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Background. Hepatic fibrosis is a severe liver disease that has threatened human health for a long time. In order to undergo timely
and adequate therapy, it is important for patients to obtain an accurate diagnosis of fibrosis. Laboratory inspection methods have
been efficient in distinguishing between advanced hepatic fibrosis stages (F3, F4), but the identification of early stages of fibrosis has
not been achieved. The development of proteomics may provide us with a new direction to identify the stages of fibrosis.Methods.
We established serum proteomic maps for patients with hepatic fibrosis at different stages and identified differential expression of
proteins between fibrosis stages through ultra-high-performance liquid chromatography tandem mass spectrometry proteomic
analysis. Results. From the proteomic profiles of the serum of patients with different stages of liver fibrosis, a total of 1,338
proteins were identified. Among three early fibrosis stages (control, F1, and F2), 55 differential proteins were identified, but no
proteins simultaneously exhibited differential expression between control, F1, and F2. Differential proteins were detected in the
comparison between different fibrosis stages. Significant differences were found between advanced fibrosis stages (F2-vs.-F3 and
F3-vs.-F4) through a series of statistical analysis, including hierarchical clustering, Gene Ontology (GO) functional annotation,
Kyoto Encyclopedia of Genes and Genomes pathway, and protein-protein interaction network analysis. The differential proteins
identified by GO annotation were associated with biological processes (mainly platelet degranulation and cell adhesion),
molecular functions, and cellular components. Conclusions. All potential biomarkers identified between the stages of fibrosis
could be key points in determining the fibrosis staging. The differences between early stages may provide a useful reference in
addressing the challenge of early fibrosis staging.

1. Introduction

Hepatic fibrosis is caused by chronic damage to the liver and
is often accompanied by the excessive accumulation of extra-
cellular matrix proteins including collagen, which occurs in
most types of chronic liver diseases [1]. In the pathological
process, the normal physiological function of the liver grad-
ually degenerates, and the subsequent formation of liver
pseudolobules results in cirrhosis [2]. Historically, the devel-
opment of hepatic fibrosis has been considered as an irre-
versible process because of the alteration in hepatic
parenchymal structures [3, 4]. However, Soyer et al. reported
that advanced liver fibrosis is potentially reversible [5].
Hepatic stellate cells, which are a type of liver stromal cells,
were first identified as the major collagen-producing cells

in the liver in the 1980s, and their activation was considered
the key link to hepatic fibrosis formation [6, 7].

Several studies have utilized parameters such as back-
scatter coefficient, speed of sound, attenuation coefficient,
spectral slope, and mean scatterer spacing to characterize
hepatic tissues [8–13]. These parameters could be efficient
in differentiating between normal and pathological organs.
In recent decades, investigators have focused more attention
in the exploration of pathological changes between the dif-
ferent pathological stages of hepatic fibrosis, of which five
have been identified. Even though diagnostic approaches
for hepatic fibrosis have achieved great progress, liver biopsy
still acts as the “golden rule” to assess the pathological stage
of liver fibrosis [14]. However, possible errors exist in the
evaluation of fibrosis stage through liver biopsy [15]. As a
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result, this technique cannot be applied as a conventional
method in medical intervention. Other detection methods
complementary to liver biopsy have been recommended to
quantify fibrosis, such as fibrotest and elastographic
methods. It is critical for fibrosis patients to obtain an accu-
rate diagnosis in the early stages to receive adequate therapy.
However, an overlap between early stages of fibrosis (con-
trol/F0, F1, and sometimes F2) has been discovered by both
elastographic methods and ultrasonic approaches [10, 11,
16–18]. It is difficult to differentiate between the F0 and F1
(and sometimes F2) stages, but the identification of changes
between early stages is essential for doctors to determine
proper treatment schemes for fibrosis patients. To address
this challenge, it is necessary to establish a convenient and
precise differential method to diagnose the different stages
of hepatic fibrosis.

Proteomics, a new “omics” approach proposed by Wil-
kins and Williams in 1994, offers a method of exploring
whole gene products in various organs [19], showing great
advantages of genomic sequencing and protein mapping
[20]. In recent years, proteomics has been widely applied
in many areas of study, especially in pharmaceuticals and
cancer research. Fedchenko et al. researched the proteomic
profiling data of HEK293 protein and found that the C-
terminal region is vital for specific binding of renalase
between its target and receptors [21]. Cao et al. used proteo-
mic technologies to gain a better understanding of multidrug
resistance mechanisms in cancer [22]. Anuli and Aebersold
applied targeted proteomic analysis to advance translational
research and precision medicine, providing a new way to
develop precise therapeutics for future clinical applications
[23]. Kosteria et al. utilized mass spectrometry-based prote-
omics to research pediatric endocrine and metabolic diseases
for the prevention of disease manifestation or future compli-
cations [24].

