
Research Article
Hybrid Gradient Descent Grey Wolf Optimizer for Optimal
Feature Selection

Peter Mule Kitonyi and Davies Rene Segera

Department of Electrical and Information Engineering, University of Nairobi, Nairobi 30197, Kenya

Correspondence should be addressed to Peter Mule Kitonyi; petermule@students.uonbi.ac.ke

Received 19 April 2021; Accepted 22 July 2021; Published 30 August 2021

Academic Editor: Paul Harrison

Copyright © 2021 Peter Mule Kitonyi and Davies Rene Segera. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Feature selection is the process of decreasing the number of features in a dataset by removing redundant, irrelevant, and randomly
class-corrected data features. By applying feature selection on large and highly dimensional datasets, the redundant features are
removed, reducing the complexity of the data and reducing training time. The objective of this paper was to design an optimizer
that combines the well-known metaheuristic population-based optimizer, the grey wolf algorithm, and the gradient descent
algorithm and test it for applications in feature selection problems. The proposed algorithm was first compared against the
original grey wolf algorithm in 23 continuous test functions. The proposed optimizer was altered for feature selection, and 3
binary implementations were developed with final implementation compared against the two implementations of the binary
grey wolf optimizer and binary grey wolf particle swarm optimizer on 6 medical datasets from the UCI machine learning
repository, on metrics such as accuracy, size of feature subsets, F-measure, accuracy, precision, and sensitivity. The proposed
optimizer outperformed the three other optimizers in 3 of the 6 datasets in average metrics. The proposed optimizer showed
promise in its capability to balance the two objectives in feature selection and could be further enhanced.

1. Introduction

With the advent of Big Data, more computation power and
higher specialized methods are required to turn the collected
statistics into valuable information and prediction strategies.
Solutions to relate Big Data problems may be expressed as a
function for which we seek to find an optimal solution, often
with preset constraints. An analytic solution may end up as
highly complex, requiring high computational power, or
even nonexistent. In these common cases, an alternative
method is required to efficiently comb through the search
space of the problem to yield the optimal solution. Optimiza-
tion techniques are well suited for this since they are search
methods in which the objective is to find a solution for a
given optimization problem.

Metaheuristic optimization algorithms, in specific, are
viable owing to their simplicity, conceptuality, and analytic-
ity. They guide the search process to explore the search space
and arrive at an optimal solution [1]. Metaheuristic algo-

rithms may be classified according to different characteris-
tics, some of which include the following.

Memory usage vs. memoryless distinguishes whether the
algorithm retains information of the already traversed search
space and if this information is utilized in determining the
algorithm’s future actions. A well-known example of this is
the swarm intelligence algorithm [2], which mimics the pher-
omone trails, produced by ants as they move to and from the
colony, in encoding information of the search space.

Static and dynamic objective function metaheuristics
refer to the morphing of the objective function as the search
space is traversed as experienced in [3]; the algorithm
dynamically modifies its objective function by analyzing the
search space and adding constraints to the features that then
alter the objective function through “penalty terms.”

Population-based vs. single point search optimizers
describe the utilization of either a set of solutions referred
to as search agents [4] or a single solution within the search
space at each iteration [5], respectively.
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One vs. various neighborhood structure metaheuristic
algorithm is when a single search space is described by the
objective function as opposed to multiple search spaces
requiring the objective function to switch between different
representations, as seen in [6].

Nature-inspired vs. non-nature-inspired simply specifies
the insight that led to the creation of the algorithm. Many
well-known metaheuristics are nature-inspired owing to the
diverse and often ingenious methods through which nature
has adapted to tackle naturally occurring optimization prob-
lems. The genetic algorithm, inspired by the process through
which genetic information is encoded and handled in organ-
isms to produce slight variations in offspring carrying traits
of both parents, allows mutation and crossover in the par-
ents’ (the source of the genetic data) encoded features to pro-
duce offspring that may randomly acquire traits from either
or both parents. From this idea, research was undertaken to
create variants that exemplify the traits of the algorithm [7].
Some other algorithms are made after extensive research on
natural processes in order to mimic nature such as the whale
algorithm [8], dragonfly algorithm [9], and ant lion col-
ony [10].

The grey wolf optimizer [11], inspired by the hunting
patterns of the grey wolf (Canis lupus), is known for its
well-defined pack leadership structure. The 4-tiered hierar-
chical hunting is encoded as tiered search agents, with the
leaders driving the search direction and the rest encircling
the prey (local minima).

Metaheuristic algorithms attempt to achieve a balance
between diversification and intensification in the function
space. As described in [12], an optimization algorithm can-
not be a “one catch all,” having great performance values
for all dataset types. This drives researchers to attempt to
develop hybrid algorithms that incorporate the core of differ-
ent algorithm ideologies to achieve a performance greater
than the sum of its parts. This is especially critical in the med-
ical field with numerous ailments requiring constant research
to find relevant algorithms for each case.

With the simplification of data collection strategies, espe-
cially in internet-based processes, researchers have gained
access to large repositories of data commonly referred to as
Big Data. The data may be analyzed to understand the rela-
tions between different features or classify the set into distinct
groups or predict future outcomes from it. Big Data tends to
contain many features with some not affecting the classifica-
tion of the data. The features are ignored, reducing computer
workload and increasing accurate prediction of the algorithm
in development.

The aim of feature selection is to filter out the features of a
dataset that are redundant, not contributing to the prediction
and labeling of the data [13], achieving data reduction. It
helps in understanding a given data sample to know which
of the input features significantly affect output. In industry,
feature selection is vital in fault detection and diagnosis [14].

In the medical field, it may translate to a medical
researcher gaining insight on specific metrics which are used
to diagnose a specific ailment in a patient or create prediction
algorithms for diagnosis. For diagnostic cases such as those
used later in this paper, a researcher seeks to acquire as much

information on a patient as possible. It is through feature
selection that the researcher may input the data collected
and gain insight on which of the features are relevant in the
diagnosis of a patient, as in diagnosis and classification of
neurodegenerative disorders [15]. Feature selection may also
be used in preemptive testing of a patient and flagging a
patient even before signs of illness are noticeable.

Feature selection’s most common classification methods
are as follows [14]: filter methods, embedded and hybrid
methods, structured and streaming features, and wrapper
(black box) methods, which are employed in this paper.
The wrapper methods generate a subset of the features by
the quality of the performance on the modeling algorithm,
interacted with as a black box such that the internal mecha-
nisms of operation of the evaluator are not manipulated dur-
ing optimization; rather, the subsets are feed-in, and the
output is generated as performance metric(s).

Stochastic gradient descent [16] is an optimization algo-
rithm that utilizes partial differentials at the current solu-
tions’ spatial coordinates to traverse a search space and
locate a local minimum. The algorithm effectively takes steps,
at each iteration, in the direction away from the current gra-
dient of the function. One of the main shortcomings of this
algorithm is in its tendency to get trapped in a local mini-
mum, unable to find the global minimum, especially in
functions with an exceedingly high number of local minima,
since the partial derivative also increases the computational
complexity of the function by increasing the number of cal-
culations required in iterating to the next point but in doing
so informs the search agent on the most efficient direction to
arrive at the minimum.

The aim of this paper is to propose a hybrid of the grey
wolf and the gradient descent to achieve better performance
in well-known medical benchmark datasets against estab-
lished feature selection strategies by solving the feature selec-
tion problems.

The paper is subdivided into the following sections:
introduction, literature review, review of the proposed
method, results and discussion, and conclusion.

