lipid droplet (TGs) accumula-
tion, cells were treated with various safe sample doses. The
extracted stevia compound fraction alone and in combina-
tion with theasaponin 3 significantly enhanced the lipolysis
process in a dose-dependent manner (Figure 9).

3BioMed Research International



100
95
90

85
80
75

65
60

45
50
55

70

40
35
30

15
20
25

5
10

0
200 300 350 400 450 550 650 700 750 800 850 900 950 1000 1050 1100 1150 1200600500250

Re
la

tiv
e a

bu
nd

an
ce

206.57
256.59

352.54
382.68

446.57

480.76
492.72

514.64

524.80
558.81

578.73
608.71

640.84
686.82

704.86

720.90

772.89
786.86

802.90 848.91

832.93

864.87 935.00

949.02

965.03

981.05

1011.06

1079.25
1127.23995.08

916.97

894.83

754.84
676.62

624.84528.77

422.67

318.65
292.64

224.48

366.68

1173.35
1183.

m/z

(a)

!

!
!

!!

!

100

%

0

Spectrum Sample 1_Full

100 700 800 900 1000 1100 1200 1300600500400300200
m/z

1:TOF MS ES-
1.25e6

1:TOF MS ES-
8.51e5

1:TOF MS ES-
1.64e5

1:TOF MS ES-
2.47e5

100

%

0
100 700 800 900 1000 1100 1200 1300600500400300200

m/z

100

%

0
100 700 800 900 1000 1100 1200 1300600500400300200

m/z

100

%

0
100 700 800 900 1000 1100 1200 1300600500400300200

m/z

166.9934
213.0131

331.2480
412.2236

487.1620
641.3199

787.3397

803.3743

804.3766

805.3816
891.3883

971.2631
1114.0148 1206.0680

1244.0425

! ! !

!

200202_Khan_Sample-1_Neg_300 395 (4.485)

Rebaudioside B

Rebaudioside D

Rebaudioside A

Stevioside

67.8482 271.0265 317.2132 479.2663 525.2714

641.3203

642.3240
803.3744

643.3273

849.3805

850.3841
866.3712

!:917.3612 965.4271
1093.4675

1240.6687
1323.5582

1350.48071302.92221081.4084
1013.4409
1012.4381

1011.4348965.4291

804.3779

805.3817

803.3746

786.3317641.3196479.267568.1903 162.6536 317.2143

174.9547
235.0629

353.0811
447.0921

515.1191
609.1248 755.1823 803.3729 965.4264

1111.4990

11127.4800

1173.4877

1174.4886

1175.4904
1273.5363

200202_Khan_Sample-1_Neg_300 352 (3.997)

200202_Khan_Sample-1_Neg_300 354 (4.019)

200202_Khan_Sample-1_Neg_300 314 (3.564)

(b)

100

%

0
3.50 3.70 3.80 3.90 4.00 4.904.804.704.604.504.404.304.204.103.603.40

100

100

%

%

0

!
!

3.50 3.70 3.80 3.90 4.00 4.904.804.704.604.504.404.304.204.103.603.40

100

%

0

0

3.50 3.70 3.80 3.90 4.00 4.904.804.704.604.504.404.304.204.103.603.40

RT 4.02_803.37 m/z
Stevioside

SteviosideStandard

4.00

4.00

4.00

3.93 4.25

4.49

4.48

4.49

Sample 2

Sample 1

1:TOF MS ES-
803.37
1.36e6 1:TOF MS ES-

1.00e.5

1:TOF MS ES-
803.37
1.36e6

1:TOF MS ES-
803.37
1.36e6

1:TOF MS ES-

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

200204_Khan_stnd-4mix_neg_300
200204_Khan_stnd-4mix_Neg_354 (4.018)

200202_Khan_Sample-3_Neg_300

200202_Khan_Sample-2_Neg_300

200202_Khan_Sample-1_Neg_300

124.9552 356.3908
334.9122 479.2724

518.8129

641.3003

642.2241
803.3236

843.3601

643.3276

1709.3008

850.3843

917.3671
1965.42111329.4232

1306.0944

Spectrum_RT 4.02

(c)

Figure 1: Continued.
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2.8. In Vivo Antiadipogenic and Lipogenic Effects

2.8.1. Food Intake and Body Weight of Mice. To investigate
obesity modulation by stevia-derived compounds and thea-
saponin E1 in a mouse model, eight-week-old female ICR
mice were randomly assigned to 10 groups, each containing
six mice. The first group was fed the ND, six groups were fed
the HFD, and the other three groups were fed the HCD.
Samples were orally administered daily to the treatment
groups. Food intake was measured daily and was slightly dif-
ferent among all groups. Animals treated with 300mg doses
in HFD and HCD groups showed a slight gradual decrease
in food intake, and animals of the HFD group treated with
stevia and saponins showed the highest gradual decrease in
daily food intake compared to controls (Figure 10).

After 8 weeks, the total body weights of the mice in the
HFD control (HFC) and HCD control (HCC) groups were
significantly higher than those in the NC group. Mouse body
weights in the HF-100 and HF-300 groups significantly
decreased compared with those of the HFC group. The
PHF-300 group was fed a HFD for 3 weeks to induce obesity
before treatment. After treatment with a 300mg/kg sample
in the PHF-300 group, the weight gain was significantly
reduced for 5–8 weeks. The highest body weight reduction
was found in the HFD group with a combined sample of ste-
via and in the saponin SP+ ST (RASE1) group (Figure 11).

The extracted stevia sample also suppressed the body
weight gains in the HCD group. The significant inhibitory
effect on body weight gain was observed during 5–8 weeks
in RASE1 (mice fed with stevia extract plus saponin), i.e.,
RASE1, HF-300, and HC-300 groups. The highest body
weight gain was observed in the HFC and HCC groups.
Slimming effects were observed in all treatment groups in a
dose-dependent manner in mice fed both HCD and HFD.
The positive control HF-O group showed comparatively
increased body weight gain compared to that of the RASE1
group and almost the same to the HF-300 group. However,
gastrointestinal side effects, such as oily and loose stools,
were observed.

