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Dengue remains one of the most serious and widespread mosquito-borne viral infections in human beings, with serious health
problems or even death. About 50 to 100 million people are newly infected annually, with almost 2.5 billion people living at
risk and resulting in 20,000 deaths. Dengue virus infection is especially transmitted through bites of Aedes mosquitos, hugely
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spread in tropical and subtropical environments, mostly found in urban and semiurban areas. Unfortunately, there is no particular
therapeutic approach, but prevention, adequate consciousness, detection at earlier stage of viral infection, and appropriate medical
care can lower the fatality rates. This review offers a comprehensive view of production, transmission, pathogenesis, and control
measures of the dengue virus and its vectors.

1. Introduction

Dengue regards one of the utmost serious arboviral infec-
tions around the world. dengue virus (DENV) is transmitted
through bites of female Aedes mosquitos especially Aedes
(Stegomyia) aegypti, Ae. alpopictus [1], Ae. niveus, and Ae.
polynesiensis [2]. DENV infection is almost similar to flu-
like infection and sometimes develops into possibly lethal
difficulties or severe illness including dengue shock syn-
drome and dengue hemorrhagic fever. World Health Orga-
nization (WHO) reports that DENV infection has been
shown to 30-fold increase around the globe over the past five
decades, and approximately 100 million newly infected peo-
ple are estimated in over 100 endemic countries with 20,000
deaths annually [3].

DENV and its vectors are primarily noticed in tropical
and subtropical environments globally, frequently in urban
and semiurban areas. In Bangladesh, DENV has been
detected as a severe health hazard. Between 2000 and 2008,
50,148 people were hospitalized for dengue in Bangladesh.
But in August 2019, nearly 60,000 dengue patients have been
hospitalized, and approximately 100 deaths have been
reported. Severe DENV infection is a leading cause of tena-
cious sickness and deaths of people of all ages in Asian and
Latin American countries. Unfortunately, we have no partic-
ular treatment strategy for dengue infection. It may be
because historically our pharmaceutical section did not
come up with much attention to this vector-borne viral
disease.

This review is aimed at sketching a current scenario on
DENV, dengue infection, and dengue vectors along with
the production, transmission, pathogenesis, and ways of con-
trol of DENV, and its vectors offers a comprehensive view of
production, transmission, pathogenesis, and control mea-
sures of DENV and its vectors.

2. Dengue Virus (DENV)

DENV, a pathogenic arthropod-borne flavivirus (arbovirus),
is a single-stranded and positive-sense RNA molecule
belonging to the family Flaviviridae.

The Flaviviridae family includes viruses transmitted by
arthropods that cause serious illness in humans. The family
includes a single genus-Flavivirus, with several types [4].
Recently, another subdivision of the family into three genera
has been proposed as follows: genus Flavivirus includes
arboviruses (yellow fever virus, dengue fever virus); genus
Pestivirus-viruses involved in animal pathology; and genus
Hepacavirus-the proposed name for different variants of
hepatitis C virus [4].

To date, 47 strains of DENV have been identified. The
total number of four closely linked serotypes (from DENV
-1 to -4) of DENV has been identified to date, but they are

lightly antigenically distinct [5, 6], and those can be subdi-
vided into several genotypes according to their gene
sequences [7]. These serotypes are generally progressed from
a mutual ancestor, and all are considered as the causative
agent of approximately similar disease spectrum in humans
due to DENV selecting different receptors based on cell
types and virus strains [8]. Developed viral particles have a
spherical shape with 11 kb in length and 40-50 nm in diam-
eter, containing single-stranded and positive-sense RNA
molecule, which has a 5-methyl cap with a single open read-
ing frame [2]. Dengue virus and its common four serotypes
have shown in Figure 1.

2.1. DENV Vectors. Dengue virus infection usually spreads
through bites of infected female mosquitos of genus Aedes,
especially by the Aedes aegypti and Ae. albopictus [1]. How-
ever, the other two vectors such as Ae. polynesiensis and Ae.
niveus have been identified as the secondary vectors in some
regions throughout the world [2] (Figure 2).