2. Literature Review

Binary GWO [17], proposed in 2015, modified the algorithm
to operate in binary feature selection. This variant of the
GWO operates on binary input variables as wolves denoting
the selection of each feature. In this, a “1” in the vector
includes the corresponding feature in the grey wolf’s search
space, while a “0” denotes an exclusion. Two approaches
are proposed: (1) where the alpha, beta, and delta wolves
are changed into binary vectors, after which a crossover is
performed to find the value of the new grey wolf, and (2)
where the GWO operates on the wolves as continuous-
valued inputs to achieve a binary vector the wolves are
subjected to a threshold or transfer function, specifically a
sigmoid function. The optimizer’s performance is compared
against PSO [4] and genetic algorithms [7], with the outcome
placing GWO as a viable candidate for feature selection
problems.
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In 2017, [18] was proposed. The novel framework is com-
posed of the feature selection module and the KELM, evalu-
ating the selected feature set. Compared against both the
genetic algorithm and the GWO algorithm on multiple med-
ical datasets, including Parkinson’s and WDBC, the
enhanced GWO achieves smaller feature subsets with higher
performance metrics.

In 2017, a hybrid GWOwas proposed by Singh and Singh
[19]. It improved the exploitation of the base GWO by com-
bining it with PSO. Compared against its parent optimizers,
the hybrid was able to perform equivalently or markedly bet-
ter in a set of benchmark equations yielding better solutions
with comparatively reasonable CPU times [19].

Chaotic GWO [20], proposed in 2018, incorporates a set
of chaotic maps to increase the convergence rate of GWO.
Chaotic maps are used in optimization, taking advantage of
their nature to generate highly variant randomness from
“close” initial conditions. The modified GWO is applied to
various design problems in engineering including the classic
tension/compression spring design problem and the pressure
vessel design problem, consistently outperforming algo-
rithms such as the PSO and ant bee colony optimization
algorithm [2].

In 2018, a binary grey wolf optimizer was used in feature
selection for EMG signal classification in [21]. In the paper,
the leaders are enhanced by integrating a random walk
around the alpha, beta, and delta wolves to prevent trapping
at the local optimum. The EMG signals, consisting of 120 fea-
tures, are used to examine the effectiveness of the method
with a KNN used for fitness evaluation. Compared against
BGWO (both versions), we have BPSO and GA on classifica-
tion accuracy, precision,F-measure, and MCC. The method
reduces the features to an average of 42.46 and a precision
of 0.9493, outperforming all the other algorithms on all met-
rics while averaging the lowest computation time.

In 2019, a method was presented to diagnose Parkinson’s
disease using modified grey wolf optimization [22]. The
method involves removing the redundant features in the Par-
kinson’s dataset using the modified GWO. With Parkinson’s
disease, early diagnosis is vital since, with no cure, treatment
administered early helps with mitigation of its adverse effects.
The Parkinson’s datasets, split into training and testing and
comprising hand, hand meander, speech, and voice, have
many features on which theMGWO-driven feature selection,
using a machine learning model as the source of the error
rate, is run. In this paper, KNN, random forest, and decision
tree performance were compared on the accuracy, detection
rate, and false alarm rate on the 4 datasets with random tree
performing better and thus used to compare against an opti-
mized cuttlefish algorithm-based feature selection method.
The proposed method achieved a higher accuracy in all data-
sets but a lower feature subset in 3 of the 4 datasets, proving
the viability of the method and the applicability of GWO in
feature selection.

In 2019, a modified binary grey wolf optimization
method was proposed [23] to increase the accuracy of intru-
sion detection systems by applying feature selection to the
data to select the optimal number of features. The modifica-
tions to the original grey wolf entailed having four wolves

used in the position update instead of three and updating
the fitness function to use the inverse number of selected fea-
tures instead of the ratio of the number of selected features to
the total number of features. The NSL-KDD dataset was used
as the benchmark with a support vector machine for classifi-
cation. The proposed algorithm was compared against vari-
ants of GWO on its average accuracy performance and
average number of features with the algorithm achieving a
higher average accuracy highlighting the impact of the two
modifications applied to the GWO. The proposed method
was then tested against BGWO, binary PSO, and binary
BAT on an 8 to 2 train and test data split and 4 different
attack methods, and the overall results showed no significant
variance in best accuracy but a big difference in feature subset
size. Convergence rate comparisons were also carried out
against BGWO with the results indicating better evolution
of the number of features with accuracy in the modified
BGWO. The final simulation results showed an increase in
the classification of 99.22% with a feature set reduction from
41 to 14. These results were compared against other state-of-
the-art algorithms, including AdaBoost and PSO-discretize-
HNB, indicating exceptional performance considering the
conflicting objectives of the intrusion detection system. The
authors proposed adapting a velocity parameter in future
studies to enhance the performance as in PSO.

In 2019, in order to enhance the diagnosis of paraquat-
poisoned patients, a herbicide commonly used for weeding,
chaos enhanced grey wolf optimization wrapped ELM was
proposed [24]. As with many ailments, early diagnosis
increases the likelihood of recovery, and the proposed
method was designed to remove redundant features from
the dataset and enhance diagnosis accuracy. The chaotic
sequence used in the paper was generated from logistic map-
ping and used to inject randomness and ergodicity and
reduce sensitivity of the method to initial conditions. The
grey wolf optimizer was used for feature selection to provide
the optimal feature subset, with a decision boundary at 0.5
and an embedded chaotic map. An extreme learning
machine model was trained and used to identify the PQ
patients. The dataset used was from the Medical Ethics Com-
mittee of the First Affiliated Hospital of Wenzhou Medical
University which included 15 patients. The results showed
the method achieving AUC, accuracy, sensitivity, and speci-
ficity of 95.14%, 93.89%, 94.44%, and 95.83%, respectively,
with the number of features selected ranging from 56 to 73
out of a total of 119 features. The significant features were
indicated by the frequency of inclusion in the selected subset
with feature nos. 3 and 87 being the most significant. The
authors suggest orthogonal learning or quadratic interpola-
tion to further enhance the searching of GWO.

In 2019, a face recognition method based on grey wolf
optimization for feature selection [25] was proposed. In this
paper, the authors used the grey wolf optimizer to prune
out the redundant features in the image dataset and in doing
so reduce the runtime of the process while increasing the
classification accuracy. The dataset used in the paper was
the Yale Face dataset which underwent image processing,
feature extraction using Gabor filters, feature reduction using
principal component analysis, feature selection using GWO,
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and classification using KNN. The effects of the GWO vari-
ables were analyzed for different values with accuracy peak-
ing for the boundary of ±15 and maximum iterations of 25.
The proposed system was compared against an adaptive
cuckoo search algorithm for intrinsic discriminant analysis
and outperformed it, achieving a higher accuracy
(97% > 88:9%) with lower runtime (6:49 s < 9:10 s). This
indicates the method is effective in face recognition and
needs viable further research on other biometric datasets.

In 2020, improvements to the binary GWO were pro-
posed [26] which involved a new updating equation for the
“a” parameter to balance exploration and exploitation as well
as different transfer equations for discretizing the output of
the standard GWO positions. The transfer equations used
are the standard S curve and 4 V-type functions which were
further improved using the value of AD. To validate their
application in feature selection, twelve datasets from the
UCI machine learning repository were used on BGWO and
the proposed algorithms. The KNNwas used as the classifica-
tion algorithm, and the fitness functions used were the K-fold
loss and weighted sum ratio of K-fold loss and selected fea-
ture ratio. The simulated results prove that the improved
optimizer has a better classification accuracy without increas-
ing the selected features on a wide range of data types and
dataset sizes. The authors suggested the use of a neural net-
work for classification in combination with KNN to reduce
classification error.

In 2021, a method was proposed [27] to tackle anomaly
detection problems by utilizing an enhanced grey wolf opti-
mizer in feature selection of the multidimensional dataset
by controlling the balancing parameter for exploration and
exploitation. The parameter “a” is the main focus with its
value increased or decreased depending on the current itera-
tions’ performance as compared to the previous iteration. By
doing so, the linearly updating value of “a” is changed to an
adaptive update, allowing scouting of better search space
when a wolf is at a worse fitness value area. The dataset used
is the NSL-KDD dataset with 5 methods of attack with an
SVM sued as the classifier. During phase one of analysis,
the number of features and the accuracy were averaged and
the proposed algorithm was compared against MBGWO,
BGWO, MGWO, and GWO with the algorithm achieving
the highest accuracy with the lowest number of features.
The second phase pitted the algorithms on the accuracy
and number of features selected for each class with the pro-
posed algorithms’ performance, indicating the advantage in
parameter control with a good balance of exploration and
exploitation. The results show significantly better perfor-
mance of the optimizer, selecting 19 features of 41 with an
87.46% classification accuracy.