For investigating liver disease more comprehensively,
proteomic approaches have been utilized to study liver cir-
rhosis and fibrosis. Based on proteomic analysis, Xu et al.
found that dioscin, a potent inhibitor of integrin α5, reduced
collagen synthesis and exerted protective effects against liver
fibrosis [25]. Ahmad and Ahmad analyzed the serum and

liver proteome profiles in rats subjected to N′-nitrosodi-
methylamine-induced hepatic fibrosis and treated with res-
veratrol, demonstrating that the oxidative pathway was the
main mediator in both experimental hepatic fibrosis [26].
Bhagwat et al. performed a quantitative targeted proteomics
study to explore the abundance of drug-metabolizing
enzymes in cirrhotic livers. The study illustrated that protein
abundance data combined with physiologically based phar-
macokinetic modeling acted as a drug disposition predicter
in special populations [27]. Prasad et al. carried out
proteomic-genomic analysis to elucidate the pathways and
networks involved in liver fibrosis, with the aim of solving
key clinical questions [28]. Golizeh et al. performed proteo-
mic fingerprinting analysis to investigate serum proteome
profiles at different stages of fibrosis in patients coinfected
with human immunodeficiency virus/hepatitis C virus

(HIV/HCV) or mono-infected with HCV. Proteomic profil-
ing was efficiently applied to identify diagnostic serum bio-
markers of fibrosis (F1 vs. F3/4) in both HIV/HCV
coinfected and HCV mono-infected individuals [29]. Huang
et al. conducted serum proteomic analysis between hepatitis
B virus-infected patients and carriers. They screened out 13
differential biomarkers between the two groups and pointed
out that а-enolase and thrombospondin could be serum bio-
markers in the clinical diagnosis of hepatic fibrosis [30].
Although researchers have investigated the different stages
of hepatic fibrosis by proteomic analysis, they mainly
focused on identifying and diagnosing the F1 vs. F3/4 stage.
Few proteomic research studies have been performed to
explore the difference among all five stages (F0-F4) and the
three early stages (F0-F3) of hepatic fibrosis, even though
the accurate identification of fibrosis is important for deter-
mining proper treatment.

In the present study, ultra-high-performance liquid
chromatography tandem mass spectrometer (UPLC-MS/
MS) was utilized to explore the comprehensive proteomic
profiles of the serum in patients at five different stages (F0-
F4) of hepatic fibrosis. This study is aimed at screening for
protein biomarkers of different stages, especially the three
early stages of hepatic fibrosis.

2. Materials and Methods

2.1. Serum Sample Collection. Blood samples were collected
from two healthy volunteers and eight patients at four path-
ological stages of hepatic fibrosis (two each), labeled as F1,
F2, F3, and F4. Blood samples from healthy volunteers
served as controls. The experimental procedures were con-
ducted under laboratory conditions.

The collected blood was centrifuged at 4000 rpm for
5min at 4°C immediately upon extraction, and approxi-
mately 1mL of the supernatant was pipetted into another
tube for further study. Each sample was clearly labeled.

The stages of fibrosis were classified by an experienced
pathologist according to the Meta-analysis of Histological
Data in Viral Hepatitis (METAVIR criteria): control for
the absence of fibrosis, F1 for portal fibrosis without septa,
F2 for portal fibrosis with few septa, F3 for septal fibrosis
without cirrhosis, and F4 for cirrhosis [31].

2.2. Sample Preparation. Twelve high-abundance proteins
from 10μL human serum were removed using Thermo
Scientific Pierce Top 12 Abundant Protein Depletion Spin
Column according to the protocol. The protein solution
was concentrated by ultrafiltration tube with a molecular
weight cut-off of 10 kDa. The protein concentration in
the supernatant was determined using a bicinchoninic acid
assay, and 50μg of protein per condition was transferred
into a new filter and adjusted to a final volume of
100μL with 100mM triethylammonium bicarbonate. The
sample was then incubated with 5μL of 200mM dithio-
threitol at 37°C for 2 h, and 5μL of 575mM iodoacetamide
was added. The sample was further incubated for 1 h in
the absence of light at room temperature.
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2.3. Protein Digestion and Tandem Mass Tag (TMT)
Labeling. Proteins were digested with serial grade modified
trypsin (Promega, Madison, WI), and the resulting peptide
mixture was labeled with the TMT10 kit. The mixed labeled
samples were then desalted using a C18 solid phase extrac-
tion column (Sep-Pak C18, Waters Corporation, Milford,
MA) and dried in a vacuum desiccator.

2.4. High-pH Reverse-Phase Separation. Experimental
methods were based on the following reference [32]. The
mixed sample was redissolved in buffer A (10mM ammo-
nium formate in water, pH10.0, adjusted with ammonium
hydroxide) and performed using a linear gradient from 0%
to 45% of B (10mM ammonium formate in 90% acetonitrile,
pH10.0, adjusted with ammonium hydroxide) in 35min.
The Aquity UPLC system (Waters Corporation) connected
to a reverse-phase column (BEH C18 column, 2:1mm ×
150mm, 1.7μm, 300Å, Waters Corporation) was used for
fractionation. The flow rate was maintained at 250μL/min,
and the temperature was maintained at 45°C. Twelve frac-
tions were collected and dried in a vacuum concentrator
for the next step.

2.5. Low-pH Nano-UPLC-MS/MS Analysis. The fractions
were resuspended in 35μL of 0.1% formic acid, separated
by nanoLC, and analyzed by online nanoelectrospray tan-
dem mass spectrometry (MS) (Thermo Fisher Scientific,
San Jose, CA). 5μL of samples was loaded onto the trap col-
umn (Thermo Scientific Acclaim PepMap C18, 100 μm× 2
cm) with a flow of 10μL/min for 3min and subsequently
separated on an analytical column (Acclaim PepMap C18,
75 μm× 25 cm) with a linear gradient from 2% to 30% D
(ACN with 0.1% formic acid) in 80min. The flow rate was
maintained at 300nL/min, and an electrospray voltage of
2.0 kV versus the inlet of the MS was used.

