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In this paper, the Trolox equivalent antioxidant capacity (TEAC) is estimated through a robust machine-learning algorithm known
as the Particle Swarm Optimization-based Extreme Learning Machine (PSO-ELM) model. For this purpose, a large dataset from
previously published reports was gathered. Various analyses were performed to evaluate the proposed model. The results of the
statistical analysis showed that this model can predict the actual values with high accuracy, so that the calculated R2 and RMSE
values were equal to 0.973 and 3.56, respectively. Sensitivity analysis was also performed on the effective input parameters. The
leverage technique was also performed to check the accuracy of real data, and the results showed that the majority of data are
reliable. This simple yet accurate model can be very powerful in predicting the Trolox equivalent antioxidant capacity values
and can be a good alternative to laboratory data.

1. Introduction

Many antioxidant compounds may be found in vegetable
materials [1, 2]. To find possible sources of natural antioxi-
dants for use in edible products, many plants have been
researched and several substances have been identified [3, 4].

Biologists and physicians are also interested in antioxi-
dants because of their use for guarding the human organs

against the harm of reactive oxygen species (ROS) [5, 6].
Because of the alleged tight relationship between oxidative
stress and illness, antioxidants are thought to be preventive
agents against similar illnesses [7, 8].

There is a negative relationship between consuming fruits
and vegetables, as the greatest sources of antioxidants, and
the cancer risk, so that the risk is reduced by 30-50% [9,
10]. The antioxidant potential of a wide range of substances
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is investigated by many researchers; the substances include
different vegetables and fruits, drinks, green teas and black
ones, plant parts (their leaves, the roots, and their bark), ker-
nel, shell, and also industrial wastes and secondary products
apart from the ones derived from plants [11]. The “antioxi-
dant capacity” refers to the certain amount of free radicals
being removed by a laboratory solution, without considering
the properties of any antioxidant of the mix [12, 13].

The antioxidant capacity of the Trolox equivalent of
nutritional excerpts is then measured by taking into account
the aggregate activity of all antioxidants of the excerpts,
together with their chain-breaking, cleansing, and chelating
impacts, hence offering an inclusive factor instead of the
measurable antioxidants’ simple sum [14]. So we can identify
the antioxidants’ familiar and unfamiliar capacities, and their
synergistic relationship, providing a method for identifying a
diverse variety of nutrition for antioxidant characteristics
[15, 16]. There are many kinds of research for measuring
the antioxidant capacity of Trolox equivalent of nutritional
products [17–21].

The basis of each technique is producing various free rad-
icals via a range of methods, followed by measuring a variety
of endpoints at a defining moment or above the limit [22]. A
spectrophotometric test of the antioxidant capacity of the
Trolox equivalent is a frequent technique, which has relied
on the antioxidants’ relative capacities that exist in nutri-
tional products to remove the radical cation of ABTS+ (2,2′
-azinobis-(3-ethyl-benzothiazoline-6-sulfonic acid)), com-
paring to the capacity of the antioxidant of 6-hydroxy-
2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) stan-
dard amounts [17, 23]. We previously evaluated the sub-
stances of physiologically active chemicals and the
cruciferous seeds’ Trolox equivalent antioxidant capacity
during sprouting, and the findings on ascorbic acid levels
were previously reported [24].

The present paper is aimed at developing a PSO-ELM
model for forecasting the antioxidant capacity of the Trolox
equivalent of various sprouting cruciferous seeds dependent
upon the entire phenolic composites, inositol hexaphosphate,
glucosinolates, soluble proteins, ascorbic acid, and the entire
tocopherol content (as an add-up of α-T, β-T, γ-T, and δ-T
labeled as Ttot) and the antioxidant capacity of the Trolox
equivalent of sprouted cruciferous seeds, as established
experimentally. After the model construction stage, various
analyses are used to evaluate its accuracy. Sensitivity analysis
is also used to determine the effect of each of the input
parameters on the target values.