2.1. Inferences Drawn. The literature review shows the effec-
tiveness of GWO and its variants in optimizations and fea-
ture selection in specific, with GWO simplicity in design
and implementation, few controlling parameters, and ease
of modifying with other optimizers. It also shows that the
wrapper method is a superior feature selection method with
the KNN classifier acting as a suitable error rate generator
without leading to overfitting.

3. Grey Wolf Optimizer

Proposed by Mirjalili et al. in 2014 [11], the grey wolf opti-
mizer is a static population-based metaheuristic optimization
algorithm inspired by the grey wolf of the Canidae family.
The algorithm mimics the search, hunt, and attack tactics
of a pack of grey wolves as a cohesive unit.

Within a pack of wolves, there exists a strict social hierar-
chy divided into four tiers depicted in Figure 1.

(i) The Alpha (α ). The leader of the pack is responsible
for hunting, scheduling among other decisions concerning
the pack.

(ii) The Beta (β ). Subordinates to the alphas assist them
in the management and decision-making of the pack; they
are usually the first in line to acquire the title of alpha if the
current alpha passes on or grows too old. They also act as
an enforcer to the alpha on the rest of the pack, disciplining
them as need be.

(iii) The Delta (δ ). Dominant only to the omegas, this
group is mostly composed of the sentinels, elders, hunters,
scouts, and caretakers.

(iv) The Omega (ω ). Often referred to as the scapegoat,
these wolves are inferior to all the other wolves seeking guid-
ance from all other wolves.

The pack leaders are the spearheads in a hunting forma-
tion. They send the omega wolves to encircle the prey once its
general location is found, drawing closer and closer as the
exact location is searched for. With the prey completely
encircled, the wolves attack, securing a meal for the pack.

To express this as a mathematical model, the process may
be divided into 3 distinct steps.

3.1. Encircling the Prey.

D
!
= C

!
· X
!

p tð Þ − X
!

tð Þ
���

���, ð1Þ

X
!

t + 1ð Þ = X
!

p tð Þ − A
!
·D
!
: ð2Þ

The encircling of the prey is modeled as in equation (1).

D
!

is calculated as the distance between the current wolf

vector X
!ðtÞ and the prey X

!
p.

X
!ðt + 1Þ is the next value of X, and A

!
and C

!
are random

vectors of dimensions equal to the dimensions of X generated
from r!1 and r2

! of the range ½0, 1� and with a range of ½0, 2�.

A
!
= 2a! · r!1 − a!, ð3Þ

C
!
= 2 · r2!: ð4Þ

a!decreases from 2 to 0 that models the circling of the
prey, as the iteration counts up, as expressed in equation
((5)) below:

a! = 2 −
2 × ⅈtⅇr
Maxiter

� �
: ð5Þ
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3.2. Hunting the Prey.Hunting maps explore the search space
as led by the alpha, beta, and delta. Modeling this involves
obtaining the alpha, beta, and delta search agents from the
pack by comparing the fitness values and choosing the lead-
ing agents. The omega positions are then updated according
to the leading wolves.

Dα
�! = C1

! · X
!
α − X

!���
���, ð6aÞ
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3.3. Searching and Attacking the Prey. Once the prey stops
moving, the pack moves in for the kill, sending all the agents
towards the prey from different angles.

The mathematical model of these is dependent on vector

A
!
. When the absolute value of vector A

!
is below 1, the search

agents converge towards the prey when it is above the agents
that search the space.

4. Iterative Stochastic Gradient Descent

Conceptualizing an objective function as an unknown ter-
rain, the minimum of this terrain may be approached step
by step, continually moving against the gradient of the
terrain.

Gradient descent implements this as an iterative update
process of the position θ.

θ = θ − η∇θ J θ ; x ið Þ ; y ið Þ
� �

: ð9Þ

For a function whose objective function is defined as
Jðθ ; xðiÞ ; yðiÞÞ, whose partial derivative with respect to each
parameter ofxðiÞis∇θ Jðθ ; xðiÞ ; yðiÞÞ, the core equation of gra-
dient descent is shown in equation (9).

The algorithm loops a set number of times (maximum
iterations); at each iteration, the value of θ is updated by cal-
culating the partial derivative of the objective function with
respect to the parameters of the input and subtracting this
value from θ. In doing so, the algorithm quantifies the effect
each parameter has on the objective function and uses this
information to control the direction and speed of transversal
in the search space. The variable η controls the learning rate,
avoiding both oscillations about a minimum caused by large
values of the partial derivative and slow convergence rates
caused by low partial derivative values.

For a simple function space, the partial derivative
encodes the direction in which the closest local minimum
exists. As the function increases in complexity with multiple
local minima existing, the value of the partial derivative as a
vector in the function space may point at the weighted aver-
age of the local minima. To avoid this outcome, the algorithm
is usually run multiple times with each initial starting loca-
tion randomized.

This algorithm is well known in implementation in
artificial intelligence, specifically in regression and neural
networks. With a mathematically derived partial derivative,
the algorithm can achieve a high convergence rate, and with
multiple random initializations, it avoids local minima.

One of its significant shortcomings is that when the par-
tial derivative calculation is intensive, the computational
complexity of the overall process is increased.

5. Feature Selection

Feature selection is the process of decreasing the number of
features in a dataset by removing redundant, irrelevant,
and randomly class-corrected data features. In doing so, a
model is capable of increasing its accuracy as well as reduc-
ing overfitting and training time by utilizing the generated
optimal subset. It has applications in many fields including
text mining, image processing, medical research, and fault
diagnosis.

The general procedure of feature selection involves four
key steps [28], as shown in Figure 2:

(i) Subset Generation. This is the start of the process as a heu-
ristic search. It could be a forward search which involves
starting with an empty feature set and successively adding
new features or a backward search which involves starting
with all features included and successively removing features
or a bidirectional search which involves adding and remov-
ing features simultaneously.

(ii) Subset Evaluation. With a generated feature subset, this
involves determining the “goodness” of the subset through
a defined criterion through which the optimal subset of fea-
tures is guided. This may be dependent or independent of
the mining algorithm.

(iii) Stopping Criterion. This determines when the feature
selection process terminates through criteria such as search
completion, reaching of specified bounds (minimum no. of
features or maximum number of iterations), an optimal

𝛼

𝛽

𝛿

𝜔

Figure 1: Hierarchy of the wolves in GWO.
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feature subset obtained with alteration of the subset not
providing better subsets, and a subset selected with sufficient
criterion values.

(iv) Result Validation. The selected feature subset is selected,
and its performance is evaluated.

The methods of feature selection may be classified into
the following [14]:

(1) Filter Methods. Features are selected based on perfor-
mance metrics, and the dataset used is not taken into
account.

(2) Wrapper Methods. The performance of a given feature
subset is measured by a modeling algorithm whose internal
workings are “not known.” Owing to this, they are versatile,
allowing any pairing of the modeling algorithm and search
space optimization algorithm. This is done for each iterative
subset as per the algorithm in use until the stopping criterion
is met. These methods are slower than filters but provide bet-
ter performance given that the subsets are ensured not to be
biased to the modeling algorithm used.

(3) Embedded and Hybrid Methods. Feature selection occurs
during the modeling algorithm execution. As a model is
being generated from the test data, the redundant features
are pruned out to achieve the optimal dataset and model at
completion. This is a hybrid of both the wrapper and filter
methods.