2.8.2. Effect on Liver and Adipose Tissue Mass Gain. The
inhibitory effects of the extracted stevia fraction and RASE1
on adipose tissue and liver weight gain were determined by
collecting and weighing adipose and liver tissues of all ani-
mals of each group after dissection. Liver and adipose tissues
were measured, and data of the same group of mice are pre-
sented as means. Figure 12 shows that the liver was fatty and
had a greater weight gain in HFC and HCC groups. These
were significantly decreased in the treatment groups com-
pared to HFC and HCC groups (p < 0:05). Liver and WAT
weight in the treatment group of mice was lowest in the
HF-300 group compared with that of the NC and positive
control (HF-ORL) groups. Among all groups, the lowest
WAT and liver weight were calculated for the ST+SP group.
Adipocyte size of the epididymal adipose tissue in various
groups after dissection and staining is presented in
Figure 12(b). Adipocyte size was reduced in treatment groups
compared to the NC. Adipocytes were abnormally expanded
and of greatest size in HFD and HCC animal groups.

2.9. Serum and Fecal Biochemical Parameters. Blood was col-
lected in heparin tubes from all animals of each group for
elucidating the effects of the extracted stevia compounds
and theasaponin E1. Results of serum biochemical parame-
ters are shown in Figure 13. Serum levels of TG, TC, FFA,
LDL cholesterol, glucose, ALT, and AST were higher in
HFC and HCC groups than in NC and treatment groups.
A notable increase in HDL cholesterol was observed in all
treatment groups compared with HFC, HCC, and NDC
groups; however, the highest increase of HDL was in the
HF-RASE1 group. Extracted stevia compound doses alone
and in combination with green tea saponin E1 administra-
tion caused a significant (p < 0:05) decrease in TG, TC,
FFA, LDL, cholesterol, glucose, ALT, and AST levels. Addi-
tionally, 300mg/kg of RASE1 effectively decreased the above
parameter levels more than the NC. The abovementioned
obesity biomarkers were highly suppressed in HF-RASE1
compared to those of the positive control group (HF-ORL)
and were highly reduced in HC-RASE1.
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Figure 1: Isolated Stevia rebaudiana fraction of pure compounds detected and determined by LC-MS-QTOF. (a) LC-MS chromatogram of
isolated stevia fraction of pure compounds. (b) Identification of pure compounds present in the fraction by comparison with standards. (c)
LC-MS chromatogram and mass spectrum of isolated pure compound stevioside. (d) LC-MS chromatogram and mass spectrum of isolated
pure compound rebaudioside A.
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TG and TC fecal levels were collected and analyzed after
5 weeks. Significantly higher TG and TC levels were
observed in the treatment groups compared with those in
NDC, HFC, and HCC groups. The highest TG and TC fecal
levels were recorded for HF-RASE1 followed by HC-RASE1
(Figure 14).

2.10. Effects of Stevia and Green Tea Constituents on Serum
Insulin, Leptin, Adiponectin, IL-10, IL-6, and TNF-α Levels.
Serum insulin, leptin, IL-10, IL-6, and TNF-α levels in
HFC and HCC groups significantly increased compared
with those in the NC and all treatment groups, where levels
were suppressed. The lowest levels were noted in the HC-
RASE1 group, which received extracted compounds from
stevia plus green tea seed extracted saponin doses. However,
serum adiponectin levels were significantly increased by ste-
via and saponin administration in HC-RASE1, HF-RASE1,
HF-SP50, and HF-ST300 groups. Sample effects on serum
insulin, leptin, adiponectin, IL-10, IL-6, and TNF-α levels
are shown in Figure 15.

2.11. Effects of Isolated Pure Compound Stevia Fraction and
Green Tea Seed Saponin on Adipose Tissue Leptin, IL-6, IL-
10, and Adiponectin Levels. Leptin, IL-6, IL-10, and adipo-
nectin concentrations in mesenteric adipose tissue were
determined after animal dissection and adipose tissue
collection. As shown in Figure 16, elevated leptin, IL-6,
and IL-10 concentrations were higher in HFC and HCC
adipose tissues. In contrast, mice of the treatment group
exhibited significant decreases in leptin, IL-6, and IL-10
adipose tissue concentrations than NC group mice. Treat-
ment with stevia extract plus saponins significantly
decreased leptin, IL-6, and IL-10 adipose tissue concentra-
tions in HF-RASE1 mice. Adiponectin concentrations in
mesenteric WAT were more significantly increased in treat-
ment groups dose-dependently than in HCC, HFC, and NC
group mice.

2.12. GTE on mRNA Expression of Energy and Lipid
Metabolism Enzymes and Transcription Factors. The effect
of the isolated stevia fraction of stevioside and rebaudioside
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Figure 2: LC-MS-TOF analysis of green tea seed extracted saponins. (a) LC-MS chromatogram of green tea seed extracted saponin-rich
fraction. (b) LC-MS spectrum of green tea seed extracted with pure saponins. (c) Base peak intensity mass spectrum of green tea seed
isolated saponin theasaponin E1 fraction.
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and its combination with green tea seed saponin E1 on the
transcriptional factors and genes involved in adipogenesis,
lipogenesis, and lipid metabolism was determined in the
adipose and liver tissue of mice analyzed by RT-PCR. Mes-
enteric adipose and liver tissues were used to evaluate the
effect of the samples on lipid and energy metabolism path-
way biomarkers. In liver tissue, ACC-1, GPAT, FAS, and
MLYCD mRNA expression levels decreased in the treat-
ment group in a dose-dependent manner compared with
those of the HFC and HCC groups (Figure 17). Stevia
extract and saponins reduced the expression of lipogenesis-
and adipogenesis pathway-related genes in mesenteric
adipose tissue. mRNA expression levels of transcription
factors (PPARγ, C/EBPα, and SREBP) were more downreg-
ulated in the treatment groups than in the HFC and HCC
groups. Levels of target gene lipoprotein lipase (LPL), adi-
pocyte protein 2 (aP2), and leptin of lipogenesis and adipo-
genesis transcription factors in mesenteric WAT also
decreased with an increased dose of sample and was most
effective and significant in the RASE1 group mice, which
received combined extracted stevia compound and green
tea seed saponin.