Adult Ae. aegypti has a white scale that forms a lyre or
violin shape at the dorsal side of the thorax, while the adult
Ae. albopictus forms a white stripe at the middle point of the
top of the thorax region. The white bands of every tarsal seg-
ment of the hind legs of these mosquitos are known as the
white stripe. The abdomen is generally found to be black
or dark brown, but sometimes, it also bears white scales.
Females are usually larger than males; on the other way,
through finding small palps tipped with silver or white
scales, they can be discriminated against properly. Males
are specially identified by the plumose type of antennae.
On the other hand, females are seen to bear short hair.
Under a microscope, the mouthparts of the male are
watched as a structural modification for nectar feeding,
and female mouthparts are viewed as a modified structure
for feeding on blood. The darkly coloured proboscis is found
to be present in both sexes. In addition, two clusters of white
scales presented on the segment above the proboscis are
known as clypeus. The tip of the abdomen is pointed out
as a distinctive feature of all Aedes species [9].

2.2. Geographical Distribution. DENV mainly originated
from monkeys, then jumped to humans in Southeast Asia
or Africa between 100 and 800 years ago. Geographically
DENV has been restricted till the 1950s, but after the Second
World War caused a rapid distribution throughout the
world. Firstly, DENV infection was recognized in the Thai-
land and Philippines in the 1850s, and after the 1980s
towards Latin America and the Caribbean. Presently, DENV
is prevalent throughout the different countries (at least 100
countries) including in Asia, the Pacific, the Americas,
Africa, and the Caribbean. DENV epidemics occurred in
26 states [10]. Scientific reports demonstrate that DENV-2
and 3 serotypes were mostly outbroken before 2000 and
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between 2000 and 2009, respectively. DENV-1 serotype
started to dominate worldwide dengue outbreaks and after
2010, the DENV-4 [11].

The geographical distribution of DENV worldwide has
been shown in Figure 3.

Ae. Aegypti is scattered in tropical areas geographically,
and it breeds artificially in containers (such as tyres, drums,
flower vases including plastic food containers, tin cans, and
old motor parts) that are filled with water [12].

Ae. aegypti is an insect of holometabolous type, which is
fully developed after completing metamorphosis (i.g., four
growing phases from egg to adult period). The duration of
the life span of an adult may be 2 to 4 weeks; however, it
depends on the environmental conditions, at least 4-5 times
a female mosquito lays eggs throughout her whole life span
and the average 10 to 100 eggs in a single spawn. Three
diverse polytypic forms are found in Ae. aegypti such as syl-
van, domestic, and peridomestic [13].

A sylvan type is generally a rural form which breeds in
tree holes, normally in forests; the domestic type commonly
breeds in municipal surroundings, frequently inside or
around houses; and the peridomestic type usually survives

in biologically modified regions as groves and coconut farms
[14]. Ae. aegypti can survive above 4°C [15]; on the other
hand, about 15-37°C temperature is required for a complete
life cycle [16].

The extent of DENV epidemics not only depends on the
presence of DENV and mosquito genotypes but also
depends on how they interrelate with local temperature
[17]. Nevertheless, a current study demonstrated that DENV
infection can alter gene expression in the Ae. aegypti mos-
quito’s head that causes a loss of their olfactory preferences,
thereby modifying oviposition site choice [18]. Now, the
question is how safe is the host nervous system’s homeosta-
sis during Dengue infection?

2.3. Life Cycle. Primarily, the DENV was transmitted via syl-
vatic cycles in Asia and Africa by Aedes mosquito and the
nonhuman primates, with occasional appearances of human
populations [19]. However, nowadays, the global spread of
DENV follows its emergence of all types of transmissions
(e.g., sylvatic cycles and vertical: mosquito to mosquito).
Thus, its primary life cycle entirely involves the transmission
between Aedes mosquitoes and humans [20]. One report
suggests that dogs or other animals may act as incidental
hosts and may serve as reservoirs of DENV infection [21].
Life cycles of mosquitoes have been shown in Figure 4.