6. Proposed Method

6.1. Hybrid Gradient Descent Grey Wolf Optimizer. The gra-
dient descent of a wolf position may be conceptualized as the
direction from which the wolf seems to smell the prey is at
currently. The leading wolves would then smell the air, and
each chooses a representative among the worst-performing
members of the pack and calls them to itself, then instructs
it to “follow” the scent. The basic implementation is given
in Pseudocode 2 below.

The partial derivative is calculated as an approximation
since the objective function is taken as unknown. This is
done by choosing a step variable that is the value added to
the wolf position on each dimension as well as subtracted.
The fitness values of these two new positions are calculated
and subtracted from each other and lastly divided by the
step value. This is the center finite difference for derivative
approximation.

∂J x!
� �

∂xi
=

J x1, x2,⋯, xi + sð Þ,⋯, xnð Þ − J x1, x2,⋯, xi − sð Þ,⋯, xnð Þ
s

:

ð10Þ

6.2. HGDGWO (Binary Version). The binary version adapts
the proposed continuous algorithm for feature selection
while taking advantage of the finite search space of a dataset:
each location in space either including or excluding a fea-
ture from consideration in the model.

1. Begin
2. Randomly initialize the position vector θ and choose a suitable value of set size η
3. While the maximum number of iterations is not exceeded

a. Evaluate the partial derivative of the objective function with respect to the dimensions of the position vector
b. Update the position vector according to equation (9)

4. End
5. Solution == θ
6. End

Pseudocode 1: Iterative stochastic gradient descent.

Subset

Goodness of subset

No Yes

Subset
generation

Original
set Subset

evaluation

Stopping
criterion

Result
validation

Figure 2: Feature selection process.
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As a multiobjective feature selection problem, the fitness
function adapts to this as a weighted sum of the two opposing
solution requirements, fewer selected features and low error
rates.

A significant alteration is in the calculation of the fitness
function. Since there are two objectives of the fitness func-
tion, in order to incentivize the algorithm to seek out solu-
tions with fewer features, a “cost” is assigned to the number
of features and added to the fitness function. It is calculated
as below:

fit = ϕErr + θ
S
D
, ð11Þ

where ϕ modulates the error of the fitted model, Err, and
θ = ð1 − ϕÞmodulates the ratio of the number of selected fea-
tures S to the total number of features D.

The alterations to the partial derivative for a binary
search space are shown in Pseudocode 3 below. For the par-
tial derivative, each feature index goes through the binary

1. Begin
2. Randomly initialize all wolves within the function’s limits
3. Evaluate fitness values of all wolves and sort in ascending order
a. Set the alpha wolf as the highest fitness value
b. Set the beta wolf as the second highest fitness value
c. Set the delta wolf as the third highest fitness value

4. While the maximum number of iterations is not exceeded
a. For each wolf

i. Evaluate A and C using equations (3) and (4)
ii. Evaluate all 3 values of D using equations ((6a), (6b), (6c))
iii. Evaluate X1, X2, and X3 using equations ((7a), (7b), (7c))
iv. Evaluate the new positions using equation (8)

b. End
d. Evaluate the partial derivative of the alpha, beta, and delta wolves from equation (10)
e. Update the bottom 3 fitness value wolves using equation (9) with the update locations as the alpha, beta, and delta wolves.
c. Evaluate the fitness values of the wolves
d. Update the alpha, beta, and delta wolves

5. End
6. Solution == alphawolf

Pseudocode 2: HGDGWO.

1. Function partial derivative
2. Pass in: wolf_position, fitness_function
3. Set partial_derivatives as the vector as zeros
4. For each feature i of the wolf_position

a. Set new_position as Call not if wolf_position feature i
b. Set the new_fitness value as Call fitness_function for new_position
c. Set partial_derivative index i as the difference of new_fitness and fitness of wolf_position

5. End for
6. Pass out: partial derivatives
7. End function

Pseudocode 3: Partial derivative binary version.

1. Function mutation with partial derivative
2. Pass in: wolf_pos, derivatives, probability
3. Set probability vector as scaled derivative vector multiplied by probability
4. Set selected features as probability vector compared against a generated random number vector
5. Set new_pos as Call XOR of wolf_pos and selected_features
6. Pass out: new_pos

Pseudocode 4: Implementation 1.

7BioMed Research International



NOT operation, and this value is subtracted from the original
partial differential.

Once the partial derivative is calculated, this information
is utilized in updating the wolf positions through the muta-
tion by partial derivative functions. Three implementations
were used as follows:

(1) With this implementation, shown in Pseudocode 4,
the partial derivative is used as a simple threshold
marker with higher derivatives leading to lower fea-
ture index inversion rates. The higher the partial
derivative, the higher the chance of changing the
wolves’ value at the partial derivative index

(2) In this implementation, shown in Pseudocode 5, var-
iable a is used to incorporate exploration and exploi-
tation phases during the iterative search process. It

does this by modifying the threshold for the wolf
index mutation

(3) With this, shown in Pseudocode 6, the sigmoid
function is used to map the partial derivative to a
threshold space with a normalized partial derivative
while still incorporating variable a for exploration
and exploitation. This ensures injection of inversion
even when there seems to be no valid update direc-
tion for the wolf

With mutation completed, the worst-performing wolves’
positions are updated as the modified positions are eval-
uated. The three worst-performing wolves were chosen
to update the positions from the alpha, beta, and delta
wolves.

1. Function mutation with partial derivative
2. Pass in: wolf_pos, derivatives, probability threshold, a
3. Set weight as 0.4∗a + 0.1
4. Normalize the partial derivative
5. Calculate the sigmoid of the normalized partial derivative and set to variable sig
6. Use probability threshold and weight to choose the feature indices to change
7. Calculate the new wolf position and pass back

Pseudocode 5: Implementation 2.

1. Function mutation with partial derivative
2. Pass in: wolf_pos, derivatives, probability threshold, a
3. Set weight as 0.4∗a + 0.1
4. Set the expoilation_probabilities as mapped derivative on the sigmoid curve centred at zero
5. Set the exploration_probalilities as the ratio of features selected to total features for the selected features and 1- this for negative
6. Set selected_features as the sum of weight ∗ expoilation_probabilities and 1 – weight ∗ exploration_probalilities multiplied by prob-
ability_threshold compared against a vector of randomly generated numbers

Pseudocode 6: Implementation 3.
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Figure 5: Convergence graph of unimodal benchmark function (F3). GWO indicates grey wolf optimization; HGDGWO indicates hybrid
gradient descent grey wolf optimizer.
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Figure 8: Convergence graph of unimodal benchmark function (F6). GWO indicates grey wolf optimization; HGDGWO indicates hybrid
gradient descent grey wolf optimizer.
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Figure 10: Convergence graph of multimodal benchmark function (F8). GWO indicates grey wolf optimization; HGDGWO indicates hybrid
gradient descent grey wolf optimizer.
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Figure 11: Convergence graph of multimodal benchmark function (F9). GWO indicates grey wolf optimization; HGDGWO indicates hybrid
gradient descent grey wolf optimizer.
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Figure 13: Convergence graph of multimodal benchmark function (F11). GWO indicates grey wolf optimization; HGDGWO indicates
hybrid gradient descent grey wolf optimizer.
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Figure 14: Convergence graph of multimodal benchmark function (F12). GWO indicates grey wolf optimization; HGDGWO indicates
hybrid gradient descent grey wolf optimizer.
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Figure 15: Convergence graph of multimodal benchmark function (F13). GWO indicates grey wolf optimization; HGDGWO indicates
hybrid gradient descent grey wolf optimizer.
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Figure 16: Convergence graph of fixed-dimension multimodal benchmark function (F14). GWO indicates grey wolf optimization;
HGDGWO indicates hybrid gradient descent grey wolf optimizer.
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Figure 17: Convergence graph of fixed-dimension multimodal benchmark function (F15). GWO indicates grey wolf optimization;
HGDGWO indicates hybrid gradient descent grey wolf optimizer.
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Figure 18: Convergence graph of fixed-dimension multimodal benchmark function (F16). GWO indicates grey wolf optimization;
HGDGWO indicates hybrid gradient descent grey wolf optimizer.
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Figure 19: Convergence graph of fixed-dimension multimodal benchmark function (F17). GWO indicates grey wolf optimization;
HGDGWO indicates hybrid gradient descent grey wolf optimizer.
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Figure 20: Convergence graph of fixed-dimension multimodal benchmark function (F18). GWO indicates grey wolf optimization;
HGDGWO indicates hybrid gradient descent grey wolf optimizer.
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Figure 21: Convergence graph of fixed-dimension multimodal benchmark function (F19). GWO indicates grey wolf optimization;
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Figure 22: Convergence graph of fixed-dimension multimodal benchmark function (F20). GWO indicates grey wolf optimization;
HGDGWO indicates hybrid gradient descent grey wolf optimizer.
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Figure 23: Convergence graph of fixed-dimension multimodal benchmark function (F21). GWO indicates grey wolf optimization;
HGDGWO indicates hybrid gradient descent grey wolf optimizer.
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Figure 24: Convergence graph of fixed-dimension multimodal benchmark function (F22). GWO indicates grey wolf optimization;
HGDGWO indicates hybrid gradient descent grey wolf optimizer.
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7. Methodology