3. Discussion

Obesity is a common disorder caused by interactions of
environmental, genetic, and nutritional factors, and its
pervasiveness is accelerating worldwide. Socioeconomic
changes, extensive consumption of calorific foods, and
increasingly sedentary lifestyles are the predominant causa-
tive factors for abnormal adipose tissue development and
rise in obesity. Abnormalities, both in adipose tissue devel-
opment and preadipocyte differentiation to mature adipo-
cytes, are directly linked to obesity.

Obesity has become a critical concern worldwide due
to its association with comorbidities, including cancer, car-
diovascular diseases, and diabetes [38]. Adipose tissue is
an endocrine organ, thus, plays a critical role in the sur-
vival of an individual; however, its dysfunction or excess
accumulation is directly linked to obesity [39, 40]. The
journey from multipotent mesenchymal stem cells (MSCs)
to the formation of mature adipocytes is a well-orchestrated
program requiring the expression of several genes, their tran-
scriptional factors, and signaling intermediates from numer-
ous pathways. Understanding all intricacies of adipogenesis
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Figure 3: The cell viability and toxicity of pure saponins, extracted stevia compounds, and their combination (RASE1) in HUVECs and
3T3-L1 cells via MTT assay. (a) Cell (HUVECs and 3T3) viability under various concentrations of extracted stevia compounds. (b) Cell
(HUVECs and 3T3) viability under various concentrations of theasaponin E1. (c) Cell (HUVECs and 3T3) viability under various
concentrations of RASE1. Cell viability was calculated for each group by determining the absorbance of the wells after the addition of the
MTT reagent. Safe and toxic concentrations were determined. Data are expressed as mean ± SEM (n = 3). (∗p < 0:01 and ∗∗p < 0:001
compared to the control).
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is vital for countering the current obesity epidemic as the
limited understanding of these intricacies is the main bar-
rier to developing potent therapeutic strategies against
obesity [41].

Adipogenesis is determined by gene expression and pro-
tein functions dictating adipocyte phenotypes [42]. Hyper-
plasia and hypertrophy of WAT through adipogenesis lead
to obesity [38, 42, 43]. The adipogenesis cellular process
involves the commitment of MSCs to the adipocyte lineage,
followed by mitotic clonal expansion with DNA replication
and cell duplication, and, finally, terminal differentiation,
involving the expression of genes and transcriptional factors,
including the C/EBP family and PPARγ, and a dramatic
increase in lipogenesis and induction of lipogenic genes,
including ACC, FAS, and aP2 [44, 45]. Preadipocyte differ-
entiation into mature adipocytes is also influenced by other
factors, such as insulin, which is one of the potent adipo-

genic hormones that induce the transcription of various pos-
itive regulators of adipogenesis [46, 47].

AMPK inhibits de novo synthesis by inactivating ACC-1
and FAS, which catalyzes key regulatory steps in fatty acid
and sterol synthesis and activates FAO [48]. AMPK also
regulates ligand-activated transcriptional factors, including
PPARγ, C/EBPα, and SREBP, which are central regulators of
adipogenesis and lipogenesis [49, 50]. Thus, the AMPK path-
way is a potential therapeutic target for metabolic disorders.

Lipolysis entails TG hydrolysis into glycerol and FFAs
within the cell. Glycerol and FFAs are then released into
the bloodstream or culture media. Lipolysis occurs in essen-
tially all cells but is most abundant in WAT and BAT. Defi-
ciencies in lipolysis lead to increased intracellular lipid
accumulation, resulting in abnormal cellular physiology,
hyperlipidemia, and insulin resistance. Lipolysis can be
induced by catecholamines and certain hormones.
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Figure 4: Inhibitory effects of RASE1 on HUVEC proliferation and capillary tube formation in Matrigel. Cells proliferated in EBM2 media
in the presence and absence of various concentrations of RASE1, i.e., 5, 30, 50, and 100μg/mL (nontoxic range) of samples and tube
formation by HUVECs in Matrigel was observed using a phase contrast inverted microscope (Nikon, Tokyo, Japan). Each treatment and
control (cells not treated with sample) group was photographed using Scion Image software (NIH, ML, USA) at five random sites. Total
tube length was calculated for each group. Experiments were performed in triplicate. (a) Total tube length of HUVECs in control and
treated groups. (b) Photographs of HUVEC proliferation and tube formation in the control wells and as treated groups (with various
concentrations of RASE1). Data are the mean values ± SEM of three separate experiments (data are significant at ∗p < 0:01 and ∗∗p <
0:001 compared to the control).

8 BioMed Research International



⁎⁎

⁎⁎

⁎⁎

⁎⁎

⁎⁎

⁎⁎

⁎⁎

⁎⁎

⁎⁎

⁎⁎

⁎⁎

⁎⁎ ⁎⁎

⁎⁎⁎⁎⁎⁎

⁎⁎

⁎

⁎

⁎ ⁎

1.2

1

0.8

0.6

0.4

0.2

0

Re
lat

iv
e e

xp
re

ss
io

n 
le

ve
l

VEGFR2

VEGFR2

P13K

P13K

𝛽-CAT

𝛽-actin

𝛽-Cat

Akt

Akt

NF-kB

NF-kB

Concentration
(𝜇g/mL)

Concentration (𝜇g/mL)

Control
5

5

15

15

30

30

50

50

100

1000

Figure 5: Gene expression levels of various angiogenesis-promoting signaling molecules and transcriptional factors in HUVECs treated with
various extracted stevia compounds and tea seed saponin doses. Data are the mean values ± SEM of three separate experiments (data are
significant at ∗p < 0:01 and ∗∗p < 0:001 compared to the control).

0 5 15 30 50 100
Concentration (𝜇g/mL)

⁎

⁎⁎

⁎⁎

⁎⁎

⁎⁎

120

100

80

60

40

20

0

%
 li

pi
d 

ac
cu

m
ul

at
io

n

(a)

Control 5 (𝜇g/mL) 15 (𝜇g/mL)

30 (𝜇g/mL) 50 (𝜇g/mL) 100 (𝜇g/mL)

(b)
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microscope (Nikon, Tokyo, Japan) and photographed with Scion Image software (NIH, ML, USA) at five random sites.
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Stevia extract is used as a natural sweetener in various
parts of the world; however, its biological effects, especially
antiobesity activity, have not been well documented. Green
tea (C. sinensis) contains many bioactive compounds,
including catechins, caffeine, saponins, theanine, vitamins,
mineral oil, and trace elements [51, 52]. Green tea compo-
nents have many biological and biochemical effects,
including antimutation [53], anticarcinogenesis [54], anti-
oxidation [55], apoptosis-inducing [41], and antiangiogen-
esis effects. Major bioactive compounds present in green

tea seeds include flavonoids, EGCG, saponin glycosides,
kaempferol, and naringenin [56–59].