2.4. Immune Defensive Pathways. The Toll pathway is one of
the well-known potential immune defensive pathways
against the DENV and its serotypes bearing Ae. aegypti
[22]. In a study, after ten days postinfection of DENV, the
antioxidant enzymes were found to suppress, while upregu-
lated the expressions of Toll, JAK-STAT, and pathogen rec-
ognition receptor (PRR) [23]. It has also been analyzed that
the JAK-STAT pathway is another important DENV defen-
sive pathway in invertebrates [24, 25]. The mosquitoes of
genus Aedes should be more vulnerable to DENV infection
if the receptor JAK homolog HOP or Dome is inhibited by
RNA inference (RNAi, e.g., ds RNA and prM RNA) [25, 26].
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Figure 1: Diagram with dengue virus and its four serotypes.

Aedes aegypti Aedes albopictus

Aedes polynesiensis Aedes niveus

Figure 2: Aedes mosquitoes (dengue virus vectors).
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In a study, miR-375 was found to enhance DENV2 rep-
lication capacity [27]. In another study, in the period of
DENV infection, miRNAs were identified in different forms
(about sixty-six) in Ae. albopictus, where upregulated miR-

34-5p targets the Toll pathway signalling protein (REL-1)
[28]. Conversely, downregulated peptidoglycan recognition
protein LE, and AMP defensin D. miR87 targets the Toll
pathway [28].

Average of number of reported cases, 2010–2016
≥100 000 0 cases reported

No data
Not applicable

10 000 – 99 999
1 000 – 99 999
<1 000

Figure 3: Geographical distribution of dengue worldwide.
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Figure 4: Mosquito life cycle.
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Differential expression of miRNAs in DENV has been
also reported by Yen et al. [29]. In this study, the authors
highlighted the possibility of using artificial antiviral miR-
NAs to reduce the transmission of two major arboviruses
in transgenic Ae. Aegypti. The miRNA-based approach
resulted in a dual resistance phenotype for Dengue serotype
3 viruses (DENV-3).

The piRNAs also plays essential roles in the innate anti-
viral response in DENV [30–33]. Moreover, nonretroviral
integrated RNA viruses (NIRVS) were recognized in Ae.
aegypti and Ae. albopictus in a larger number [34].

The expression of cecropin-like AMPs was expressively
upregulated by the infection of DENV [24]. In Ae. aegypti,
the immune deficiency (IMD) pathway shows a significant
role to resist DENV susceptibility, while the increase in viral
replication [35]. The ubiquitin variant (Ub3881) residues
may inhibit the DENV envelope protein, thereby and
decrease the production rate of DENV in Aedes vectors
[36, 37].

The DENV-containing blood meal first appears in the
midgut of the vectors, which has the first line of defense sys-
tems, such as the infection barrier and the escape barriers
[38, 39]. It is evident that, after a successful entry of DENV,
something has happened inside the midgut cells such as
uncoating, replication, and new virus particle assembly.
The innate immune signalling pathways have been seen to
be effective during the infection of DENV in Ae. aegypti.
Exogenous siRNA pathways also play a substantial role
against DENV infections in the Aedes midgut [40]. DENV
infection causes the production of NO in the hemolymph,
where the virus is released into the hemocoel from the mid-
gut. The hemocytes allow replication other than the distribu-
tion of DENV. Interestingly, DENV replication in
hemocytes is extensively inhibited by NO [41]. It has been
reported that about 40 differentially bacterial types have
been isolated from the gut of Ae. aegypti through a gut
microbiome study [42]. In another study, colonization of
Csp_P in the midgut of the Ae. aegypti also inhibited DENV
infection [43]. The Talaromyces (Tsp) secretome shows a
considerable modulating effect on the midgut transcriptome.
Tsp secretome may display a significant role in the advance-
ment of DENV infection in the midgut through downregu-
lating trypsin encoding genes involved in the digestion of
blood and through reducing the enzymatic activity of trypsin
[44]. It is cited that the presence of gram-negative endosym-
biotic bacteria Wolbachia spp. in Aedes mosquitoes effec-
tively suppressed the DENV infection [45]. Wolbachia
activates antimicrobial peptides defensin and cecropin Toll
pathway through producing reactive oxygen species (ROS)
after inducing a reduction-oxidation (Redox) reaction in
the mosquitos [46]. Wolbachia also upsurges vago1 expres-
sion in Ae. aegypti by acting as a ligand of the JAK-STAT
pathway [47].

