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The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
has seriously affected public health and social stability. The main route of the transmission is droplet transmission, where the oral
cavity is the most important entry point to the body. Due to both the direct harmful effects of SARS-CoV-2 and disordered
immune responses, some COVID-19 patients may progress to acute respiratory distress syndrome or even multiple organ
failure. Genetic variants of SARS-CoV-2 have been emerging and circulating around the world. Currently, there is no
internationally approved precise treatment for COVID-19. Mesenchymal stem cells (MSCs) can traffic and migrate towards the
affected tissue, regulate both the innate and acquired immune systems, and participate in the process of healing. Here, we will
discuss and investigate the mechanisms of immune disorder in COVID-19 and the therapeutic activity of MSCs, in particular
human gingiva mesenchymal stem cells.

1. Introduction

The outbreak of a new coronavirus pneumonia (named
COVID-19; previously known as 2019-nCoV) continues to
cause a severe public health emergency worldwide. Epidemi-
ological analysis shows that COVID-19 is an acute self-
resolving disease, which can also be deadly, with an almost
2% case fatality rate [1–3]. Although the lung bears the brunt
of the virus-induced damage, other parts of the body such as
the liver, gastrointestinal tract, and heart are also affected
[4–7]. Currently, there is no precise and effective treatment
for COVID-19. Accumulating data from clinical case reports
and basic research indicate that a hyperinflammatory response
including cytokine storm possibly plays a role in the progres-
sion of COVID-19. Mesenchymal stem cells (MSCs), which
are both immunosuppressive and immunomodulatory,
are regarded as a promising therapeutic strategy in virus-
induced hyperimmunoreactive disease, such as COVID-19.
Gingival tissue-derived MSCs (GMSCs) have potent capacity
for multidirectional differentiation and inflammatory modu-

lation, making them an ideal subtype of MSCs for therapeutic
use. In this review, we summarize the current understanding
of the biology of the GMSC population and explore their
potential therapeutic effects in virus-related diseases. We
hypothesize that the administration of GMSCs could provide
an innovative treatment for patients with COVID-19.

2. Clinical Characteristics of COVID-19 and
Organ Involvement

In general, all ages of the population are susceptible to SARS-
CoV-2 infection; however, clinical manifestations differ with
age. Notably, compared to young people and children, older
men (>60 years old) with comorbidities are more likely to
develop severe respiratory disease, requiring ventilation or
monitoring in an intensive care unit (ICU) [8–10]. SARS-
CoV-2 infection causes a series of systemic symptoms, such
as fever, fatigue, dry cough, diarrhea, or even no symptoms
at all [11–13]. Severe cases may involve organ dysfunction,
including ARDS, acute cardiac injury, acute kidney injury,
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and even death, particularly when the patients have underly-
ing diseases like hypertension, diabetes, and heart disease
[12–15] (Figure 1). In addition, over 40% of COVID-19
patients have asymptomatic infection [16, 17].

Unfortunately, both symptomatic and asymptomatic
patients can transmit the virus by the droplets and aerosols,
in which the dental clinics could be one of the hardest hit
areas for the infection [18, 19]. Blood tests show decreased
leukocyte counts, prolonged prothrombin time, and elevated
lactate dehydrogenase in most patients [20, 21]. Lung CT
imaging indicates progressive infiltrate and diffuse gridding
shadow in both lungs [20–22]. Currently available evidence
indicates that SARS-CoV-2 likely emerged from a bat reser-
voir, although it remains unclear whether there are other
animal species that acted as an intermediate host between
bats and humans [23, 24].

Headache, dizziness, taste and smell dysfunctions, and
impaired consciousness were the most frequently reported
neurological symptoms in COVID-19 patients, each observed
in more than five of the analyzed studies and with an overall
frequency of over 4% of the populations studied. From the
reported studies, headache was the most common symptom,
which was more frequent in mild or moderate patients than
severe ones. Rare symptoms such as acute cerebrovascular
events and meningitis/encephalitis have also been observed
in severely ill patients [6, 25, 26].