The algorithms were implemented in MATLAB and run on
an Intel® Core™ i7-7700HQ CPU @ 2.80GHz with 8GB of
RAM.

The continuous version was first tested for feasibility and
gave information on its performance in different continuous
function optimization problems. The binary version under-
went multiple alterations to improve performance.

7.1. HGDGWO. As a continuous value optimization func-
tion, the hybrid algorithm was tested on 23 benchmark func-
tions. Each function was run 500 times, and the convergence
curve and final value were recorded.

7.1.1. Test Functions. Twenty-three benchmark functions
were used to compare the performance of the HGDGWO
against GWO. They are divided into three types of functions:

(1) Unimodal Functions (F1-F7). Exploitation analysis for
checking the exploitation capability of the optimizer
(Figures 3–9).

(2) Multimodal Functions (F8-F13). Exploration analysis for
checking the exploration capability of the optimizer
(Figures 10–15).

(3) Fixed-Dimension Multimodal Functions (F14-F23). For
analysis of the exploration capability of the algorithm in
the case of fixed-dimension optimization problems
(Figures 16–25).

7.1.2. Parameter Settings

(i) Number of test cases = 500

(ii) Maximum iterations = 500

(iii) Number of wolves = 10

(iv) Learning rate η = 0:003. This is a variable for the par-
tial derivative, defining the position update rate. A
high learning rate increases the convergence rate
while increasing oscillations around a local
minimum

(v) Step size s = 1 E‐15. For partial derivative approxi-
mation, a high value reduces the accuracy of the
value calculated

The parameters were tuned iteratively in order to achieve
desired results.

7.1.3. Evaluation Metrics

(1) Standard deviation

σj =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i=0 Sji − μ
� �2

N

vuut
: ð12Þ

This is a measure of the similarity between different solu-
tion runs. A high standard deviation indicates significant
changes in the solution as the function runs multiple times.
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Figure 25: Convergence graph of fixed-dimension multimodal benchmark function (F23). GWO indicates grey wolf optimization;
HGDGWO indicates hybrid gradient descent grey wolf optimizer.

Table 1: Datasets for evaluating binary HGDGWO.

No. of
instances

No. of
features

Breast Cancer Wisconsin
(Diagnostic)

569 30

Breast Cancer Wisconsin (Original) 699 9

SPECT Heart 267 22

Statlog (Heart) 270 13

Heart Disease (Coronary Artery
Disease)

303 14

Lymphography 148 18
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A low variance indicates a relatively static solution irrespec-
tive of the number of reinitializations.

(2) Average of solutions

μ j =
∑N

i=0S
j
i

N
: ð13Þ

(3) Minimum solution

Minimum =min Sj
	 


: ð14Þ

This is the lowest value of the fitness value achieved over
the total number of repetitions.

(4) Timing

The MATLAB timing function “timeit” is used. The algo-
rithms are timed on how long they take on each function,
from calling to returning the solution.

7.2. HGDGWO (Binary Version)

7.2.1. Datasets. From the UCI machine learning repository, 6
medical datasets were selected and utilized to test HGDGWO

in feature selection applications against BGWO implementa-
tions 1 and 2 as well as BGWOPSO. Table 1 shows the spe-
cific datasets used and the corresponding feature numbers
and samples.

(1) Breast Cancer Wisconsin (Diagnostic). Features are com-
puted from a digitized image of a fine needle aspirate
(FNA) of a breast mass. They describe the characteristics of
the cell nuclei present in the image.

(2) Breast Cancer Wisconsin (Original). Some of its features
are clump thickness, uniformity of cell shape, uniformity of
cell size, and single epithelial cell size, among others.

(3) SPECT Heart. The dataset describes diagnosing cardiac
Single Photon Emission Computed Tomography (SPECT)
images. Each of the patients is classified into two categories:
normal and abnormal.

(4) Statlog (Heart). The class is grouped as either the absence
(1) or the presence (2) of heart disease. The data includes
patient information and symptoms as well as medical test
results. It includes features such as age, sex, chest pain type,
resting blood pressure, cholesterol, and fasting blood sugar.

(5) Lymphography. The dataset is grouped into 4 classes: nor-
mal find, metastases, malign lymph, and fibrosis. The fea-
tures are characteristics of the nodes of the patient

Table 2: Comparison of HGDGWO vs. GWO on the standard deviation, average solution value, and minimum solution value.

GWO HGDGWO
Std Avg Min Std Avg Min

F1 3.61676E-15 1.5E-15 1.05E-18 2.552352E-16 1.12338E-16 3.42886E-19

F2 5.10353E-10 6.14E-10 6.83E-11 8.22765E-11 1.07201E-10 9.51197E-12

F3 1.970580354 0.440954 7.05E-05 9.267454202 2.524266498 0.000739587

F4 0.001694846 0.00097 2.45E-05 0.627079638 0.194208881 9.11492E-05

F5 0.715412247 27.97616 26.07362 0.182727572 24.70065652 24.2318205

F6 0.549531169 2.059684 0.499325 4.27267E-05 0.00015762 6.73711E-05

F7 0.002960497 0.00557 0.000473 0.003179504 0.005692948 0.000678783

F8 864.6819996 -5568.98 -7969.82 754.9053776 -5331.436892 -8200.684424

F9 8.504768935 7.471358 1.14E-13 4.948766233 5.290958807 2.27374E-13

F10 4.48942E-09 6.1E-09 4.29E-10 1.18025E-09 1.40909E-09 7.62208E-11

F11 0.015974785 0.009848 1.11E-16 0.018615668 0.015057363 0

F12 0.117619036 0.164508 0.011946 0.161051964 0.082169433 0.016214596

F13 0.291250797 1.478276 0.638533 0.841310501 2.012431478 0.777870006

F14 4.510397435 6.512168 0.998004 4.84147902 7.537556634 0.998003838

F15 0.009037547 0.005277 0.000308 0.009730784 0.006187126 0.000307503

F16 1.22631E-07 -1.03163 -1.03163 1.13088E-07 -1.031628364 -1.031628453

F17 0.000315241 0.397931 0.397887 1.68393E-05 0.397898059 0.397887363

F18 20.41179783 8.508348 3 13.87682254 5.667577926 3.000000005

F19 0.127939439 -3.85542 -3.86278 0.00129102 -3.86190632 -3.862781552

F20 0.122039151 -3.24693 -3.32199 0.060913623 -3.282130038 -3.321995138

F21 2.772143142 -8.63898 -10.1531 2.959951738 -8.160509127 -10.15318311

F22 1.692839418 -9.95648 -10.4028 2.514675596 -9.309264282 -10.40292471

F23 2.047149492 -9.94358 -10.5363 2.972229183 -9.067428331 -10.53639376
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including shape, defects, and extravasates. Some of the classes
are disproportionally represented, influencing the partition-
ing of the dataset.