Ae. aegypti macroglobulin complement related factor
(AaMCR) recognizes DENV particles. An anti-DENV effect
on Aedes mosquitoes has been found to link with the upreg-
ulation of AMP expression in the hemocytes [48]. The sali-
vary glands also contain the infection barrier and the
escape barriers [49]. Moreover, incomplete apoptosis of

DENV occurs here, which is required for the virus to release
via saliva [50]. A study revealed that multiple immune
defensive pathways (e.g., Toll and IMD) can be found here,
and this can rise putative antibacterial proteins/peptides
(e.g., attacin, cecropins, defensins,and gambicin) [24, 28,
35, 48, 51]. In the brain of Ae. aegypti, a homolog of Hikaru
Genki (AaHig) has been found to express ubiquitously [52].

Lipid droplets (LDs) containing a few exclusive struc-
tural proteins (Perilipin 1, 2, and 3) and a fatty acid mono-
layer are exclusively found to present in a variety of
organisms including DENV. These have been found to pro-
vide immunological defense of Aedes mosquitoes [53–55].

3. DENV Infection

3.1. Transmission. After initial midgut infection, DENV dis-
tributes systemically through the body cavity (commonly
known as hoemocel) of Aedes vectors, after that way dissem-
inates in secondary tissues. The time taken between initial
midgut infection and successive transmission of DENV by
its vector (e.g., Ae. aegypti) is termed as extrinsic incubation
period (7 to 14 days at 25-30°C). DENV stays in the midgut
of the vectors which it may be due to the viral genome being
stable here [36].

The ubiquitin-proteasome, an important pathway, acts
significant activity in the regulation of infectious DENV pro-
duction in vectors [36]. Finally, an infection of the salivary
glands and the release of virions into the host’s saliva occur
throughout the DENV transmission to the host [56]. Blood
cells and plasma are important media for the four serotypes
of DENV spreading into the host. A relation of domain III
from the envelope glycoprotein of DENV-II with human
plasma proteins has been identified by Huerta et al. [57]
[57]. DENV infection inductees after the attachment of the
dengue virus to the target cell through interfaces between
the various cell surface receptors and viral envelope (E) pro-
tein [58]. In mammalian cells, all categorized serotypes
interact with mannose, heparan sulfate, nLc4Cer, and DC-
SIGN/L-SIGN receptors.

Additionally, the DENV-2 serotype is found to intensity
of binding with GRP78, CD14-associated protein, HSP70/
HSP90, and two other unidentified receptor proteins. Con-
versely, serotypes DENV 1-3 bind with the laminin receptor
while serotypes DENV 2-4 attach with an unknown protein
receptor [59].

DENV after receptor-mediated endocytosis, virion fuses
with acidic lysosomes, and its genomic RNA is released into
the cytoplasm and translated into a polyprotein of ~3400
amino acids (genome is about 11000 bases of positive-sense,
a single-stranded RNA (ssRNA)) that are further cleaved by
viral and host proteases into three structural (capsid: C,
membrane: M, and envelope: E) and seven nonstructural
(NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5) pro-
teins [60].