The Orbitrap Fusion MS was operated in data-
dependent mode with automatic switching between MS
and MS/MS acquisition, the detail experimental procedures
were performed following the reference [33].

2.6. Database Search. Tandem MS were extracted using the
Proteome Discoverer software (version 1.4.0.288, Thermo
Fisher Scientific). Charge state deconvolution and de-
isotropy were not performed. All MS/MS samples were ana-
lyzed with Mascot (version 2.3, Matrix Science, London,
UK). Mascot was set to search the Uniprot-SwissProt data-
base (Taxonomy: Homo sapiens, 20259 entries) assuming
trypsin as the digestive enzyme. Mascot was searched with
a fragment ion mass tolerance of 0.050Da and a parent ion
tolerance of 10.0 PPM. Carbamidomethyl of cysteine and
TMT 6plex of lysine and the n-terminus were specified in
Mascot as fixed modifications. Oxidation of methionine
was specified in Mascot as a variable modification.

2.7. Quantitative Data Analysis. A percolator algorithm was
used to control the false discovery rates of peptides at lower
than 1%. The TMT 10plex quantification method was used
to calculate the reported quantification ratios from the
values of the different quantification channels. Only unique
peptides were used for protein quantification, and the

method of normalization to the protein median was used
to correct experimental bias; the minimum number of pro-
teins that must be observed was set to 200. P < 0:1 and fold
change < 0:83 or >1.2 were chosen to screen out differential
protein biomarkers.

Hierarchical clustering was performed by the Heatmap
illustrator tool. Functional annotation with Gene Ontology
(GO) analysis was conducted in the GO database (http://
geneontology.org), and DAVID 6.8 (http://david.abcc
.ncifcrf.gov/) was applied for functional enrichment analy-
sis. Analysis of metabolic pathways of differential proteins
was carried out using the Kyoto Encyclopedia of Genes
and Genomes (KEGG) (http://www.kegg.jp/kegg/pathway
.html). The protein-protein interaction (PPI) network was
constructed in the STRING database (version 10, http://
string-db.org).

3. Results

3.1. Proteome of Hepatic Fibrosis. In the present study, two
biological replicates were included for each pathologic stage
of hepatic fibrosis in the proteomic analysis to improve the
reliability of the experimental data. Comprehensive statisti-
cal analysis was performed to screen out different proteins.
A total of 331,767 spectra were generated. The number of
matched spectra was 26,063, with 6,688 peptides and 1,338
proteins belonging to 762 protein groups. Among these bio-
markers, we detected 17 differential proteins between F1 and
control, where 8 showed downregulation in the control
group and the other 9 showed much higher expression in
the control group. For the comparison between F1 and F2,
we screened out 23 differential biomarkers, where 7 revealed
a decreasing trend in F1 fibrosis stage, and 16 showed an
increase. A total of 21 proteins were selected as differential
biomarkers between F2 and control, among which 10
revealed a decrease in F2 and 11 showed the opposite trend
compared to the control group. Detailed information on the
differential proteins among the three early hepatic fibrosis
stages is presented in Table 1. Among the 55 detected pro-
teins, two (P6, P8) showed differences in both F1 and F2
compared to those in the control group. P10 and P11
revealed an increase in F1 compared to those in F2. P23
and P37 showed differential expression in F2 compared to
those in control and F1. However, no proteins were found
to simultaneously exhibit differential expression between
control, F1, and F2.

Otherwise, a total of 41 proteins were identified as
potential biomarkers between F2 and F3. The expression
abundance of 23 proteins in serum was decreased in the F2
stage, whereas 18 other proteins showed an increasing trend
(Table 2). Between F3 and F4, 24 proteins showed lower
abundance in F3, and 22 were increased in F3 compared to
F4 (Table 3). The descriptions of the differential proteins
are listed in the Supplementary file (Table S1).

3.2. Hierarchical Clustering Analysis of Differential Proteins.
To obtain a visual illustration of differential serum proteins
between the hepatic fibrosis stages, a hierarchical clustering
analysis was conducted to display the differences between
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Table 1: Differential proteome biomarkers identified among early stages of human hepatic fibrosis.