(6) Cleveland Heart Disease (Coronary Artery Disease). The
dataset includes patient information such as age, sex, fasting
blood sugar, and cholesterol, mapping to the patient
diagnosis.

7.2.2. Parameter Settings

(i) Number of wolves = 10

(ii) Maximum number of iterations = 50

(iii) Number of tests = 10

(iv) Random wolf initialization threshold = 0:3. This
variable sets the number of initial selected features
with higher values translating to lower initial
selected features

(v) Partial derivative mutation threshold = 0:9. This
operates as a shift in threshold position for altering
the chance of inversion of a feature

(vi) Limits of exploitation vs. exploration weight = ½
0:1,0:9�. This sets the limits for the probability of
exploration and exploitation

The parameters were tuned iteratively in order to achieve
desired results.

7.2.3. Feature Selection. The feature selection method used
was the wrapper-based method with the following presets:

(i) Objective function is the partial derivative, as
expressed in equation (10)

(ii) Search strategy is HGDGWO (random bidirectional)

(iii) Modeling algorithm is KNN with a K value =
square root of the test cases

(iv) Distance calculation function is the Euclidean
distance

(v) K-fold is 5

(vi) External classifier is the support vector machine

(a) Standardize is true

(b) Kernel function is RBF

(c) Kernel scale is auto

(vii) Data splitting function cv-partition and number of
partitions = 10 for 2 class datasets and 2 for classes
more than 2 with the distribution skewed

The wrapper method was chosen for its superior
performance, as expressed in the literature review. The
KNN classifier was also used for fitness evaluation because
of its well-documented preference in feature selection, specif-
ically with GWO variants.

7.2.4. Evaluation Metrics. The criteria used once a solution
was achieved were as follows:

(1) Average classification accuracy

This is a measure of the validity of a model’s predictions.

Average accuracy = 1
K
〠
K

i=1
Acci: ð15Þ

(2) Average number of selected features

(3) Average fitness values

(4) Sensitivity

This is the ratio of correctly predicted positive cases to
total positive cases.

Sensitivity =
TP

TP + FN
: ð16Þ

(5) Precision

Table 3: Comparison of HGDGWO vs. GWO on runtime in
seconds.

Timing in seconds
GWO HGDGWO

F1 0.070489 0.282311792

F2 0.077059 0.365259492

F3 0.202226 2.946722992

F4 0.072127 0.392969492

F5 0.097035 0.375596492

F6 0.060202 0.224753292

F7 0.083923 0.723214392

F8 0.065475 0.359746292

F9 0.060371 0.267976592

F10 0.063073 0.323171992

F11 0.069045 0.410546392

F12 0.13222 1.664266292

F13 0.179679 2.283567892

F14 0.36951 0.539720892

F15 0.050027 0.093108092

F16 0.057001 0.116811892

F17 0.073093 0.115498092

F18 0.065085 0.080321992

F19 0.056733 0.106442192

F20 0.057225 0.145887392

F21 0.080076 0.202839092

F22 0.092606 0.244222492

F23 0.111739 0.314955192
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This is the ratio of correctively predicted positive cases to
total predicted positive cases.

Precision =
TP

TP + FP
: ð17Þ

(6) F-measure

This is the harmonic average of precision and sensitivity.

F‐measure = 2
Precision ∗ Recall
Precision + Recall

: ð18Þ

(7) One-way ANOVA test on the number of features
selected by each algorithm. The P value was obtained
from the MATLAB function “anova1”

8. Results and Discussion

8.1. HGDGWO Results. The proposed HGDGWO is com-
pared against GWO and manages to achieve higher average
fitness values for 11 of the 23 fitness functions but achieves
a lower minimum fitness value in 14 of the 23, as seen from
Table 2.

The optimizer also increases the average computation
time by a factor of 5.6, as seen from Table 3.

From the graphs, the proposed function achieves a higher
convergence rate for functions 2, 6, 10, 14, 15, 20, 21, 22, and
23, as seen in Figures 4, 8, 12, 16, 17, 22, 23, 24, and 25.

In only functions 3, 4, and 12, in Figures 5, 6, and 14, does
the hybrid optimizer perform noticeably worse than the orig-
inal GWOwith each solution starting out at the same rate but
diverging as the function traverses the search space.

With functions 1, 5, 7, 8, 9, 11, 13, 16, 17, 18, and 19 from
Figures 3, 7, 9, 10, 11, 13, 15, 18, 19, 20, and 21, the conver-
gence curve closely matches the GWO curve with an almost
equal rate. This range includes almost all the multimodal
functions, indicating that the hybrid function does not
increase the optimizer’s convergence rate in multimodal
functions and even reduces its performance, as in the case
of function 12 (Figure 14).

Performance of the HGDGWO among F1-F7 indicates
superiority in exploiting the optimum. The performance in
multimodal functions is also promising, indicating that the
optimizer would also perform well in objective functions
with a large number of local minima.

This indicated the virility of this hybrid function as a pos-
sible solution to the optimization function.

The optimizer also increases the average computation
time by a factor of 5.6, as seen from Table 3. This was as
expected since the partial derivative required in calculation
increases the computation time.

8.2. HGDGWO (Binary Version) Results

8.2.1. Implementation 1. Table 4 shows the performance of
the HGDGWO against the BGWO on the datasets stated in
Table 1.

Table 4: Results for HGDGWO (binary version) implementation 1.

Accuracy F-measure Fitness values No. of features Precision Sensitivity

Breast Cancer Wisconsin (Original)
JBGWO2 0.9401 0.9538 0.0615 2.16 0.9641 0.9448

HGDGWO 0.9442 0.9571 0.064 2.28 0.9642 0.9514

Statlog (Heart)
JBGWO2 0.7889 0.8098 0.1688 3.62 0.8078 0.824

HGDGWO 0.7904 0.8125 0.1805 3.98 0.8109 0.828

SPECT Heart
JBGWO2 0.7161 0.7707 0.2304 3.94 0.7322 0.8213

HGDGWO 0.7017 0.7608 0.2532 6.38 0.7196 0.8112

Breast Cancer Wisconsin (Diagnostic)
JBGWO2 0.9361 0.9495 0.0552 2.12 0.9401 0.9602

HGDGWO 0.9596 0.9681 0.0745 7.66 0.9618 0.9753

Table 5: Results of HGDGWO2, BGWO1, and BGWO2 on the Breast Cancer Wisconsin (Diagnostic) dataset.

Breast Cancer Wisconsin (Diagnostic)
Average Maximum Minimum

BGWO1 BGWO2 HGDGWO BGWO1 BGWO2 HGDGWO BGWO1 BGWO2 HGDGWO

Accuracy 0.962068 0.938528 0.960664 1 1 1 0.912281 0.877193 0.912281

F-measure 0.969959 0.951626 0.968818 1 1 1 0.929577 0.901408 0.927536

Fitness values 0.088866 0.054589 0.07379 0.111523 0.069948 0.084128 0.068672 0.043581 0.065521

Number of features 11.76 2.12 7.68 17 4 11 7 2 5

Precision 0.964718 0.93962 0.964245 1 1 1 0.916667 0.888889 0.897436

Sensitivity 0.975952 0.964746 0.974286 1 1 1 0.914286 0.914286 0.888889
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With this implementation, HGDGWO performs mark-
edly better than BGWO2 in accuracy, F-measure, precision,
and sensitivity, outperforming it in all datasets apart from
SPECT Heart. Although the results were promising, the
number of features selected was higher for the markedly
low increase in performance, indicating the persistence of
redundant features in the feature subsets produced by
HGDGWO.

8.2.2. Implementation 2. The results presented below indicate
the performance of HGDGWO’s second implementation
against the two implementations of the binary GWO. The
results are from 50 iterations of 10 test cases each and tabu-
lated as average maximum and minimum values for the 4
datasets.