C protein is a foremost structural component of DENV
that is localized in the cytoplasm and nuclei [61, 62]. The
nuclear localization of this protein is thought to be crucial
for its well-organized replication [61, 63].
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The lipid bilayer of virions is formed by lipid (approxi-
mately 17% by weight) between the nucleocapsid core and
E/M outer shell [64, 65]. During the replication of DENV,
a membrane-bound replication complex formation helps to
incorporate host factors, viral proteins, and genomic RNA
[66]. In this case, positive-strand (+) DENV genomic RNA
acts as a template to synthesize complementary negative-
strand (-) RNA, which is sequentially used for multiple (+)
RNA genomes production that is obtainable for translation
and regulation of replication cycles or packaging into virions
[67]. However, in a study, Raquin and Lambrechts [68]
showed the presence of DENV genomic RNA in the salivary
galnds of Ae. aegypti, indicating an active replication of
DENV in its vector prior to transmission [68]. DENV itself
encodes RNA-dependent RNA polymerases, and the infec-
tion cycle of this virus is catalyzed by other cellular fac-
tors [69].

DENV infections can alter many important proteins in
the subcellular locales, including the Alix apoptosis-linked
gene-2-interacting protein X; therefore, blocking this step
may be one of the innovative beneficial approaches to reduce
DENV replication in the host [70]. Instead, several genes
have been identified that reduce infection of DENV when
silenced by at least 60% in its most important vector Ae.
aegypti. Among them, a putative cysteine-rich venom pro-
tein SeqID AAEL000379 (CRVP379) silencing has been
found to reduce DENV infection significantly in the cells
of midgut tissues of Ae. aegypti [71].

Loqs2, a gene has been found only in Aedes mosquitoes,
which is essential for the appropriate effectiveness of RNA
interference in this type of mosquito. However, without
Loqs2, the viruses can multiply and consequently infect their
salivary glands [72].

An interaction between DENV nonstructural protein 4A
(NS4A) and host cellular vimentin has been demonstrated in
localizing and concentrating the viral replication complex at
the perinuclear site, in consequence assisting well-organized
replication of viral RNA [73].

Figure 5 shows a general DENV transmission mode in
its vector to hosts.

3.2. Pathogenesis. DENV is usually greater in tropical and
subtropical environments throughout the world, frequently
in urban and semiurban zones. People, exposed to infected
mosquitoes of all ages are susceptible to DENV infection.
DENV infection causes dandy fever, breakbone fever, and
dengue hemorrhagic fever; and in severe cases, dengue shock
syndrome has occurred. The rainy season is the most
favorable climate for DENV infection outbreaks in tropical
countries in Asia and South America. Generally, the
infected female Aedes mosquitoes transmit DENV in
humans. Although humans are not capable of transmitting
DENV, it can be transmitted during the blood transfusion
between an infected person to a noninfected (healthy) per-
son [74, 75].

3.3. Physiological Data. After the incubation period (3 to 14
days) of DENV, the person may experience one or more
early symptoms such as nausea, headache, rash, fever, mus-

culoskeletal pain, and joint pain [76]. In classic dengue fever,
body temperature ranges from 39 to 40°F (5-7 days) [77]. In
the meantime, the DENV may enter systematically into the
bloodstream at the peripheral zones and sequentially dam-
age lymph nodes and blood vessels resulting in dengue hem-
orrhagic fever [78]. Symptoms of the latter case include
bleeding under the skin and from the gums and nose. On
the other hand, difficulty in breathing appears in patients
having dengue hemorrhagic fever, and severe progress of it
can lead to dengue shock syndrome, if left untreated, can
result in death.

3.4. Micronutrient Imbalance. The morphogenesis and
translation and/or replication of DENV occur in the endo-
plasmic reticulum (ER) [79], where Ca2+ plays a significant
activity in cell signaling. The immune response of T-cell
has been drawn in DENV infection. At the time of secondary
infection (i.e., infection after 1-2 days of fever onset), high
concentration of interferon-alpha (IFN-α) is found, while
high levels of soluble interferon γ (IFN-γ), interleukin 2
receptor (IL-2R), and soluble CD4 and CD8 were reported
throughout the outset of vascular permeability [80, 81]. Den-
gue antigen is evident to increase the influx of Ca2+ into T-
cells, thus reducing blood Ca2+ levels [82, 83].