3. Coronaviral Structural Proteins and the
Genome Structure of SARS-CoV-2

Coronaviruses belong to the virus family Coronaviridae,
which are enveloped, nonsegmented, positive-sense, and
single-stranded RNA virus genomes, infecting a variety of
host species, including humans and several other verte-
brates. As a novel betacoronavirus, SARS-CoV-2 shares
79% of its genome sequence identity with SARS-CoV and
50% with MERS-CoV; their genomes range approximately
from 26 to 32 kilobases, making these viruses the largest
known RNA viruses [27, 28]. They encode four major struc-
tural proteins: the spike protein (S), nucleocapsid protein
(N), membrane protein (M), and the envelope protein (E),
all of which are required to produce a structurally complete
viral particle [29]. However, not all the proteins are required
for forming a complete, infectious virion [30–32]. The role
of each protein in the structure of the virus particle or
involved in other aspects of the replication cycle mainly
depends on the specific disease. In general, the S protein
mediates attachment of the virus to the cell surface receptors
and subsequently facilitates the viral entry process [32–34].
The N protein is the only protein that functions primarily
to bind to the CoV RNA genome, usually making up the
nucleocapsid [35, 36]. The M protein is the most abundant
structural protein, which not only determines the shape of
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Figure 1: Systemic multisystem involvement of SARS-CoV-2 infection.
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the viral envelope but is also regarded as the central organizer
of CoV assembly [37, 38]. The E protein is the smallest of the
major structural proteins and is abundantly expressed inside
the infected cells during the replication cycle; however, only
a small portion is assembled into the virion envelope [39].
Full-genome sequencing and phylogenic analysis demon-
strated that SARS-CoV-2 is a novel clade probably from the
betacoronaviruses that include bat-SARS-like (SL) ZC45,
bat-SL ZXC21, SARS-CoV, and MERS-CoV [24]. The phylo-
genetic trees of the structural proteins are also clustered closely
with those of the bat, civet, and human SARS coronaviruses
[40]. Nevertheless, the external subdomain of the spike (S)
receptor-binding domain of SARS-CoV-2 shares only 40% of
its amino acid identity with other SARS-related coronaviruses
[40]. Wrapp et al. dissected a 3.5Å cryoelectron microscopy
(cryo-EM) structure of the SARS-CoV-2 trimer in the prefu-
sion conformation [41]. The predominant state of the trimer
has one of the three receptor-binding domains (RBDs) rotated
up in a receptor-accessible conformation. Finally, angiotensin-
converting enzyme-2 (ACE2), the unequivocal functional
receptor of SARS-CoV-2, encoded by a gene located on chro-
mosome Xp22, plays a crucial role in the process of viral entry
into the human cell. The spike (S) protein binds with ACE2
with higher affinity than (S) protein [42].

4. Immunopathogenesis of Coronavirus
and SARS-CoV-2

Coronavirus’s interaction with the host immune system
plays an important role in determining the outcome of infec-
tion. The host’s innate immune system spies on viral infec-
tions by activating pattern recognition receptors (PRRs) to
recognize pathogen-associated molecular patterns (PAMPs).
The IFN system is a crucial frontline defense against viral
infections and spread. IFN production-related PRRs mainly
include TLRs, RLRs, and NLRs [43]. Type I IFNs (particu-
larly IFN-α and IFN-β) activate the downstream JAK-
STAT signal pathway, promoting the expression of IFN-
stimulated genes (ISGs), subsequently mediating antiviral
effects by directly inhibiting coronavirus replication and
indirectly modulating the host immune response [44, 45].
Rapid coronavirus replication reaching high titers and
associated with enhanced inflammatory responses, such
as an unregulated production of IFNs, is believed to result
in cytokine storm [46]. Virus-associated cytokine storm is
characterized by an immunogenic cascade reaction. After
infection, the highly pathogenic hCoVs may lead to delayed
IFN production via multiple structural and nonstructural
proteins [47]. Unrestrained virus replication and more viral
PAMPs may result in excessive release of more proinflam-
matory cytokines, recruitment of a large number of inflam-
matory cells, and an aberrant cascade of inflammatory
responses [48]. Research has shown that SARS-CoV-2 can
promote autophagy, which plays a crucial role in suppressing
the type I interferon response [49]. The hypercytokinemia
and systemic immunopathology lead to a progressive
immune-associated injury resulting in severe pneumonia
[50]. In patients with severe illness, high levels of proinflam-
matory cytokines (IFNs, IL-1, IL-6, IL-12, and TGF-β) and

chemokines (CCL2, CXCL10, CXCL9, and IL-8) were found
in serum [51–53].