As seen from Table 5, HGDGWO performs averagely
for all metrics apart from sensitivity, performing better
than the BGWO2 but worse than BGWO1 on average,
but has similar performance in maximum values. In both

F-measure and precision, the difference is marginal
(~0.01). The maximum metric values for the resultant pre-
dictor were identical, each optimizer managing to achieve
unity.

As seen from Table 6, HGDGWO outperforms the other
optimizers in accuracy, F-measure, and precision of the pre-
dictor. The number of maximum features selected for both
HGDGWO and BGWO2 is 3 out of the possible 9 with none
exceeding 3 features apart from BGWO1.

From Table 7, HGDGWO outperforms the BGWO in all
predictor metrics but performs medially in both the fitness
values and the number of features in the average values.
The function also has the best performance in the maximum
values.

In this dataset, it is noted that the difference between the
maximum and minimum metrics for all three optimizers is
very large, indicating a need to run them multiple times to
achieve a satisfactory value. This is an effect of a local mini-
mum, trapping the optimizer in some of its iterations.

Table 7: Results of HGDGWO2, BGWO1, and BGWO2 on the Statlog (Heart) dataset.

Statlog (Heart)
Average Maximum Minimum

BGWO1 BGWO2 HGDGWO BGWO1 BGWO2 HGDGWO BGWO1 BGWO2 HGDGWO

Accuracy 0.777778 0.781481 0.797778 0.925926 0.962963 0.962963 0.62963 0.555556 0.555556

F-measure 0.805833 0.79969 0.820237 0.928571 0.967742 0.967742 0.6875 0.6 0.6

Fitness values 0.20767 0.168917 0.177561 0.287179 0.204558 0.197721 0.149288 0.149288 0.156695

Number of features 5.34 3.74 4.18 9 5 6 3 3 3

Precision 0.790494 0.817161 0.820225 1 1 1 0.608696 0.6 0.6

Sensitivity 0.833333 0.794667 0.833333 1 1 1 0.6 0.6 0.6

Table 8: Results of HGDGWO2, BGWO1, and BGWO2 on the SPECT Heart dataset.

SPECT Heart
Average Maximum Minimum

BGWO1 BGWO2 HGDGWO BGWO1 BGWO2 HGDGWO BGWO1 BGWO2 HGDGWO

Accuracy 0.708091 0.710598 0.694758 0.814815 0.851852 0.851852 0.555556 0.518519 0.518519

F-measure 0.766021 0.767059 0.755479 0.857143 0.882353 0.888889 0.592593 0.606061 0.606061

Fitness values 0.258743 0.229926 0.254114 0.2825 0.256591 0.279545 0.226023 0.209432 0.228977

Number of features 11.06 3.88 7.06 14 9 12 5 2 2

Precision 0.724358 0.727099 0.71618 0.833333 0.833333 0.875 0.6 0.588235 0.588235

Sensitivity 0.820417 0.819583 0.806917 1 1 1 0.533333 0.625 0.625

Table 6: Results of HGDGWO2, BGWO1, and BGWO2 on the Breast Cancer Wisconsin (Original) dataset.

Breast Cancer Wisconsin (Original)
Average Maximum Minimum

BGWO1 BGWO2 HGDGWO BGWO1 BGWO2 HGDGWO BGWO1 BGWO2 HGDGWO

Accuracy 0.944807 0.94366 0.948803 0.985714 0.985714 1 0.885714 0.871429 0.885714

F-measure 0.957946 0.956807 0.960627 0.989011 0.989011 1 0.911111 0.907216 0.911111

Fitness values 0.065241 0.061432 0.063559 0.077354 0.068009 0.070794 0.05227 0.055132 0.055132

Number of features 2.64 2.14 2.28 4 3 3 2 2 2

Precision 0.95898 0.964994 0.970211 1 1 1 0.9 0.862745 0.901961

Sensitivity 0.958135 0.949845 0.952473 1 1 1 0.891304 0.891304 0.869565
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The results from Table 8 show that BGWO2 outperforms
the other two functions in the average values, but in the max-
imum values, HGDGWO has the best performance in accu-
racy, precision, and F-measure; this indicates that although
averagely HGDGWO performance is low, when run multiple
times, it achieves a higher performing predictor from the
selected feature set.

8.2.3. Implementation 3. The results presented below indicate
the performance of HGDGWO’s third and final implementa-
tion against the two implementations of the binary GWO as
well as the binary GWO and PSO hybrid. The results are
from 50 iterations of 10 test cases each for the 5 datasets
and 2 test cases for the Lymphography dataset.

The evaluation is done on the average, minimum, and
maximum values of each criterion, using the one-way
ANOVAPtest on the number of features selected with the

box plot and comparison of criteria for the feature subset
with the highest accuracy.

(1) Maximum, Minimum, and Average Value Comparison.
As seen from Table 9, the proposed optimization function
does not outperform the benchmark functions but achieves
the second smallest average feature subset. With a higher F
-measure than the smallest average feature subset as from
BGWO2, the proposed algorithm shows a better balance in
the error rate and feature subset size, especially since the
higher performing algorithm also has the largest feature sub-
set average.

The proposed algorithm also achieves the highest possi-
ble maximum values in accuracy, F-measure, precision, and
sensitivity with 9 maximum features selected which BGWO2
is unable to.

Table 15: Highest accuracy feature subset comparison of HGDGWO3, BGWOPSO, BGWO1, and BGWO2 on the Breast Cancer Wisconsin
(Diagnostic) dataset.

Breast Cancer Wisconsin (Diagnostic)
Accuracy F-measure Fitness values No. of features Precision Sensitivity

BGWO1 1 1 0.1033 12 1 1

BGWO2 0.9825 0.9863 0.0541 2 0.973 1

HGDGWO 1 1 0.069 7 1 1

BGWOPSO 1 1 0.0662 13 1 1

Table 16: Highest accuracy feature subset comparison of HGDGWO3, BGWOPSO, BGWO1, and BGWO2 on the Breast Cancer Wisconsin
(Original) dataset.

Breast Cancer Wisconsin (Original)
Accuracy F-measure Fitness values No. of features Precision Sensitivity

BGWO1 0.9857 0.989 0.0705 3 1 0.9783

BGWO2 0.9857 0.989 0.0651 2 1 0.9783

HGDGWO 1 1 0.068 2 1 1

BGWOPSO 1 1 0.0475 6 1 1

Table 17: Highest accuracy feature subset comparison of HGDGWO3, BGWOPSO, BGWO1, and BGWO2 on the Statlog (Heart) dataset.

Statlog (Heart)
Accuracy F-measure Fitness values No. of features Precision Sensitivity

BGWO1 0.9259 0.9333 0.2017 6 0.9333 0.9333

BGWO2 0.963 0.9677 0.1934 3 0.9375 1

HGDGWO 0.9259 0.9333 0.1974 4 0.9333 0.9333

BGWOPSO 0.963 0.9677 0.2141 4 0.9375 1

Table 18: Highest accuracy feature subset comparison of HGDGWO3, BGWOPSO, BGWO1, and BGWO2 on the SPECT Heart dataset.

SPECT Heart
Accuracy F-measure Fitness values No. of features Precision Sensitivity

BGWO1 0.8889 0.9032 0.2878 13 0.9333 0.875

BGWO2 0.8889 0.9143 0.2491 2 0.8421 1

HGDGWO 0.8889 0.9091 0.2801 8 0.8824 0.9375

BGWOPSO 0.8889 0.9032 0.2704 14 0.9333 0.875

27BioMed Research International



In this dataset, from Table 10, the algorithm averages the
lowest number of features with a difference of 3.3 from the
maximum in the selected features. With a lower feature sub-
set, it achieves an accuracy difference from BGWOPSO of
0.03. There is a low deviation in the number of features with
the maximum at 3 and minimum at 2 from a possible maxi-
mum of 9, the same as in HGDGWO2.

The maximum values also indicate that with a smaller
average feature subset by 5, the proposed method still man-
ages to achieve unity in the classification parameters.