2. Description of Modeling

2.1. PSO.One of the techniques for stochastic optimization is
PSO which was presented by Eberhart and Kennedy [25].
The application and manual for this procedure are intro-
duced in [26–28]. An abstract of this method is summarized
in six steps which will be mentioned as follows [29].

vik t + 1ð Þ =wvik tð Þ + c1:rand ð Þ pik tð Þ − xik tð Þ� �

+ c2:rand ð Þ gik tð Þ − xik tð Þ� �
,

ð1Þ

xik t + 1ð Þ = xik tð Þ + vik t + 1ð Þ1 ≤ i ≤N , 1 ≤ K ≤D: ð2Þ

Step 1: a majority of stochastic solutions is formed as the
searching space. Assume that the searching space has two
parameters: dimension ðDÞ and particle number ðNÞ. Each
possible solution is dedicated to two attributes: position and
velocity of the ith particle in iteration k. These particles are
then “flown” through the search space of possible solutions
which are indicated as follows. Step 2: measure the fitness
between each particle in the swarm. Step 3: for each iteration,
evaluate the particle’s fitness with the best fitness acquired in
the previous ones. If this value is better than the best acquired
previous ones, replace the amount and location of the previ-
ous one with the current value and location, respectively. Step
4: evaluate some fragments together and update the finest
place with the best fitness ðgikÞ. Step 5: the pace of each frag-
ment is increased towards its ðgi

kÞ and ðpikÞ. This speed or
acceleration is valued by an accidental term. Step 6: start
again from step 2 based on favorable factors until a new con-
vergence is reached.

2.2. ELM. An ELM can be introduced as a least square-based
single hidden layer (HL) feed-forward neural network
(SLFN) for two problems: regression and classification.
Huang et al., for the design of an ELM, apply the kernel func-
tion instead of the HL with a huge amount of nodes [30].
Hung et al. and Pal and Deswal [31] both suggested tech-
niques; the abstract of these methods is as follows.

Hidden neurons ðHÞ, ELM for the training set ðNÞ, and
activation function f ðxÞ can be described as follows:

ej = 〠
H

i=1
αi f wi, ci, xj

� �
j = 1⋯N: ð3Þ

αi and ωi are H-output layers and weight vectors (WVs)
of the connecting input HLs (input Ws), respectively. xj
indicates input variables. Ci indicates the H bias for the ith
H neuron, and ej is the output of ELM for multiple data
points (j). The process of generating input Ws is random
and is based on consecutive distribution. Via a linear func-
tion, the output and result of Ws are calculated which are
as follows:

β = A†Y : ð4Þ

A shows the output of the HL matrix (equation (5)), A †
indicates the inverse of A when using the Moore-Penrose
method, and Y represents the values that ELM tries to reach.
The compact and simplified form of equation (4) is Aα = Y .
A is the matrix of HL in the neural network (NN) and Y is
the vectors of the output variable. The three matrixes, A, α
, and Y , can be represented as follows:
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A =

h xið Þ
⋮

h xNð Þ

2
6664

3
7775 =
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⋮ ⋯ ⋮

f w1, c1, xj
� �

⋯ f wH , cH , xj
� �

2
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3
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=
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αTH

2
6664
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7775, Y =

yT1

⋮

yTN

2
6664

3
7775,

ð5Þ

in which hðxÞ represents the feature mapping of the HL.
Matrix A strongly assigns the result of the ELM algorithm.
One of the traditional solutions is using NNs in the HLs in
which this type of solution uses a gradient descent algorithm
as represented in [31]. In order to solve ELM, the kernel
function is applied, and on the other hand, for solving the
kernel matrix, feature mapping is used as can be seen in
the following [30]:

k xi, xj
� �

= h xið Þ:h xj
� �

: ð6Þ

In this article, we attempt to comprehend the efficiency
of the kernel on the Mr prediction via KELM application
and integrating ELM method with PSO for designing a fresh
model for predicting Mr. In the point of view of the learning
rate, predictive performance, and generalization capability,
ELM has better performance in comparison with normal
NNs. ELM via the Moore-Penrose generalized reverse
method distinguishes the Ws of the output and input layers
and produces some random values for H biases and input
Ws [32, 33]. The general structure of a NN known as SLFN
(single HL feed-forward NN) included the output and input
layer neurons, m and n, respectively, and also HL neurons.
For instance, suppose fXi, Yig is a training dataset, then it

can be understood that the input dataset is Xi = ½Xi1, Xi2,
⋯, Xin� and the output dataset is Yi = ½Yi1, Yi2,⋯, Yim� for
i = 1, 2,⋯, n. m is the number of training samples.

3. Data Gathering

There are 172 data points in the database utilized in the pres-
ent study [34], with two train (129 data points (about 75%))
and test (43 data points (about 25%)) datasets for training
and testing the efficiency of proposed models, respectively.
To boost the efficiency of the study models, the data points
were normalized between −1 and +1.