No. Gene_name Score #.Proteins
#.Unique
peptides

#.Peptides P value
F1 compared to

CON
F2 compared to

CON
F1 compared

to F2

P1 H2AFJ 0.00000 3 1 1 0.024036062 ↓ — —

P2 KRT1 1101.18878 3 22 26 0.075756699 ↓ — —

P3 ECM1 829.84757 2 20 20 0.070533925 ↓ — —

P4 BLVRB 27.90000 1 1 1 0.094149283 ↓ — —

P5 FLNA 0.00000 3 1 2 0.074369236 ↓ — —

P6 CILP2
32.04 1 1 1 0.09912335 ↓ — —

32.04000 1 1 1 0.064356888 — ↓ —

P7 SERPINF2 1408.12683 1 25 26 0.052802344 ↓ — —

P8 CFAP70
0.00000 1 1 1 0.072389646 ↓ — —

0.00000 1 1 1 0.090199296 — ↓ —

P9 OLFM1 85.92000 1 4 4 0.058550382 ↑ — —

P10 SAA4
201.35646 1 10 10 0.006200331 ↑ — —

201.35646 1 10 10 0.002215994 — — ↑

P11 RBP4
938.50225 2 23 24 0.034149896 ↑ — —

938.50225 2 23 24 0.050366617 — — ↑

P12 CTSZ 25.31000 1 1 1 0.072762411 ↑ — —

P13 TRPV4 30.58000 1 1 1 0.098420076 ↑ — —

P14 FCN2 122.74000 2 5 5 0.022181252 ↑ — —

P15 TRDN 0.00000 1 1 1 0.068395908 ↑ — —

P16 HNRNPCL1 43.77338 7 1 3 0.089950328 ↑ — —

P17 SSC5D 25.92000 4 7 8 0.039565254 ↑ — —

P18 LTF 90.46184 2 6 7 0.06941711 — — ↓

P19 LRWD1 40.16000 1 1 1 0.072317477 — — ↓

P20 LGALS3BP 1211.55710 1 23 23 0.073712639 — — ↓

P21 KRT16 396.14000 19 6 20 0.026026008 — — ↓

P22 SOD1 36.14000 1 1 1 0.084864486 — — ↓

P23 HEG1
50.56667 1 3 3 0.026031828 — — ↓

50.56667 1 3 3 0.027063278 — ↑ —

P24 LRRC63 0.00000 1 1 1 0.064496929 — — ↓

P25 PLTP 20.80000 1 4 4 0.025348795 — — ↑

P26 CTDSP1 0.00000 1 1 1 0.03189535 — — ↑

P27 CALM2 53.02000 1 1 1 0.034430516 — — ↑

P28 LMAN2 54.14000 1 1 1 0.025709665 — — ↑

P29 CAVIN2 17.15000 1 1 1 0.080412212 — — ↑

P30 ZNHIT6 24.43000 1 1 1 0.076303624 — — ↑

P31 ZDBF2 0.00000 1 1 1 0.043950877 — — ↑

P32 STIL 0.00000 1 1 1 0.090414752 — — ↑

P33 PDLIM5 0.00000 1 1 1 0.064865463 — — ↑

P34 LPA 247.26695 10 11 15 0.043720414 — — ↑

P35 ZNF407 0.00000 1 1 1 0.058035207 — — ↑

P36 TREML1 53.87000 1 1 1 0.045038842 — — ↑

P37 NCAPH2
0.00000 1 1 1 0.07040615 — — ↑

0.00000 1 1 1 0.035792866 — ↓ —

P38 APMAP 111.30000 1 4 4 0.015403975 — — ↑

P39 DHX29 0.00000 1 1 1 0.074446161 — ↓ —

P40 IGFALS 1063.36355 3 29 29 0.046034759 — ↓ —

P41 RBFA 30.10000 1 1 1 0.084658688 — ↓ —

P42 IL1RAP 96.38968 1 4 4 0.081708039 — ↓ —
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the stages. From the heat maps, we distinguished clear differ-
ences in protein expression abundance between F1 and con-
trol, as well as in other group comparisons (Figure 1).

3.3. Functional Annotation of Proteins with GO. To compre-
hensively summarize functional gene information, GO was
conducted to reveal the functional category of genes associ-
ated with differential expression. The analytical results are
partly presented on the top ten functional categories. Com-
paring F1 with the control, 172 GO terms were annotated
in biological processes, which mainly consisted of platelet
degranulation, fibrinolysis, and acute-phase response. 70
GO terms were identified in cellular components, with the
highest number of proteins associated with the extracellular
exosomes, extracellular space, and plasma membrane. The
number of molecular functions represented by proteins
was 71, with the highest number of proteins associated with
protein binding. Detail information is presented in
Figure 2(a) and Supplementary Table S2. Between F2 and
control, 159 GO terms were annotated in biological
processes (cytoskeleton organization, immune response,
and innate immune response), 68 were identified in
molecular functions (extracellular exosomes, extracellular
space, and extracellular region), and 41 were identified in
molecular functions (protein binding and calcium ion
binding) (Figure 2(b) and Supplementary Table S3). In
comparing between F1 and F2, the number of proteins
associated with biological processes, cellular components,
and molecular functions was 239, 67, and 64, respectively
(Figure 2(c) and Supplementary Table S4). Furthermore,
information on the GO functional annotation between F2
and F3 and between F3 and F4 is presented in the
Supplementary files (Figure S1 and S2, Tables S5 and S6).

3.4. KEGG Pathway Analysis of the Identified Differential
Proteins. The metabolic pathway analysis of differentially

expressed proteins reveals significant systematic changes in
signaling pathways under different experimental processes.
Based on the results of KEGG analysis, no differential meta-
bolic pathway was found between F1 and control and
between F2 and control. Cholesterol metabolism was the
unique differential pathway identified between F1 and F2.
Otherwise, in the comparison between F2 and F3, 14 meta-
bolic pathways were detected, including extracellular
matrix-receptor interaction, protein digestion and absorp-
tion, and microRNAs in cancer. Between F3 and F4, we
identified 19 differential metabolic pathways, including
pathways in cancer and leukocyte transendothelial migra-
tion. Detailed information is presented in the Supplemen-
tary files (Table S7).