The present study evaluated the effect of standardized
green tea seed extract, saponin E1, and extracted stevia com-
pound supplementation on adipocyte differentiation, angio-
genesis, and body weight gain in HFD and HCD mice using
biochemical markers to elucidate the molecular mechanism
underlying such an effect.

Diets are prevalent in inducing obesity, whereas natu-
ral products show antiobesity effects involving diverse
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mechanisms, including appetite, food intake, FAO, lipogene-
sis, and adipogenesis regulation. As with tumors, the growth
and expansion of adipose tissue require new blood vessel
(angiogenesis) formation to provide oxygen and nutrients
to adipocytes, which expand both in size and number. Thus,
angiogenesis inhibition also inhibits adipogenesis by the
reduction of the adipocyte numbers and fat content [49].
Results from Oil red O staining demonstrated that RASE1
prevents preadipocyte differentiation and lipid accumula-
tion. In the in vivo experiment, aqueous extract of green tea
seed effectively protected HFD mice, whereas a HCD-
induced body weight gain. Adipose tissue and liver masses
correlated with body weight in mice fed RASE1, suggesting
that the RASE1-mediated decrease in body weight could be
attributed to a reduction in adipose tissue and liver mass,
independent of food intake. In this study, green tea seed
extract significantly lowered serum lipid and glucose levels
compared with those of the control group. Treatment also
lowered serum and mesenteric adipose tissue levels of leptin

and IL-6, whereas adiponectin levels were significantly
increased. NF-κB pathway and proinflamatory cytokines
such as IL-10, IL-6, and TNF-α promote inflammation and
exacerbate obesity.

RASE1 suppressed transcription factors and their target
genes (LPL, aP2, and leptin) expression in the mesenteric
adipose tissue of treatment group mice. In vivo studies in
mice revealed that RASE1 does not affect food intake, rather,
it suppresses anabolic pathways and stimulates catabolic
pathways [60]. Traditional medicine uses natural products
to enhance efficacy and, at the same time, reduces side
effects. The RASE1 antiobesity effect was largely influenced
in HCD mice treated with 300mg/kg of RASE1.

In this study, the extracted stevia compounds (stevioside
and rebaudioside A) and green tea seed saponin theasaponin
E1 exhibited higher antiangiogenesis, antiadipogenesis,
antilipogenic, and lipolysis effects synergistically compared
to those exhibited by individual compound. RASE1 sup-
pressed NF-κB, pathway and proinflammatory cytokines
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IL-10, IL-6, and TNF-α level, which are involved in inflam-
mation and progression of obesity.

The RASE1 effect on endothelial cell tube formation was
examined by quantitative analysis of tube length formed on
Matrigel (a reconstituted extracellular matrix preparation
of EHS mouse sarcoma). RASE1 exhibited a significant
inhibitory effect on capillary tube formation in a dose-
dependent manner when HUVECs were supplemented with
increasing doses of RASE1. The lowest GTE concentration
that significantly inhibited tubular structure formation was
5μg/mL, with complete disruption of capillary tubes
observed at 100μg/mL. Results demonstrated that RASE1
effectively inhibits HUVEC tube formation on Matrigel.

The RASE1 effect on VEGFR-2 expression and the
PI3K/AKT/ERK pathway in HUVECs was evaluated using
concentration-dependent experiments. RASE1 reduced
VEGFR-2 and VE-cadherin complex expression via NF-κB
downregulation, which are important growth factors for
proliferation and vascular remodeling. Various growth fac-
tors have been documented to play an important role in
PI3K/AKT and ERK pathway activation [61]. RT-PCR
results showed AKT and ERK mRNA level inhibition via
VEGFR-2 downregulation in a dose-dependent manner.
Treatment with a median concentration (100μg/mL) of
RASE1 led to significant PI3K, AKT, ERK, VEGFR-2, NF-
κB, and β-catenin mRNA expression inhibition. Thus, the
results showed that RASE1 regulates PI3K/AKT and ERK
pathways through VEGF expression.

These results provide a molecular basis for understand-
ing green tea seed extract saponins and stevia extract com-

pounds in combination (RASE1) and antihyperlipidemic
and fat-pad lowering effects. RASE1 treatment played an
important role in lipid and pathological inflammation regu-
lation in HFD and HCD mice. These results demonstrated
that RASE1 displays remarkable bioactivity for the preven-
tion of angiogenesis and obesity-related metabolic disorders
by inhibiting adipocyte differentiation, angiogenesis, and
body weight gain, and by reducing body fat pad weight
and serum lipid levels in vivo.

4. Methods

The experimental research and studies on plants, including the
collection of plant materials, comply with relevant institu-
tional, national, and international guidelines and legislation.

4.1. Extraction of Theasaponin E1 from Green Tea Seed and
Sativoside and Rebaudioside A from Stevia rebaudiana.
Green tea (Camellia sinensis) seeds were collected from the
Myungin Shin Gwang Su tea garden (Suncheon, Korea).
Seeds were dried, dehulled, and ground into powder. The
powder (3 kg) was defatted with n-hexane (4 L) under soni-
cation at 30°C for 5 h and then dried. Defatted seed powder
was further extracted by refluxing with 70% ethanol at 60°C
for 8 h. The resulting extract was filtered, concentrated using
a rotatory vacuum evaporator (SB-100, Eyela), freeze-dried,
and weighed. The extract was resubjected to extraction with
butanol and water mixture and concentrated with the rota-
tory evaporator. Saponin extraction from crude extracts
was carried out using nonpolar macroporous resins

60

50

40

30

20

10

0
1.0 8.0 15.0 22.0 29.0 36.0 43.0 50.0 57.0

Days Days

W
ei

gh
t (

g)

60

50

40

30

20

10

0
1.0 8.0 15.0 22.0 29.0 36.0 43.0 50.0 57.0

W
ei

gh
t (

g)

NC

HFC

HF-ST300

HF-SP50

NC

HFC

HF-ST300

HF-SP50

PHF-RASE1

HF-ORL

HF-RASE1#

#

#

#

HF-RASE1 HF-
ST300

HF-
ST300HF-SP50 PHF NC NCHFC HCCHF-

ORL50
HF-ORL50

⁎#

⁎#

⁎#

Figure 11: RASE1 effects on mouse body weights of different groups fed carbohydrate- and fat-rich food. Animals were divided into 10
different groups with six animals per group, which were weighed every 24 h for 50 days. Data represent the means ðn = 6Þ ± standard
deviation. Significance at ∗p < 0:01 vs. NC and #p < 0:01 vs. HFC and HCC, respectively.