As in HGDGWO2, from Table 11, implementation 3
outperforms all other functions as well as outperforming
HGDGWO2 in accuracy, F-measure, fitness values, and sen-
sitivity, with an averagely lower number of features than
HGDGWO2.

The difference in maximum and minimum values of the
classification parameters of the proposed method is large,
indicating that the method may be getting trapped in local
minima.

As seen from Table 12, the proposed function is only out-
performed by the BGWO2 function. The average accuracy
difference is ~0.2 for a 2.58 average feature subset reduction.

In this subset, as seen from Table 13, the proposed
algorithm averages a higher value of F-measure and sensi-

tivity with an average of 4.6 features while BGWOPSO
averages a higher accuracy and precision with an average
of 4 features.

With this dataset, as seen from Table 14, the accuracy
plummets to exceedingly low values, <0.59 for all algorithms.
The proposed algorithm achieves the highest average F
-measure but with the largest average feature subset.

From the results (Tables 9–13), the optimizer manages to
attain a balance between the performance and the fitness
values as set by the value ϕ from equation (10). The variable
is set not to overemphasize the significance of one over the
other. This is especially critical in the stopping criterion stage
of the feature selection criterion. When the limiting criterion
is set as the number of selected features, the value of the var-
iable is reset to convey this. HGDGWO2 performs better in
the breast cancer dataset while HGDGWO performs better
with the heart dataset.

(2) Highest Accuracy Feature Subset Performance Compari-
son. As seen from Table 15, the proposed method achieves
unity classification metrics with a 7-feature subset which is
the least with all unity. Inversely, BGWO2 has a lower
feature subset but in doing so does not achieve unity
classification.

Table 19: Highest accuracy feature subset comparison of HGDGWO3, BGWOPSO, BGWO1, and BGWO2 on the Heart Disease (Coronary
Artery Disease) dataset.

Heart Disease (Coronary Artery Disease)
Accuracy F-measure Fitness values No. of features Precision Sensitivity

BGWO1 0.9667 0.963 0.189 4 1 0.9286

BGWO2 0.9667 0.963 0.189 4 1 0.9286

HGDGWO 0.9667 0.9655 0.2033 5 0.9333 1

BGWOPSO 0.9355 0.9333 0.1517 8 0.875 1

Table 20: Highest accuracy feature subset comparison of HGDGWO3, BGWOPSO, BGWO1, and BGWO2 on the Lymphography dataset.

Lymphography
Accuracy F-measure Fitness values No. of features Precision Sensitivity

BGWO1 0.6889 0.7667 0.5365 9 0.8519 0.697

BGWO2 0.5581 0.6275 0.3926 5 0.5517 0.7273

HGDGWO 0.5833 0.6296 0.5264 5 0.85 0.5

BGWOPSO 0.6098 0.7143 0.2519 8 0.8333 0.625

Table 21: P value test results for the number of features.

Comparative P value
General P value

BGWO1 BGWO2 BGWOPSO

Breast Cancer Wisconsin (Diagnostic) 4.08E-40 1.88E-30 4.06E-25 5.71E-81

Breast Cancer Wisconsin (Original) 1.74E-06 0.58983 3.90E-36 2.53E-69

SPECT Heart 5.66E-19 2.11E-10 4.63E-24 1.00E-57

Statlog (Heart) 4.09E-21 0.0297 6.08E-19 4.08E-40

Heart Disease (Coronary Artery Disease) 0.00807 0.00864 0.4239528 1.11E-05

Lymphograpy 1.35E-07 0.0192 1.79E-07 1.89E-15
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Figure 26: Continued.
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Figure 26: Continued.
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From Table 16, HGDGWO achieves unity on accuracy, F
-measure, precision, and sensitivity with the smallest feature
subset, selecting 2 features as relevant out of the possible 9.

From Table 17, the proposed function seems to have been
trapped in a local minimum, having selected the lesser per-
forming set of 4 features, but achieves an equivalent value
of accuracy, F-measure, precision, and sensitivity with
BGWO1 with fewer features.

In Table 18, the accuracy caps out at 0.8889. With 2 fea-
tures resulting in the highest metrics, the proposed method
was unable to achieve this, instead having an 8-feature subset,
the second best.

In Table 19, the proposed method achieves the highest
sensitivity and accuracy with 5 features and with the second
F-measure accuracy, a difference of 0.02, compared to a pos-
sible 13-feature subset. It achieves a good balance of the two
objectives.

In Table 20, though the HGDGWO feature subset is
among the smallest, the performance of the algorithm in this
subset is still subpar, indicating that the search objective was
hampered, possibly by the local minima.

8.2.4. One-Way ANOVA Test on Feature Data. The stated
hypotheses of the one-way ANOVA test on the number of
features are as follows:

(i) H0. The null hypothesis indicates that there is no signifi-
cant difference between the number of features of
HGDGWO and the other methods used in testing.

(ii) H1. The alternative hypothesis indicates that there is a
significant difference between the number of features of
HGDGWO and the other methods used in testing.
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(e) Box plot of feature subset 5: Heart Disease (Coronary Artery Disease)
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(f) Box plot of feature subset 6: Lymphography

Figure 26: Box plots of the number of features.
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The significance of the ANOVA test results is obtained
from comparison against the standard significance level of
0.05 with P values greater than the stated value, indicating
acceptance of the null hypothesis and rejection of the alterna-
tive hypothesis, and with P values less than the stated value,
indicating rejection of the null hypothesis and acceptance
of the alternative hypothesis.

From thePvalue results in Table 21, the Breast Cancer
Wisconsin (Original) and Lymphography datasets’ BGWO2
vs. HGDGWO3 and the heart disease dataset’s BGWOPSO
vs. HGDGWO3 show that thePtest values are not lower than
the significance level of 0.05 which leads to the rejection of
the alternative hypothesis and acceptance of the null
hypothesis.

The other comparative P values indicate a rejection of the
null hypothesis of no significant difference between the num-
ber of features. The general P value comparing all data points
of all the algorithms shows that there is a significant differ-
ence between at least one of the samples.

As seen from Figures 26(a)–26(f), the proposed method
is consistently among the lowest two median numbers of fea-
tures for all the datasets in accordance with the objective of
the algorithm, reducing feature subsets.

9. Conclusion and Future Work

The proposed hybrid gradient descent grey wolf optimizer
encourages the worst-performing wolves to seek out the prey
in the direction indicated by the leaders of the pack. The
directional information is sourced from the partial derivative
of the leading wolves.

The effectiveness of the proposed optimizer’s first imple-
mentation was determined by evaluating its performance in
feature optimization problems from the UCI datasets and
compared to the BGWO2, outperforming it in 3 of the 4
datasets.

The second implementation outperforms BGWO imple-
mentations 1 and 2 in two datasets.

While the third implementation only completely outper-
forms the other algorithms (2 out of 6), the maximum accu-
racy tables show that the algorithm is capable of providing
viable feature subsets even if the average may not be the best
for different datasets, in 3 of 6 datasets. The margin between
the best performing algorithm and the proposed algorithm is
low with the maximum metrics always among the highest
showing promise in the algorithm.

Improving the proposed algorithm would entail adding a
memory module to the algorithm to reduce the computa-
tional load incurred in traversing the same points in the
search space repeatedly.

Alternatively, a method may also be implemented to
detect when the optimizer is stalling on a particular point
on the search space, common in the local optimum. This
may be modeled as a memory function that detects when
the past R number of fitness values is constant, and if true,
it increases randomization in the mutation function to allow
the optimizer to tunnel out of the local optimum.

To reduce the overhead due to multiple partial derivative
calculations, the features may be grouped into clusters with a

single feature occurring in multiple clusters. The partial
derivative is then calculated for all the bits changed in a clus-
ter, and the partial derivative of each feature is calculated as
the average of each cluster’s partial derivative for which the
feature occurs. This would reduce the number of calculations
the algorithm calculates.
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