3.5. PPI Network Analysis of Identified Differential Proteins.
Proteins that function in biological processes can be ana-
lyzed to construct a PPI network to explore the changes in
differentially expressed proteins at the proteome level. Com-
paring between F1 and control, four proteins were involved
in PPI relationships, all with a single degree. Between F2
and control, four proteins with one degree and two with
two degrees were detected in the PPI network. Twelve pro-
teins were identified in the PPI network analysis between
F1 and F2, among which the degree number ranged from 1
to 5. Detailed information on the PPI network analysis
between hepatic fibrosis stages is shown in Figure 3 and
the Supplementary files (Table S8). The results of PPI
network analysis between F2 and F3 and between F3 and
F4 are also presented in the Supplementary files (Table S8,
Figure S3 and S4).

4. Discussion

Hepatic cirrhosis patients undergo a series of pathological
processes through the various stages of hepatic fibrosis, but

Table 1: Continued.

No. Gene_name Score #.Proteins
#.Unique
peptides

#.Peptides P value
F1 compared to

CON
F2 compared to

CON
F1 compared

to F2

P43 SCRIB 42.63000 1 1 1 0.075998794 — ↓ —

P44 SERPINA10 265.07827 1 15 15 0.091672136 — ↓ —

P45 CFL1 50.32000 2 2 2 0.001375553 — ↓ —

P46 LRP1 82.42144 4 8 8 0.069375115 — ↑ —

P47 MCAM 122.44266 1 5 5 0.038473214 — ↑ —

P48 GAN 0.00000 1 1 1 0.030673318 — ↑ —

P49 TGOLN2 61.19000 1 3 3 0.01652702 — ↑ —

P50 UMOD 27.61000 1 2 2 0.07475014 — ↑ —

P51 GPI 0.00000 1 2 2 0.087016827 — ↑ —

P52 SPATA5 0.00000 1 1 1 0.048833958 — ↑ —

P53 IGHA1 484.36598 1 6 10 0.048432175 — ↑ —

P54 CRMP1 0.00000 1 1 1 0.048966322 — ↑ —

P55 ORM2 167.79667 1 3 10 0.068257089 — ↑ —

Differential proteome biomarkers were identified by a series of statistical analysis methods. Gene-name: corresponding gene code for identified protein; Score:
matching score by identification; .Proteins: number of detected proteins; Unique.Peptides: number of matched unique peptides; Peptides: number of matched
peptides; P value: <0.1; F1 compared to CON: expression abundance of detected protein in F1 compared to control. ↑ Upregulated (fold change > 1:2); ↓
downregulated (fold change < 0:8); — no significant difference.
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the specific mechanisms of action are still unclear. Fontana
et al. analyzed the current developments in the detection of
differential serum biomarkers and routine laboratory inspec-
tion methods in human hepatic fibrosis. These two methods

were able to efficiently identify advanced hepatic fibrosis
stages (F3 and F4) but could not accurately determine the
degree of fibrosis for most patients with early (F0 or F1)
and intermediate (F2) stages of hepatic fibrosis [34].

Table 2: Differential proteome biomarkers identified between F2 and F3 stage of human hepatic fibrosis.

Gene_name Score #.Proteins #.Unique peptides #.Peptides MEAN_F2 MEAN_F3 P value Fold change