12 BioMed Research International



(D101). Resins were thoroughly washed twice with ethanol
followed by distilled water. Approximately 10 g of the extract
was dissolved in 30mL of double-distilled water, mixed with
washed resin, and kept overnight at room temperature. The
extract (50 g) was dissolved in 100mL of double-distilled
water and passed through the resin column first eluted with
0.4N NaOH, followed by extract and resin mixture neutral-
ization with HCl, and reelution with 100% ethanol. This
saponin mixture was subjected to column chromatography

using the C18 column. The mixture was first eluted with
10% MeOH, followed by elution with 60% MeOH, and
finally with 100% MeOH to obtain the saponin mixture.
Pure saponin (theasaponin E1) was then isolated from this
fraction by preparative HPLC (Shimadzu Co., Kyoto, Japan)
equipped with a photodiode array detector. The extract was
separated on the Luna C-18(2) reverse phase column
(250 × 21:2mm, 15μm; Phenomenex, Inc., Torrance, CA,
USA) at 35°C. Solvent A was methanol, and solvent B was
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distilled water containing 0.1% formic acid. The nonlinear
gradient system used was A/B (74 : 26) to A/B (74.8 : 25.2)
for 33.5min to A/B (100 : 0) for 2min, held at A/B
(100 : 0) for 10min, and then A/B (74 : 26) for 12min.

Components were detected at 210nm. The flow rate was
7mL/min. Saponin fractions obtained were analyzed by
LC-MS and NMR to identify and characterize the saponins
present. Major saponins detected in this fraction were
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Figure 13: Stevia compounds and green tea seed saponin (RASE1) effects on serum TG, TC, HDL, LDL, glucose, ALT, and AST levels in
various animal groups. Animals were treated with or without different RASE1 doses, and blood samples were collected from each animal at
the end of the experiment and analyzed for biochemical parameters of obesity using the corresponding ELISA kits. Data are the mean
values ± SEM. ∗∗p < 0:01 and ∗∗p < 0:001 vs. control (NC). a indicates statistical significance ∗p < 0:01 for HFC, and b indicates statistical
significance ∗p < 0:01 for HCC.
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Figure 14: The RASE1 effect on fecal TG and TC levels of various animal groups. Fecal samples collected during the last week of the
experiment were processed. TG and TC concentrations were measured in the samples of each animal group using the corresponding
kits. Data represent means ðn = 6Þ ± SEM. Data are significant at ∗p < 0:01, ∗∗p < 0:001 vs. control (NC). a indicates statistical significance
∗p < 0:01 for HFC, and b indicates statistical significance ∗p < 0:01 for HCC.
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Figure 15: RASE1 effect on serum adipokine levels in different mouse groups. Animals were treated with or without different RASE1 doses
and blood samples collected from each animal after the end of the experiment were analyzed for biochemical parameters of obesity using the
corresponding ELISA kits. Data are the mean values ± SEM. ∗∗p < 0:01 and ∗∗p < 0:001 vs. control (NC). a indicates statistical significance
∗p < 0:01 for HFC, and b indicates statistical significance ∗p < 0:01 for HCC.
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Figure 16: The effect of the standardized formulation of stevia compounds and green tea seed saponin (RASE1) on adipose tissue adipokine
levels in different mouse groups. Data are expressed as mean ± SEM (n = 6). ∗∗p < 0:01 and ∗∗p < 0:001 vs. control. a indicates statistical
significance ∗p < 0:01 for HFC, and b indicates statistical significance ∗p < 0:01 for HCC.
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theasaponin E1 (C59H90O27), theasaponin C, assamsapo-
nin A (C57H88O25), theasaponin E3 (C57H88O26), theasa-
ponin A1 (C57H90O26), assamsaponin B (C61H92O28),
and theasaponin A3 (C61H94O28). Fr2 and Fr3 were
obtained from the saponin mixture by preparative HPLC
(Develosil ODS-HG-5, MeCN-0.05% aqueous TFA 55 : 45,
4mL/min); theasaponin E1 was isolated from the saponin
fraction by further subjection and purification with prepara-
tive HPLC.

4.2. Extraction of the Sativoside and Rebaudioside Fractions
from Stevia. Dried stevia leaves were ground into a fine pow-
der and extracted with 70% EtOH at 60°C for 6 h by contin-
uous reflux in a heating mantle. The mixture was filtered
using filter bags followed by a super jet filter and concen-
trated with a rotatory vacuum evaporator (SB-100, Eyela).
The concentrated extract was collected as crude SR extract
and dried by lyophilization. Crude extract was further
extracted with nonpolar macroporous resin. The extract
and resin mixtures were loaded into a column of 500mL
and eluted with 80% EtOH, resulting in a dark reddish-
brown fraction. Resins were washed twice with 2DH2O,
mixed with the fraction, incubated overnight in the column,
and then eluted with 100% ethanol, resulting in the required
fraction. In this process, unwanted color compounds were
separated and discarded, and the brownish fraction was
obtained. This fraction was dried and further fractionation
and purification was conducted by column chromatography
using the C-18 column. First, the column was washed with
10% EtOH. Approximately 50 g of the fraction was dissolved
in 100mL of 100% EtOH and loaded into the C-18 Luna col-
umn. The fraction was first eluted with 60% EtOH, the sec-
ond fraction was eluted with 100% EtOH, and another
fraction, believed to contain stevioside and rebaudiosides,
was obtained. This fraction was reloaded into the column
and eluted with 100% EtOH. The resulting fraction was con-
centrated and analyzed. Identification and determination of
the isolated compounds were conducted by LC/TOF-MS
and NMR. Rebaudioside A and stevioside with small frac-
tions of rebaudiosides B and D were detected in the isolated
purified fraction. The fraction was further purified from the
traces of other compounds by eluting again with 100% EtOH
using the C18-Luna column. The purified final fraction con-
tained stevioside and rebaudioside A (76.5% and 32.1%,
respectively).