Recent studies have suggested that the pathophysiology of
SARS-CoV-2 infection is due not only to the damage caused
by the virus itself but also to the host response. It is certain that
uncontrolled inflammation, also referred to as cytokine storm,
contributes to disease severity in COVID-19 [54]. Huang et al.
analyzed the immunological features of peripheral blood from
40 confirmed patients. They reported that about 25% patients
had leucopenia and approximately 63% had lymphopenia
[13]. Liu et al. also observed a dozen patients and found that
the more severe the disease, the higher the prothrombin time
and D-dimer levels [20]. In addition, aspartate aminotransfer-
ase and hypersensitive troponin I (hs-cTnI) were mildly
increased compared to the levels seen in general pneumonia.
An uncontrolled systemic inflammatory response results from
the release of large amounts of proinflammatory cytokines
(IFNα, IFNγ, IL-1β, IL-6, IL-12, IL-17, IL-18, IL-33, TNF-α,
TGFβ, etc.) and chemokines (CCL2, CCL3, CCL5, CXCL8,
CXCL9, CXCL10, etc.) by immune cells [55]. Interestingly,
the plasma concentrations of IL-2, IL-7, IL-10, G-CSF, IP10,
MCP-1, and TNFα were significantly higher in ICU patients
than non-ICU patients. This provides preliminary evidence
that the extent of the hypercytokinemia may predict the clin-
ical consequences. Qin et al. observed abnormal changes in
the adaptive immune response in COVID-19 cases. The levels
of both suppressor T cells (CD3+CD8+) and T helper cells
(CD3+ CD4+) were below normal. Meanwhile, the percentage
of naïve T cells (CD3+CD4+CD45RA+) was increased, and
that of memory T cells (CD3+CD4+CD45RO+) was decreased
in severe cases, indicating the severity of immune system
impairment [55]. Compared to mildly ill patients, most severe
cases of COVID-19 have lower percentages of monocytes,
eosinophils, and basophils [56]. Using RNA sequencing
combined with single-cell proteomics, one research group
determined that elevated frequency of HLA-DRhiCD11chi

inflammatory monocytes with an IFN-stimulated gene signa-
ture was found inmild COVID-19, whereas severe COVID-19
was characterized by the occurrence of neutrophil precursors,
as evidence of emergency myelopoiesis, dysfunctional mature
neutrophils, and HLA-DRlo monocytes [57].

5. Mesenchymal Stem Cells

Up to now, more than 150 clinical trials have been launched
to test coronavirus treatments all over the world (https://
www.who.int/ictrp/zh/). Although there are several vaccines
that are effective in preventing the spread of COVID-19, no
drugs are available to specifically treat COVID-19 patients
[58]. Previous studies reported on the safety and applicabil-
ity of mesenchymal stem/stromal cells (MSCs) to ameliorate
pulmonary inflammation in acute respiratory distress syn-
drome [59]. In light of this, MSC-based immunomodulation
treatment has been proposed as a powerful therapeutic
approach against COVID-19.