CDHR2 67.84000 1 3 3 1.1567284 3.734641735 0.030393796 0.309729415

KIF23 28.40000 1 1 1 1.04066865 1.95383209 0.039067086 0.532629521

ZZEF1 25.17000 1 1 1 0.8163386 1.487453045 0.049786133 0.548816383

CDC45 0.00000 1 1 1 1.12066555 1.869070045 0.084625645 0.599584565

RAD54B 40.41000 1 1 2 0.6076129 0.99280659 0.056997498 0.612015378

LAMC1 0.00000 1 1 1 1.1089689 1.772332385 0.022077332 0.625711582

TTLL8 0.00000 1 1 1 4.05722105 6.31038606 0.079588868 0.642943397

SELP 0.00000 1 1 2 0.724277 1.108942335 0.086915236 0.653124132

CDH5 171.82359 4 7 7 1.24961025 1.77250671 0.003952212 0.704996062

PPIA 47.52000 1 2 2 0.7527572 1.065196395 0.00435389 0.706683954

NCAPH2 0.00000 1 1 1 0.71071275 0.99506203 0.03631808 0.714239644

C9orf72 0.00000 1 1 1 0.9843088 1.353627895 0.043848292 0.727163502

CFD 159.69858 1 4 4 1.11917855 1.5199342 0.079326489 0.736333553

HIST1H4A 34.17000 1 2 2 0.868301 1.16223271 0.077412598 0.747097369

LGALS3BP 1211.55710 1 23 23 0.91597945 1.222727335 0.010768933 0.749128137

FUCA2 71.67000 1 2 2 1.2904989 1.719141185 0.024010826 0.750664873

CD109 70.02583 1 2 4 0.6950532 0.916618035 0.072198557 0.758280083

COL1A1 2125.43260 2 57 60 0.99170045 1.24126761 0.011756652 0.798941696

CAT 268.12000 1 10 10 0.88607235 1.090651505 0.057746831 0.812424818

COL1A2 560.04586 3 31 34 1.00269395 1.232292785 0.07134999 0.813681588

LMAN2 54.14000 1 1 1 1.15866175 1.41990701 0.06521473 0.816012416

COL3A1 33.64000 2 1 3 1.04177725 1.265808275 0.098490075 0.823013461

FABP1 59.87000 1 2 2 0.9981057 1.21195429 0.018034945 0.823550614

TNR 24.25000 1 1 1 0.94406445 0.733598025 0.042108231 1.286896117

CPQ 23.83000 1 1 1 1.00661395 0.77643779 0.002213724 1.296451516

IL1RAP 96.38968 1 4 4 0.79807365 0.604451735 0.096536441 1.32032651

UMOD 27.61000 1 2 2 1.1963501 0.89455069 0.010180284 1.337375415

GNPTG 0.00000 1 2 2 1.3583153 1.00752861 0.054291649 1.348165488

CTBS 35.04000 1 3 3 0.85170885 0.629964875 0.083385639 1.351994189

C4A 9942.66108 9 5 179 1.0382126 0.72739336 0.046765794 1.427305578

CNDP1 489.80074 1 16 16 1.0953562 0.726863725 0.088400653 1.506962258

APCS 670.46990 1 9 9 1.0782359 0.625951395 0.092351646 1.722555311

MGA 0.00000 1 1 1 0.8007978 0.464695475 0.050165383 1.723274366

LTF 90.46184 2 6 7 1.31309015 0.7046773 0.074555121 1.863392151

ANKHD1 27.69000 2 1 2 0.84187635 0.43930618 0.090521544 1.916377206

LRWD1 40.16000 1 1 1 1.25997445 0.529221705 0.005758134 2.380806452

ORM2 167.79667 1 3 10 1.91838385 0.796487075 0.085053393 2.408556159

MYH10 0.00000 1 1 1 0.5197956 0.20681813 0.014314988 2.513298036

SERPINE1 54.42000 1 1 1 0.7277185 0.28168128 0.013278244 2.583481941

ATXN2 0.00000 1 1 1 0.51939755 0.13630007 0.086563626 3.810691733

TUFM 0.00000 1 1 1 0.44915935 0.09972096 0.094500863 4.504161913

Differential proteome biomarkers were identified by a series of statistical analysis methods. Gene-name: corresponding gene code for identified protein; Score:
matching score by identification; .Proteins: number of detected proteins; Unique.Peptides: number of matched unique peptides; Peptides: number of matched
peptides; P value: <0.1; MEAN-F2: average expression abundance of two biological replicates in F2 group; MEAN-F3: average expression abundance of two
biological replicates in F3 group. Upregulated (fold change > 1:2); downregulated (fold change < 0:8).
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Table 3: Differential proteome biomarkers identified between F3 and F4 stage of human hepatic fibrosis.

Gene_name Score #.Proteins #.Unique peptides #.Peptides MEAN_F3 MEAN_F4 P value Fold change