4.3. Sample Preparation. Green tea seed isolated theasaponin
E1 (C59H90O27), and isolated stevia fractions comprising ste-
vioside (C38H60O18) and rebaudioside A (C44H70O23) were
used to analyze their antiobesity effects. Pure isolated com-
pounds, i.e., the fraction of stevioside and rebaudioside A
purified from stevia leaf extracts and theasaponin E1, were
used for investigating the synergistic antiobesity effects both
in vitro and in vivo. The combination of sativoside, rebau-
dioside A, and theasaponin E1 was named the standardized
formulation of RASE1. The ratio of the sativoside and rebau-
dioside A fraction to theasaponin E1 in RASE1 was 5 : 1,
respectively, based on the results of the toxicity and cell via-
bility experiments. For the in vitro studies, 100μg/mL of

RASE1 was used as the highest concentration, while for
in vivo experiments, 300mg/kg body weight of RASE1 was
used as the highest dose based on the acute toxicity experi-
ment on mice. All final products were obtained in the dried
form as powder and were dissolved in distilled water for all
experiments.

For in vitro and in vivo experiments, we followed our
previously described methods (Chaudhary et al. 2015 [62]
and Khan et al. 2018 [63] with some modifications).

4.4. Cell Culture. Human umbilical vein endothelial cells
(HUVECs) and the 3T3-L1 cell line were obtained from
the Korean Cell Line Bank, Seoul, Korea. HUVECs were
cultured in EBM-2 (Clonetics, Walkersville, MD, USA) sup-
plemented with EGM-2 using the Single Quots Kit (Clo-
netics) at 37°C in a humidified 5% CO2 incubator. Then,
3T3-L1 cells were cultured in DMEM medium (Gibco,
Grand Island, NY, USA) supplemented with NaHCO3
(3.7 g/L), 100,000 IU/L penicillin, 100mg/L streptomycin,
and 10% (v/v) fetal bovine serum (FBS).

4.5. Cell Viability Assays. Sample toxicity was checked to
determine safe sample concentrations. Cell viability was
determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltet-
razolium bromide (MTT) assay using 96-well plates.
HUVECs and 3T3-L1 cells (1 × 104 cells/well) were seeded
into a 96-well plate separately for 24h and treated with dif-
ferent concentrations of stevia fraction, theasaponin E1, and
their combination (RASE1) for 24h at 37°C in a humidified
5% CO2 incubator. Then, 0.5% MTT solution (Sigma) was
added to the medium and incubated for 4 h at 37°C. MTT
solution was aspirated, and dimethyl sulfoxide (Sigma) was
added to dissolve the formazan crystals for 15min. Absor-
bance was measured at 540nm using a microplate reader
(Biochrom Ltd., Cambridge, UK). Cell viability was calcu-
lated as the relative percentage compared to the control
(cells untreated with sample).

Cell viability experiments were performed 2 times in
triplicate.

4.6. Antiangiogenesis Assays. An in vitro angiogenesis assay
was performed using HUVECs. Cells were cultured in 96-
well microtiter plates coated with 100μL/well of Matrigel
(BD Bioscience, MA, USA) and were allowed to solidify at
37°C. HUVEC suspensions in medium were added to
Matrigel-coated wells (1 × 104 cells per well) and were incu-
bated for 4 h in 5% CO2 at 37

°C. Different concentrations of
stevia extract, saponins, and combined products were added
to the wells and further incubated for 4 h. Tube formation
was observed and photographed using a phase contrast
inverted microscope (Nikon, Tokyo, Japan). The tube length
of five photographs obtained from random cell culture fields
in each well was analyzed and analyzed using ImageJ version
1.53 k (NIH, Bethesda, MD, USA) software with an angio-
genesis analyzer. The total tube length was calculated and
compared with that of the controls. Experiments were per-
formed 2 times in triplicate.

4.7. mRNA Gene Expression Levels of Angiogenesis. The effect
of samples on angiogenesis suppression was determined by
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the effect of samples on mRNA expression levels of genes of
angiogenesis promoting signaling molecules by RT-PCR.
Relative gene expression levels were calculated for each tran-
scriptional factor and signaling proteins involved in the
pathway.

For angiogenic biomarker analysis, HUVECs were
seeded into a six-well plate at a density of 9:6 × 104 cells
per well. Cells were maintained in EBM-2 complete medium
to up to 70% confluency. Then, different concentrations of
stevia extract and saponins were added to the wells contain-
ing cells and were incubated for 24 h. Total RNA was
extracted from a cell monolayer using an RNA extraction
kit (Qiagen, USA) according to the manufacturer’s instruc-
tions. cDNA synthesis was performed with 1μg of total
RNA using the RevertAid Premium First Strand cDNA Syn-
thesis Kit (Thermo scientific, EU). RT-PCR was used to ana-
lyze VEGFR-2, B-catenin, PI3K, VE-cadherin, AKT, NF-κB,
and ERK2 mRNA expression levels using gene-specific
primers. PCR reactions were performed using a PCR kit
(Thermofisher). PCR reactions consisted of an initial dena-
turing cycle at 94°C for 3min, followed by 30 amplification
cycles of 94°C for 30 s, 60°C for 45 s, and 7°C for 1min.
One additional cycle of 72°C for 7min was run to allow
trimming of incomplete polymerization. Amplified products
were separated by electrophoresis on a 1.5% agarose gel and
were visualized by UV transillumination. Gene expression
analysis experiments were performed 2 times in triplicate.