5.1. Characteristic of MSCs. Stem cells can be split into two
major groups: embryonic and nonembryonic. Among
nonembryonic stem cells, MSCs represent an intensively
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investigated population with unique biological properties [60].
Similar subsets of multipotent MSCs have been identified in
dental pulp, skin, umbilical cord blood, and adipose tissue
[61]. Cs usually express specific genes for embryonic stem
cells, such as octamer-4 (Oct-4) and stage-specific embryonic
Ag 4 (SSEA-4), and share a similar expression profile of cell
surface molecules, such as CD105, CD73, CD90, CD146, and
CD29, but typically lack hematopoietic stem cell markers, such
as CD34 and CD45 [62–64]. All of these MSC subsets have the
capacity for self-proliferation and multidifferentiation. In
addition, they also display chemotactic, anti-inflammatory,
and immunomodulatory properties, similar to immune regu-
latory cells, in response to tissue insult and inflammation via
production of anti-inflammatory cytokines and antiapoptotic
molecules [65]. Indeed, immune regulatory cells have potent
functional capacity to suppress immune response and control
inflammatory diseases [66]. MSCs’ unique characteristics have
led to the suggestion that MSC-based therapies provide a
potential approach to controlling inflammation in the repair
or regeneration of a variety of damaged tissues and organs
(Figure 2).

5.2. The Paracrine System, Homing Effects, and
Immunomodulation. A growing body of evidence has dem-
onstrated that MSCs have the potential to secrete a wide

variety of cytokines, chemokines, and growth factors, which
exert profound effects when they interact with the microen-
vironments mediating the tissue function [67, 68]. The MSC
secretome identified which released factors are at high levels,
such as proteins involved in immune system signaling (i.e.,
IL-6, IL-8, MCP-1, and TGF-β), extracellular matrix remo-
delers (i.e., TIMP-2, fibronectin, periostin, collagen, and dec-
orin), and growth factors and their regulators (i.e., VEGF,
GM-CSF, BMP-2, and IGFBPs) [69–71]. Moreover, MSC-
conditioned media also act as a chemoattractant for recruit-
ing macrophages and endothelial cells into wound tissue to
enhance the healing process or decrease the cardiac infarct
size [66, 72]. The homing mechanism of MSCs involves sev-
eral cell trafficking-related molecules such as chemokines,
adhesion molecules, and matrix metalloproteinase [73].
Among them, CCR-2/3, CXCR-4, VLA-4, and CXCR-9 are
the most important signalers [74, 75]. In order to reach the
injured tissue, MSCs exhibit transendothelial migration abil-
ity, in adhering to vascular endothelial cells and crossing the
endothelial barrier. In this process, several MMPs have
proven to increase the invasiveness of MSCs [76]. MSCs
exert their immunomodulatory function mostly dependent
on cell-to-cell contact and/or the release of soluble immuno-
suppressive factors [77] (Figure 3). A series of studies have
demonstrated that MSCs interact with a wide range of
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immune cells and display an ability to suppress the excessive
response of T and B lymphocytes, dendritic cells, macro-
phages, mast cells, and natural killer cells, as well as promote
the expansion of regulatory T cells [78–81]. For the crosstalk
with Treg cells, short-lived MSCs can act as catalysts in
induction and expansion of long-lasting antigen-specific
Treg cells to continue the immunosuppressive capacity [82,
83]. In cytoimmunotherapy, MSCs could become the gold
standard for the treatment of organ damage associated with
intense inflammatory activity (e.g., rheumatoid arthritis,
kidney failure, heart injury, GVHD, systemic lupus erythe-
matosus, and multiple sclerosis) [84].

5.3. MSCs from Different Sources Have Different Functions
against Virus Infection. Source-related features of MSCs
directly contribute to the diversity of opinions regarding
the mechanisms of MSC-mediated immunomodulation. In
terms of current clinical applications, the main sources of
MSCs are bone marrow (BM), adipose tissue (AT), and
umbilical cord (UC) [85]. BM-MSC separation is painful

for the patient and is accompanied by a risk of infection. Pit-
tenger et al. demonstrated that only 0.001 to 0.01% of the
cells are real mesenchymal stem cells when extracted by den-
sity gradient centrifugation. Functionally, BM-MSCs possess
a longer duplication period and reach senescence earlier.
However, several basic and clinical studies showed that
lower immunomodulatory activity of BM-MSCs in an
inflammatory environment in vitro and poor therapeutic
effects were observed in a real-world study [85, 86].