HIST1H2BK 58.78788 18 3 4 0.91694111 4.567607215 0.02275837 0.200748678

PSAP 178.06571 1 2 2 2.21498952 9.866392995 0.081923017 0.224498408

HIST1H3A 30.10000 3 1 1 1.007118065 3.450025825 0.055961473 0.291916095

SERPINE1 54.42000 1 1 1 0.28168128 0.801853925 0.01566317 0.351287524

TALDO1 25.87000 1 1 1 1.1134471 2.436683265 0.01653216 0.456951921

ADRA1D 0.00000 1 1 1 0.448665155 0.90547077 0.040495495 0.495504847

GPI 0.00000 1 2 2 1.136271275 2.27594925 0.047438887 0.499251587

IGLV1-51 49.24000 2 2 2 0.72031513 1.41407929 0.023970467 0.509388077

LDHA 182.13500 3 5 7 0.98430261 1.74136361 0.026047479 0.565248179

JCHAIN 0.00000 1 1 1 0.775689805 1.297338645 0.064848068 0.597908501

CORO1A 52.96000 1 1 1 1.02980141 1.699410955 0.003867435 0.605975504

YWHAZ 53.67000 3 2 2 1.329026125 2.18042104 0.059619436 0.609527289

VASP 21.22000 1 1 1 1.18331832 1.935903255 0.001346437 0.611248686

MGA 0.00000 1 1 1 0.464695475 0.75144601 0.023766465 0.61840168

TPM3 47.11000 3 1 2 1.07130211 1.66324595 0.06686543 0.644103243

SOD3 55.11000 1 3 3 0.349465775 0.529788505 0.013630205 0.659632611

LCP1 264.31215 3 15 16 0.94516355 1.427876255 0.076290676 0.661936598

LSAMP 31.17000 1 2 2 1.10493157 1.64859985 0.097795998 0.670224233

OR5A2 28.86000 1 1 1 0.52274932 0.7628278 0.066462212 0.685278276

TRDN 0.00000 1 1 1 1.389876265 1.974410795 0.069478636 0.703944827

TIE1 40.70000 1 2 2 1.103988345 1.51950628 0.041233163 0.726544115

CDH2 0.00000 1 2 2 1.199460695 1.59554698 0.038173559 0.751755172

CCDC137 0.00000 1 1 1 0.815490835 1.07219904 0.081920717 0.760577845

LARS 0.00000 1 2 2 1.0754855 1.33752222 0.020995556 0.80408795

AHSG 6661.90805 1 47 47 0.956198385 0.752478425 0.02549769 1.270731962

CDH5 171.82359 4 7 7 1.77250671 1.38291291 0.038095089 1.281719693

FGL2 0.00000 1 1 1 1.271405835 0.98971743 0.059754514 1.284614978

CARD6 0.00000 1 1 1 0.75718159 0.58356132 0.076205764 1.297518468

SERPINF2 1408.12683 1 25 26 0.92664857 0.710921615 0.082596355 1.303446893

IL6ST 24.33000 1 1 1 1.46089552 1.09962861 0.055202499 1.328535386

SERPING1 3869.86349 2 49 49 1.05476914 0.788823005 0.041773876 1.337142975

PARD3 0.00000 1 1 1 0.825738295 0.609493725 0.099038026 1.354793759

PODXL 0.00000 1 2 2 1.4057577 1.028178575 0.091751521 1.367231077

KNG1 8235.22033 1 89 90 1.04430991 0.75566476 0.09603675 1.381975137

CDKL1 0.00000 2 1 1 1.25846535 0.85403005 0.098225782 1.473560971

FUCA2 71.67000 1 2 2 1.719141185 1.132890385 0.015356564 1.517482369

CADM1 93.80667 1 1 1 1.30906101 0.843302865 0.097176886 1.552302339

CFD 159.69858 1 4 4 1.5199342 0.93293038 0.060805301 1.629204314

IGHG4 234.37444 1 1 6 1.206264895 0.680698885 0.066048639 1.772097651

PSMC2 60.25782 9 1 2 0.8917285 0.494511585 0.033185676 1.803250979

RPGR 0.00000 1 1 1 0.718604715 0.382276295 0.044101616 1.87980454

CFHR1 573.43387 1 3 18 1.124351305 0.57180219 0.043641926 1.966329134

TBX18 0.00000 1 1 1 0.60035456 0.288173085 0.072236041 2.083312395

CDHR2 67.84000 1 3 3 3.734641735 1.776737215 0.096422533 2.101966292

ZNF407 0.00000 1 1 1 0.455257525 0.17873621 0.07633917 2.547091745

ATXN2 0.00000 1 1 1 0.13630007 0.03008251 0.079890987 4.530874252

Differential proteome biomarkers were identified by a series of statistical analysis methods. Gene-name: corresponding gene code for identified protein; Score:
matching score by identification; .Proteins: number of detected proteins; Unique.Peptides: number of matched unique peptides; Peptides: number of matched
peptides; P value: <0.1; MEAN-F3: average expression abundance of two biological replicates in F3 group; MEAN-F4: average expression abundance of two
biological replicates in F4 group. Upregulated (fold change > 1:2); downregulated (fold change < 0:8).
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Through serum proteomics analysis between the different
stages of hepatic fibrosis, differential protein biomarkers
were detected between the early, intermediate, and advanced
stages and may provide a useful reference for early and inter-
mediate hepatic fibrosis identification. Based on hierarchical
clustering and KEGG pathway analysis, the proteomics pro-
file established in the comparison between advanced hepatic
fibrosis stages (F3 and F4) showed much greater differences
than that in the comparison between early and intermediate
stages (control, F1, and F2).

We identified 17 differential serum proteins between
healthy volunteers and patients with F1 hepatic fibrosis,
and 21 differential proteins were detected between F2 and
controls. However, none of the detected differential proteins
in these two comparison groups were involved in any path-
way. Comparing F1 to F2, 23 differential proteins were ana-
lyzed, among which P25 (phospholipid transfer protein
(PLTP)) and P34 (lipoprotein (LPA)) were involved in cho-
lesterol metabolism, the only pathway, and both revealed a
decreasing trend in the F2 stage. From the analytical data
of all differential proteomic profiles of early hepatic fibrosis
stages, we concluded that differences exist in the protein
level between healthy individuals and patients with F1 or

F2 hepatic fibrosis, but significant systematic changes were
rarely found between the early stages of hepatic fibrosis. In
the comparison between F2 and F3, 41 differential proteins
involved in 14 pathways were detected, and between F3
and F4, 46 proteins involved in 19 pathways were found.
The analysis in this study confirmed that advanced stages
(F3 and F4) were much easier to identify than early stages
(F1 and F2) of hepatic fibrosis.

All detected differential proteins may act as potential
biomarkers in the comparison between two stages of hepatic
fibrosis. For the early stages, no protein exhibited differences
concurrently among all three stages (control, F1, and F2).
However, the expression abundance of P6 (cartilage inter-
mediate layer protein 2 (CILP2)) and P8 (cilia- and
flagella-associated protein 70 (CFAP70)) was differential in
healthy people (control) compared with that in F1 and F2
patients. Both proteins showed lower expression abundance
in the pathological state than in healthy conditions. Com-
paring between F1 and F2, lower abundance of P6 and P8
was observed at F2, but the difference in expression was
not significant. P6 and P8 may be selected as significant bio-
markers to distinguish early stage patients from healthy
individuals. CILP-1 has been reported as a novel
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Figure 1: Heat maps of differential proteins between two early stages of hepatic fibrosis: (a) F1 compared to CON; (b) F2 compared to CON;
(c) F1 compared to F2. Each line represents a differential protein, and each cross represents a serum sample group. Colors indicate the
abundance intensity, with higher abundance intensity represented by a gradual increase from blue to red.
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extracellular matrix protein possessing antifibrotic proper-
ties because of its interference of TGF-β1 signaling in pres-
sure overload-induced fibrotic remodeling [35]. Yee et al.
applied proteomic analysis to explore fibrotic-like changes
in degenerate human intervertebral discs and revealed that
the expression abundance of CILP and CILP2 was much
higher and the mean fibril diameter was smaller in degener-
ated nucleus pulposus samples of younger individuals [36].