A multifunctional intermediate messenger protein cal-
modulin is well known as a primary sensor of intracellular
Ca2+ in the eukaryotic cells, which plays imperative utility
for proper decoding of Ca2+ signalling [84]. DDX3X is a
DEAD-box RNA helicase, which binds with the TRPV4 cat-
ion channel that regulates its functions. DDX3X is released
by the TRPV4-mediated Ca2+ influx; at the same time,
DDX3X nuclear translocation is derived through a process
involving calmodulin and its kinase II-dependent pathway.

Therefore, pharmacological inhibition or genetic deple-
tion of TRPV4 can diminish DDX3X-dependent functions,
including translation and nuclear viral export. Thus, target-
ing TRPV4 may reduce the infectivity of some viruses,
including dengue, Zika viruses, and hepatitis C [85]. In a
study, the effect of W-7, a calmodulin antagonist in DENV
infection in Huh-7 cells, was seen, where W7 was inhibited
viral yield, NS1 secretion and viral RNA, and protein synthe-
sis, possibly through direct inhibition of NS2B-NS3 activity
and/or inhibition of the interaction between NS2A with
Ca2+-calmodulin complex [86]. Calcium depletion can mod-
ulate cardiac functions, immunopathogenesis, and platelet
functions in dengue infection [82]. Another study on 36h
postinfection of Huh7 cells has been demonstrated that cal-
cium modulating cyclophilin-binding ligand influences the
apoptosis process by changing the activation of caspase-3
and the potentiation of mitochondrial membrane [87].

3.5. Clinical Aspects. In most cases, asymptomatic or mildly
symptomatic pathways are promising ways for transiting
DENV infection [88].

The most common signs and symptoms include pain of
bone, joint, muscle, and retro-orbital; headache; fever
(40°C); maculopapular or macular rash; and minor hemor-
rhagic manifestations including purpura, malaise, ecchymo-
sis, petechiae, epistaxis, hematuria, bleeding gums, aches or
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pain, or a positive tourniquet test result. Dengue fever lasts
from 3 to 7 days. Before appearing the warning signs of
severe DENV infection, a slight portion of the infected
patients goes to life-threatening conditions [89].

Severe DENV infection can cause organ impairment,
bleeding, and plasma leakage. The warning signs during
dengue infection include vomiting, abdominal pain, respira-
tory distress, clinical/fluid accumulation, lethargic condition,
mucosal bleeding, liver enlargement (>2 cm), restlessness,
lethargic condition, and rapid decrease in platelet count.
An intensive care should be taken for the patients having

infancy, pregnancy, chronic hemolytic diseases, renal failure,
diabetes, obesity, and old age [2]. Chronic infections of
DENV may preserve in the central nervous system and can
be considered in progressive dementia patients [90].

In a recent study by Suppiah et al., the link between clin-
ical manifestation characteristic of Dengue fever and geno-
types, respectively, and DENV-specific phenotypes, was
highlighted. Thus, it was found that the clinical symptoms
are more severe in patients infected with DENV 2 serotype,
compared to patients infected with DENV1 serotype. Mus-
culoskeletal manifestations are characteristic of DENV

Dengue virus

Aedes mosquito

Blood transfusion

Human Human

Aedes mosquito

Other animals
(e.g., dog and monkey)

Figure 5: DENV transmission mode between the vector and hosts.

Table 1: Laboratory diagnostic approaches for DENV infection detection.

Clinical sample Diagnostic approach Methodology

Acute serum (1-5 days of DF) and necropsy
tissue

Virus isolation Mosquito or mosquito cell culture inoculation

Nucleic acid detection RT-PCR, real-time PCR

Antigen detection
NS1 Ag rapid test, NS1 Ag capture ELISA,

immunohistochemistry

Paired sera
S1: acute serul from 1 to 5 days
S2: convalescent serum 15-21 days

IgG or IgM seroconversion (S1
to S2)

ELISA

HI

Plaque reduction neutralization test

Serum after day 5 of DF
IgM detection MAC-ELISA, IgM rapid tests (lateral flow)

IgG detection IgG ELISA, HI, IgG rapid tests (lateral flow)

Abbreviations: Ag: antigen; DF: dengue fever; ELISA: enzyme-linked immunosorbent assay; HI: hemagglutination inhibition assay; IgG: immunoglobulin G;
IgM: immunoglobulin M; MAC: immunoglobulin M antibody capture; NS1: non-structural protein 1; RT-PCR: reverse-transcription polymerase chain
reaction.
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serotype 3 infection [91]. Also, nonstructural proteins (e.g.,
NS1, NS3, and NS5) can be targeted to develop a novel vac-
cine strategy [92, 93].