4. Results and Discussion

The efficiency analysis needs to be carried out for evaluating
the capability of the model. Accordingly, various statistical
analyses were carried out between the actual values and the
model outputs, including standard deviations (STD), mean
relative errors (MRE), root mean square error (RMSE), mean
squared error (MSE), and R-squared (R2) to evaluate the
capability of the study model [35–38].

Figure 1 represents the actual values versus model out-
puts for the output data at the train and test phases. The tar-
get is accurately estimated by the study model with a decent
agreement between the real information and model yields,
highlighting their capability in output prediction.

Also, the model results from regression analysis repre-
sented in Figure 2 at the train and test phases. Based on
related literature, the R2 value is an eminent statistic indicat-
ing the model output-actual value relationship. The basic
objective was to conduct a comparative analysis between
model yields and real values. The accuracy of the model’s
accuracy is improved when the fitted line approaches the
bisector line [39, 40]. A remarkable linear correlation is
achieved between the model outputs and actual values for
R2 = 1, which gets weaker when the R2 value approaches to
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Figure 1: Simultaneous viewing of real and corresponding modeled data.
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zero [41, 42]. Accuracy is represented by a close-fitting of
data points around the 45° line for the prediction models.
As shown in this figure, this model shows a high ability to
predict target values in different phases.

Table 1 presents the results from statistical analyses of the
study model based on the RMSE, MSE, STD, MRE, and R2

parameters [43, 44].
In a study with similar input data, Buciński et al. pre-

dicted TAEC values using the artificial neural network

(ANN) method [34]. Their model showed an accuracy of
R2 = 0:931 in estimating the output data in the testing phase,
which was weaker than the model proposed in this paper.

Furthermore, Figure 3 represents the absolute relative
deviation between the actual values and model yields of out-
put anticipated utilizing the examination model.

William’s plot was utilized for determining the outliers of
the model [45, 46]. Figure 4 represents the standardized
residuals versus hat values. This figure clearly shows three
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Figure 3: Determining relative deviation values to evaluate the accuracy of the model in predicting the target data.

Table 1: Determining the values of different statistical parameters for the model in different phases.

Phase R2 MRE (%) MSE RMSE STD

Train 0.974 5.06 12.37 3.52 2.38

Test 0.970 5.90 13.65 3.70 2.60

Total 0.973 5.27 12.69 3.56 2.43

Train: y = 0.9967x + 0.2796, R2 = 0.9744
Test: y = 1.0101x –0.8345, R2 = 0.9704
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Figure 2: Regression analysis to evaluate the accuracy of the proposed model.
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limited boundaries: leverage limit, upper limit, and down
suspected limit [47]. Outliers are data with higher
standardized residual values > 3 or <−3, and the data with
hat > hat ∗ (referred to as the warning leverage value) are
beyond the applicability domain of the study model [48].
As can be seen from this figure, among all the data points,
only three suspicious points are seen.

Finally, sensitivity analysis was used to determine the
effect of different input parameters on the target parameter.
More details about this analysis are given elsewhere [49,
50]. According to Figure 5, it was found that Ttot has the most
direct effect on the target parameter, which corresponds to
the relevancy factor (r) equal to +0.26, while other input
parameters showed an inverse effect on the target parameter

so that GLS showed the most negative effect with r equal to
-0.85.

5. Conclusion

This study was aimed at seeing how well a statistical learning-
based model could predict the antioxidant capacity of crucif-
erous sprouts. To this end, the PSO was implemented in the
ELM model. When it came to setting the tuning parameters,
the PSO algorithm showed good performance. Estimates
were found to be quite accurate when compared to actual
data points. The efficiency of the proposed techniques was
verified by an excellent agreement achieved between the
model outputs and the actual values in assessing the model
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Figure 5: Sensitivity analysis on various input parameters of the model.
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during the train and test phases, as demonstrated by results
from statistical analyses. The models’ accuracy was con-
firmed as predicted by a comparison which was made
between the proposed models’ outcomes and another
reported correlation. The proposed strategy to predict the
antioxidant capacity of cruciferous sprouts is user-friendly
so that they can be considered a useful tool for researchers,
particularly in related fields, unlike the sophisticated mathe-
matical techniques developed for this output prediction.

Data Availability

The data used to support the findings of this study are pro-
vided within the article.
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