The results demonstrated that CILP2 may also have antifi-
brotic function. CFAP70, a candidate of cilia-related protein
in motile cilia and flagella, has a cluster of tetratricopeptide
repeat (TPR) domains. It has been shown that CFAP70
mutations can cause infertility in previous study [37]. In
our study, the expression of P6 (CILP2) was much lower
in pathological than in healthy situations, and this may be
attributed to the similar antifibrotic effect of CILP1. The
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Figure 2: Functional annotation of proteins with GO between two early stages of hepatic fibrosis: (a) F1 compared to CON; (b) F2
compared to CON; (c) F1 compared to F2. Pink, green, and blue bars represent proteins functionally annotated for biological processes,
cellular components, and molecular functions, respectively.
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expression of CFAP70 was much lower in pathological than
in healthy situations, and this may be due to cirrhosis reduc-
ing the sexual function of the patient [38]. As a result, P6
(CILP2) may be selected as an efficient biomarker to distin-
guish fibrosis patients from healthy people. For the early
stages of F1 and F2, 23 relatively differential proteins were

detected. Further investigation might make it possible for
us to establish a method of distinguishing between F1 and
F2 hepatic fibrosis. P10 (SAA4), P11 (RBP4), and P37
(NCAPH2) expressions were decreased in F2 patients com-
pared to F1 patients, while P23 (HEG1) expression was
increased. P10 is a serum amyloid protein that is mainly
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Figure 3: PPI of differentially expressed proteins between two early stages of hepatic fibrosis: (a) F1 compared to CON; (b) F2 compared to
CON; (c) F1 compared to F2. Colors indicate the abundance intensity, with higher abundance intensity represented by a gradual increase
from blue to red. The size of the circles represents the degree of differentially expressed proteins, with larger circles indicating higher degrees.
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secreted in plasma and expressed in the liver and declines in
the F2 phase probably due to impaired hepatocyte function
(https://www.uniprot.org/uniprot/P35542). As a secreted
protein of the retinol family, P11 protein is widely distrib-
uted in blood, urine, and body fluids. Decreased expression
of P11 in F2 may be a new serological indicator reflecting
the severity of chronic liver disease and is closely related to
the degree of liver tissue fibrosis or cirrhosis [39]. P37 plays
a key role in mitotic chromosome assembly and is required
for telomerase stabilization. Decreased expression of P37 in
F2 may lead to telomere shortening and deletion, which is
an important cause of liver fibrosis [40]. P23 is closely asso-
ciated with tumor progression, and some studies have shown
that HEG can promote hepatocarcinogenesis [41]. There-
fore, P11 may be selected as a valid biomarker to distinguish
F1 and F2 liver fibrosis. Although routine laboratory inspec-
tion methods including liver biopsy can accurately identify
the F3 and F4 stages of hepatic fibrosis, proteomic analysis
data between F3 and F4 should provide an assisted reference
for advanced fibrosis.

GO analysis has been widely applied in many areas of
research for a better understanding of gene and protein
function. Zhao et al. developed a gene function prediction
based on GO hierarchy preserving hashing, which was
robust in the number of hash functions and was carried
out more efficiently than other related methods [42]. Yu
et al. found that sequence and GO data associated with pro-
tein interaction networks may provide a selectable approach
for protein module detection and are helpful in improving
performance [43]. In this study, the results of GO analysis
revealed that all detected differential proteins between fibro-
sis stages (F1-vs.-control, F2-vs.-control, F1-vs.-F2, F2-vs.-
F3, and F3-vs.-F4) were mainly involved in platelet degran-
ulation and cell adhesion (biological processes), principally
played a role in extracellular exosome and extracellular space
(cellular components), and exerted an effect on protein
binding (molecular function). These findings suggested that
the proteins identified herein played a critical role in the
pathological immune response.

PPI, a useful tool in proteome analysis, has been utilized
in many studies. Karmakar et al. investigated a protein fold-
ing system with intricate PPIs to gain new comprehensive
research directions using soluble N-ethylmaleimide-
sensitive factor attachment receptor complexes, presenting
synaptosomal-associated protein 25 as a pathological and
diagnostic target [44]. Martin et al. performed a study on
PPIs in cancer to develop a screening tool to explore the
interactome [45]. Through PPI network analysis, we were
able to discover key points from differentially detected pro-
teins. In our study, no differential proteins interacted
actively in the PPI network in healthy individuals compared
to early fibrosis stages (F1 and F2). In comparing F1 with F2,
CALM2 interacted with five proteins and may be selected as
a key point for differential analysis. Significant protein inter-
actions existed in the PPI network between F2 and F3 and
between F3 and F4. MYH10 (with 6 interacting proteins)
and KIF23 (with 5 interacting proteins) were selected for
the comparison between F2 and F3. Between F3 and F4,
TIE1 (with 12 interacting proteins) and LDHA (with 12

interacting proteins) were detected. All significant protein
interactions could be screened out in the differential protein
analysis between fibrosis stages. Further investigation on
interacting proteins may provide a more accurate and com-
prehensive analysis of the proteomes between different
hepatic fibrosis stages.
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