4.8. Antiadipogenesis, Antilipogenesis, and Lipolysis Assays.
Antiadipogenesis and antilipogenesis effects of the samples
were analyzed by the synthesis and accumulation of fat in
3T3-L1 cells using an Oil red O staining assay, and sample
effects on gene expression levels were analyzed by RT-
PCR. Similarly, sample lipolysis potential was determined
in vitro by a commercial specialized kit using 3T3-L1 cells.

4.9. Oil Red O Staining Assay. 3T3-L1 cells were cultured
(1 × 104) in DMEM using 96-well microtiter culture plates.
Two days after reaching confluency, cells were kept for
another 24 h in this state to arrest cell division. At this point
(day 0), the culture medium was changed to adipogenesis
induction medium or differentiation induction medium
(1mM dexamethasone, 0.5mM 3-isobutyl-1-methylxan-
thine, and 10μg/mL insulin). After 2 days, cells were main-
tained in maintenance medium (10μg/mL insulin in
culture medium). Maintenance medium was changed every
2 days until day 8. Cells were treated with different safe
concentrations of samples of the extracted stevia purified
compound fraction, green tea seed saponins, and a combina-
tion of these at each addition of differentiation induction
medium and maintenance medium. Cells were washed with
PBS and fixed with 10% formalin for 1 h. Again, the cells
were washed with 60% 2-propanol to dryness and then incu-
bated with Oil red O working solution for 3 h. Once again,
the cells were washed four times with distilled water, and
completely dried cells were washed with 100% 2-propanol
to extract the staining dye in the cells. The absorbance of
the extracted Oil red O solution was measured at 520nm

using a 96-well plate reader. Fast determination experiments
were performed 2 times in triplicate.

4.10. Adipogenesis and Lipogenesis Gene Expression Levels.
The mRNA expression of adipogenesis- and lipogenesis-
related genes was analyzed by RT-PCR. The inhibitory effect
of the samples on mRNA expression levels of adipogenesis-
and lipogenesis-related genes and signal molecules was inves-
tigated using gene-specific primers. 3T3-L1 cells were cultured
in DMEM supplemented with 10% FBS in a six-well plate and
were incubated at 37°C in a CO2 incubator. Cells were treated
with different concentrations of individual and combined
samples and were incubated in the CO2 incubator for 24h.
Total RNA was isolated from 3T3-L1 cells using TRI reagent
(Sigma Aldrich), followed by DNase treatment and quantifi-
cation on the NanoDrop 2000 spectrophotometer. cDNA
was synthesized from 500ng total RNA using the Revert
Aid Premium First-Strand cDNA Synthesis Kit (Thermo
Fisher Scientific) and was quantified by measuring absorp-
tion on a NanoDrop spectrophotometer. cDNA was used
for real-time qPCR analysis with gene-specific primers.
DNA bands were obtained on agarose gel after electrophore-
sis. Adipogenesis and lipogenesis gene expression level
experiments were performed 2 times in triplicate.

4.11. In Vitro Lipolysis Assays. The in vitro lipolysis potential
of RASE1 was investigated in 3T3-L1 cells using the Lipoly-
sis (3T3-L1) Assay Kit (MBS841692). Glycerol released from
cells after lipolysis induction was measured using the color-
imetric method. Color intensity was directly proportional to
the glycerol amount. For the lipolysis assay, 3T3-L1 cells
were cultured in DMEM in a 96-well plate and kept in a
5% CO2 humidified incubator. After 24h, when cell con-
fluency reached 70%, the medium was replaced with differ-
entiation induction medium. Cells were kept in this state
for 24h to arrest cell division. After 2 days, the culture
medium was replaced with maintenance medium. Cells were
then fed with maintenance medium every 2 days for up to 8
days. Samples were added during induction and mainte-
nance media addition. Cells were then treated using a lipol-
ysis assay kit for induction, and lipolysis measurements were
obtained. Lipolysis assay experiments were performed 2
times in triplicate.

4.12. Western Blotting for Measuring the p-AMPK Level.
3T3-L1 cells (1 × 104 cells/well) were cultured in DMEM
using 96-well microtiter culture plates. After treatment with
various extracted stevia compounds and green tea saponin
concentrations, 3T3-L1 adipocytes after differentiation were
harvested at subconfluency, washed with PBS buffer, and
lysed with radioimmunoprecipitation assay buffer (Sigma-
Aldrich, MO, USA) containing phenylmethylsulphonyl
fluoride and protease inhibitor cocktail. Cell lysates were
sonicated and centrifuged, and supernatants were collected.
The supernatant protein concentration was measured using
the BCA Protein Assay Reagent (Pierce, Rockford, IL,
USA). Approximately 30μg of protein for each sample was
separated by 10% SDS-PAGE and transferred onto nitrocel-
lulose membranes (Bio-Rad, Hercules, CA). Membranes
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were blocked in Tris-buffered saline-Tween 20 solution con-
taining 3% bovine serum albumin. Membranes were then
incubated overnight with AMPK, phospho-AMPKα (Cell
Signaling Technology, Danvers, MA), and β-actin (Santa
Cruz, CA) primary antibodies at 4°C. Secondary antibody
was conjugated to horseradish peroxidase, and enhanced
chemiluminescence (Amersham Bioscience, UK) was under-
taken to visualize the protein bands. Bands were analyzed
using ImageJ (1.53 k NIH, Bethesda, MD, USA). Experi-
ments were performed 2 times in triplicate.