AT-MSCs have been shown to have higher proliferation
capacities than BM-MSCs, with population doubling times
of 45.2 h for AT-MSCs compared to 61.2 h for BM-MSCs,
illustrated by Peng et al. [87]. AD-MSCs also avoid the eth-
ical problems of BM-MSCs. Multiple clinical trials have
proven that AD-MSCs can treat arthritis, diabetes, and heart
failure and achieve good outcomes [88, 89]. It should, how-
ever, be noted that the heterogeneity of AT-MSCs varies
with different regions of the body, posing a challenge for
clinical application [90]. In comparison, umbilical cord-
derived MSCs (UC-MSCs) are more primitive and
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immunosuppressive than their adult counterparts. Never-
theless, in terms of these three products, there are still many
questions regarding the clinical application of MSCs that
need to be answered, and further studies are warranted, such
as the effect of donor selection, long-term therapeutic effects,
product consistency, and potential tumorigenicity [91].

5.4. Potential Mechanism of MSCs against SARS-CoV-2.
Coronaviruses, such as SARS, MERS, and even SARS-CoV-
2, continuously undergo mutations resulting in the genera-
tion of new viral strains that can become resistant to antivi-
ral drugs [92, 93]. MSC therapy has several mechanisms of
action making it unlikely that the virus could develop resis-
tance to this treatment (Figure 4). MSC administration had
beneficial effects on ARDS in animal models [94, 95]. MSCs
were shown not only to repress the activities of influenza
viruses but also to directly inhibit replication and virus-
induced apoptosis in lung epithelial cells [96]. Furthermore,
the production of the proinflammatory cytokine TNFα and
the chemokine CXCL10 was significantly decreased after
MSC administration, accompanied by an increased produc-
tion of IL-10 [96], a potent anti-inflammatory cytokine za A
(H5N1) virus also causes acute lung injury, and two groups
reported that hUC-MSCs and BM-MSCs were effective in
restoring impaired alveolar fluid clearance and protein per-

meability of A(H5N1)-infected human alveolar epithelial
cells [97, 98].

Clinical trials are ongoing across the world to evaluate
the efficacy of cell-based therapy against COVID-19. A case
study was reported of an acute SARS-CoV-2 infected female
patient with poor oxygenation, who received hUC-MSCs by
intravenous infusion. After three weeks of dynamic observa-
tion, the results of blood tests and CT images provided evi-
dence of an extremely good prognosis [5, 99]. In another
study reported recently in China, patients with severe
COVID-19 were randomly divided into 2 groups: the stan-
dard treatment group and the standard treatment plus
hUC-MSC infusion group (single dose of 106 UC-MSC/
kg). The results showed that the MSC-treated group had
greater clinical improvement than the control group, accom-
panied by lower CRP and IL-6 levels in peripheral blood and
faster lung inflammation absorption [100]. Also, the gene
expression profile showed that MSCs were ACE2 negative,
which means that transplanted MSCs did not differentiate
and remained free of virus [99, 100]. Results from the phase
I-II and multicenter study (ChiCTR2000029990) showed
that overactivated immune cells (CXCR3+CD4+T cells,
CXCR3+CD8+ T cells, and CXCR3+NK cells) and serum
TNF-α and IL-6 levels were significantly decreased, while
anti-inflammatory IL-10 levels were increased in the MSC
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treatment group [100, 101]. Mechanically, human bone
marrow-MSCs were negative for ACE2 and TMPRSS2
genes, suggesting that human BM-MSCs may be free from
SARS-CoV-2 infection and its immunomodulatory proper-
ties might be maintained under the virus microenvironment
[102]. Meanwhile, MSCs possess the capacity for tissue
regeneration and cytokine storm suppression in treating
ARDS, which were also applied to fight against COVID-19.

6. Human Gingiva Mesenchymal Stem Cells

6.1. Characteristics and Functions of GMSCs. The human
gingiva is a tissue that not only is easily obtained from the
oral cavity but also can be used as a discarded biological
sample. Human gingiva MSCs (GMSCs) are capable of eli-
citing a potent inhibitory effect on peripheral blood lympho-
cyte proliferation and cytokine production [103]. Most
importantly, GMSCs express a wide panel of immunosup-
pressive factors including IL-10, IDO, inducible NO syn-
thase (iNOS), and cyclooxygenase 2 (COX-2), in response
to the inflammatory milieu [104].

GMSC transplantation was shown to effectively alleviate
the arthritis symptoms of mice in collagen-induced arthritis
(CIA) and ameliorate immune-mediated bone marrow fail-
ure of aplastic anemia (AA) [105]. Additionally, our group
found that GMSCs can generate adenosine via extracellular
enzymes CD39 and CD73, which can inhibit the differenti-
ation of osteoclastogenesis and promote osteoblasts via the
Wnt/β-Catenin pathway [106]. In a diabetes model, we
confirmed that GMSCs even enhanced their suppressive func-
tion in inflammation and that the microRNA-21a-5p/PDCD4
axis regulates their functional activities [107, 108]. Studies
using several mouse models revealed that GMSC transplanta-
tion can prevent experimental colitis and alleviate the oral
cavity mucosal inflammation induced by chemotherapy
[109, 110]. In a preclinical study, we demonstrated that the
administration of GMSCs is very safe. In addition to posses-
sing stem cell-like properties and immunomodulatory func-
tions, GMSCs also have the following special biological
characteristics, compared to other MSCs: (1) they are easy
to isolate and culture and proliferate faster than BM-MSCs;
(2) they have no tumorigenesis and maintain a stable and
uniform phenotype after long-term cultivation; and (3)
whether from autoimmune patients or healthy volunteers,
their cellular properties and physiological functions remain
unchanged, which implies that the autologous GMSCs can
be applied to treat relevant diseases [111, 112].

6.2. GMSCs against SARS-CoV-2. From the autopsy results
of a SARS-CoV-2-infected pneumonia patient, histological
examination showed bilateral diffuse alveolar damage with
cellular fibromyxoid exudates and interstitial mononuclear
inflammatory infiltrates in both lungs, dominated by lym-
phocytes [2]. The main manifestation was an excessive
inflammatory response. Although peripheral CD4+ and
CD8+ T cells were substantially reduced, they were overacti-
vated, as evidenced by the high proportions of HLA-DR and
CD38, accompanied by increased concentration of CCR4+

CCR6+ Th17 cells. Besides, CD8+ T cells were found to har-

bor high concentrations of cytotoxic granules, of which a few
were perforin positive and some were granulysin positive.
From this, we can speculate that the redistribution of lym-
phocytes in the infected body may contribute to peripheral
blood lymphocytopenia and increased lymphocyte infiltra-
tion in lung tissue. In other words, the immune system
excessively mobilizes lymphocytes to migrate to the pneu-
monic lungs, or virus-infected lung tissue produces some
chemotactic factors that attract the lymphocytes’ migration.
A controversial question currently is whether the acute liver
injury seen in some COVID-19 patients is SARS-CoV-2-
caused or drug-induced. It is more likely that it is due to
the cytokine storm, a virus-triggered immune overreaction.
Ahmadi et al. performed an analysis of the CD39 and
CD73 expression pattern on CD4+ T, CD8+ T, and natural
killer T cells of COVID-19 using a flow cytometry panel
[42]. The results were a correlation between the absence of
CD73 from CD8+ T cells and NKT and increased ability to
secrete granzyme B, perforin, TNF-α, and IFN-γ regardless
of the disease status. Another study also confirmed that
SARS-CoV-2 can exhaust CD8 T lymphocytes with elevated
CD39 and TIM-3 exhaustion markers. Studies from our
group showed that human GMSCs highly expressed CD39/
CD73, contributing to the therapeutic effect on several auto-
immune inflammatory diseases. Because of the advantage,
GMSC may be more effective on treating COVID-19.

7. Conclusions

Although COVID-19 therapies have targeted various patho-
genic mechanisms, there are no established treatments cur-
rently. The therapeutic potential of GMSC-based cell therapy
against the SARS-CoV-2-related diseases is explained here.
Multiple ongoing trials are now testing MSCs in patients with
severe COVID-19, and pilot uncontrolled trials have reported
promising results. However, the efficacy and side effects of
MSCs therapy should be confirmed in larger trials. Human
gingiva MSCs have great potential, and their clinical applica-
tion needs to be carefully designed.
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