4.13. Animal Experiments. The study was carried out in
compliance with the ARRIVE guidelines. All animals used
in this study were treated according to the National Insti-
tutes of Health Guide for the Care and Use of Laboratory
Animals. The experimental protocol was approved by the
Chonnam National University Ethical Committee for Ani-
mal Studies under the approval number CNU IACUC–YS–
2020-1. Sixty 8-week-old female ICR mice (Taconic, Chung-
buk, Korea) were randomly assigned to 10 groups contain-
ing six mice each after 1 week of acclimation. All animals
were housed under standard conditions (12 h light/dark
cycle at 22°C and relative humidity 50%±5%) and were pro-
vided diet and water ad libitum. The acute toxicity level of
the test samples and standards was determined before start-
ing the antiobesity experiment. Control groups were fed a
normal diet (normal diet control (NC); NIH #31M Rodent
Diet, Taconic), high-fat diet (high-fat diet control (HFC);
45% fat, D12451 Research Diets, New Brunswick, NJ,
USA), and high-carbohydrate diet (high-carbohydrate diet
control (HCC); 70% carbohydrate, TD.98090 Harlan Teklad,
Seoul, Korea). One group served as a positive control group
(HF-ORL) fed a high-fat diet plus 50mg/kg/d orlistat. Mice
in the other groups received a high-fat or high-
carbohydrate diet plus doses of either extracted stevia com-
pounds or green tea seed extracted theasaponin E1 alone
or combined (RASE1). These were 300mg/kg/d stevia
extracted standardized fraction (HF-ST300), high-fat diet
plus 50mg/kg/d theasaponin E1 (HF-SP50), high-fat diet
plus 300mg/kg/d (stevia extracted standardized fraction plus
theasaponin E1 250 + 50; HF-RASE1), high-carbohydrate
diet plus 300mg/kg/d purified stevia compounds (HC-
ST300), and high-carbohydrate diet plus 50mg/kg/d green
tea saponin (HC-SP50). Another group was fed a high-fat
diet for 4 weeks to induce obesity pretreatment and then
fed 300mg/kg/d RASE1 (PHF-RASE1). All test and control
samples were administered by oral gavage once a day, and
control groups were administered distilled water without
drugs at the same time. Body weight and food intake were
measured after every 24 h in each group. At the end of the
8-week experiment, mice were fasted for 12 h, anesthetized
with isoflurane, and euthanized through cardiac puncture.
Perirenal white adipose tissue (WAT), epididymal WAT,
mesenteric WAT, and liver tissue were excised and weighed.
Mesenteric adipose and liver tissues were removed under
aseptic conditions, snap frozen in liquid nitrogen, and stored
at −80°C for RNA and protein isolation. Total RNA was
extracted using an RNA extraction kit according to the man-
ufacturer’s instructions, and protein concentration was mea-

sured by the BCA Protein Assay Reagent (Pierce, Rockford,
IL, USA). Serum samples were stored at −80°C until analysis.

4.14. Biochemical Analyses of Blood, Serum, and Adipose
Tissue. Total cholesterol (TC), triacylglycerol (TG), HDL
cholesterol, LDL cholesterol, free fatty acid (FFA), glucose,
alanine transaminase (ALT), and aspartate transaminase
(AST) levels in serum were measured according to kit man-
ufacturer’s instruction. The serum insulin level was mea-
sured by immunoassay using a mouse insulin ELISA kit.
Leptin, adiponectin, IL-6, IL-10, and TNF-α serum levels
and mesenteric adipose tissue concentrations of leptin, adi-
ponectin, and IL-6 were measured using a mouse ELISA
kit. The kits used in these experiments were the Adiponectin
Mouse ELISA kit (ab108785), Mouse Aspartate Aminotrans-
ferase ELISA Kit (MBS450720), Leptin Mouse ELISA kit
(ab100718), IL-6 Mouse ELISA kit (ab100712), Free Fatty
Acid Assay Kit-Quantification (ab65341), IL-10 Mouse ELISA
kit (ab100697), TNF-α Mouse ELISA kit (ab108910), Choles-
terol Assay Kit-HDL and LDL/VLDL (ab65390), Mouse
Triglyceride ELISAKit (MBS726589), Mouse Alanine Amino-
transferase ELISA Kit (MBS264717), Mouse Insulin ELISAKit
(MBS038565), and Mouse Glucose ELISA Kit (MBS7200879).

4.15. RT-PCR Analysis of Adipogenesis, Lipogenesis, Lipid
Metabolism, and Browning Effects. Inhibitory effects of stevia
extract on mRNA expression levels of adipogenesis- and
lipogenesis-related genes and signal molecules were investi-
gated by RT-PCR analysis using gene-specific primers.
Mouse liver tissues were processed for RNA extraction using
an RNA extraction kit (Qiagen). Total RNA after isolation
and purification was quantified on a NanoDrop 2000 spec-
trophotometer and was reverse transcribed to cDNA using
the Revert Aid Premium First-Strand cDNA Synthesis Kit
(Thermo Fisher Scientific). cDNA was quantified by observ-
ing absorption on a NanoDrop spectrophotometer and then
used for real-time qPCR with gene-specific primers for adi-
pogenesis- and lipogenesis-related genes. DNA bands were
obtained on an agarose gel after electrophoresis.

4.16. Fecal Lipid Concentration. For fecal lipid analysis, feces
were collected for 3 weeks at the beginning and end of the
experiment. Fecal samples were cleaned and dried at 70°C
for 1 h. Then, 100mg aliquots of feces were incubated with
2mL of chloroform methanol (2 : 1) at 60°C for 30min with
constant agitation and then centrifuged. Then, 1mL of water
was added to the supernatant, vortexed, and centrifuged
(2,000 rpm for 10min). The lower phase was collected in a
new tube, and the sample was evaporated to dryness and
resuspended in 0.5mL of Triton X-100/methanol (2 : 1).
TC and TG quantities in fecal lipid extracts were measured
according to the kit manufacturer’s instructions.

4.17. Statistical Analysis. Data are expressed as means ± SE
M. Differences among groups were tested by one-way
ANOVA followed by post hoc comparisons by the Tukey–
Kramer multiple comparison test (IBM SPSS Statistics
21.0). Data normality was determined (p > 0:05) before per-
forming ANOVA. Values of p < 0:05 were considered statis-
tically significant.
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5. Conclusions

In summary, the pure fractions (stevioside and rebaudioside
A) extracted from S. rebaudiana and green tea seed extracted
saponin E1 showed antiangiogenic, antiadipogenic, and
antilipogenic effects in obesity model cells and animals.
However, the highest antiobesity effects were found when
these natural products were combined in a standardized for-
mulation (RASE1). The animal study also demonstrated the
antiobesity effect of these natural products. These results
showed that stevia and green tea combined natural products
(RASE1) decreased the body weight, adipose tissue accumu-
lation, serum TG, TC, and LDL-C levels, and lipid levels of
HFD mice, and increased serum HDL level and suppressed
the expression of transcriptional factors and genes involved
in fat production and inflammation. Results of the present
study indicate that stevia and green tea are functional foods
with medicinal effects for treating and preventing obesity
and related diseases.
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