3.6. Diagnosis. Unfortunately, still, the signs and symptoms
are the foremost tools for the DENV infection diagnosis
[94, 95]. Fever or flu-like fever is the initial tool of DENV
infection.

To date, the well-known tests for detecting the presence
of DENV include identification of the responsible viral
genomic sequences, DENV serotype, viral antigen(s) (e.g.,
NS1 by MAC-ELISA assays) and/or antibodies in response
to it (e.g., IgG, IgM), and platelet counts.

Other important diagnosis includes viral RNA detection
(by nucleic acid amplification tests (NAAT) or RT-PCR),
detection of dengue specific monoclonal antibodies, IgM
captured ELISA, alive and/or viral isolation from mosquito
cell lines [96–100]. Immune-fluorescence tests, capture
ELISA, and hemagglutination assays are the commonly used
laboratory methods [101]. Other test includes +ve tourni-
quet test, leukopenia, HCT concurrent with a rapid decrease
in platelet count, AST or ALT ≥ 1000 IU/L, and impaired
consciousness [102]. Some important diagnostic approaches
and methodology have been shown in Table 1.

4. Control of DENV and Its Vectors

Public awareness counts as one of the major consequences of
the management of DENV, which essentially helps to avoid

or inhibit the contacts of the infected Aedes mosquitoes or
other animals and their derivatives [103]. In this way, Ae.
aegypti was properly eradicated during the 1960s from dif-
ferent areas of the USA. For this, a well-educated society
needs the strongest collaborative activities with skilful and
well-trained mosquito control staff [104].

It is possible to control DENV infection by using differ-
ent interesting methods.

4.1. Preventive Measures. Preventive measures should be the
first and best choice in this case, such as the prevention of
direct contact of blood or blood-derived products from the
infected patients and infected vectors from the infected host
[105]. Daytime is the most suitable time for biting Aedes
mosquitoes; consequently, its contact can be diminished or
avoided using the following techniques:

(i) By using nets (e.g., insecticide-treated nets) and
mosquito repellents (e.g., coils, solids (sticks), aero-
sols, liquids, pump sprays, and nonsticky creams)

(ii) By wearing gloves and other defensive clothing

(iii) Through well-planed management of wastes and
stored water

(iv) By destroying the mature Aedes mosquitoes or lar-
vae through applying some protective chemicals
(e.g., N,N-Diethyl-3-Methylbenzamide, diethyl car-
bonate, metofluthrin, oil of lemon-eucalyptus,
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Figure 7: Chemical structures of natural compounds acting against dengue.
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diethyl phthalate, ethyl hexanediol, and picaridin)
[106, 107].

CYD-TDV (brand name Dengvaxia), an one and only
FDA approved live-attenuated dengue vaccine prepared by
applying rDNA technology through substituting the pre-
membrane (PrM) and envelope (E) structural proteins of
the 17D strain of attenuated yellow fever vaccine with those
from the dengue serotypes excepting DENV-5 serotype, is
manufactured by Sanofi Pasteur [108, 109]. Other vaccines
under development are DENVax/TAK-003 (recombinant
chimeric vaccine with DENV-1, -3, and -4 components on
the DENV-2 backbone, developed at Mahidol University in
Bangkok) [110, 111], TetraVax-DV (tetravalent admixture
of monovalent vaccines, being tested in Brazil and Thailand
in phase II trial) [112], TDEN PIV (inactivated tetravalent
vaccine, being experimented by the Walter Reed Army Insti-
tute of Research and GSK in phase I clinical trials) [113],
V180 (recombinant subunit vaccines expressed in Drosoph-
ila cells, undergoing phase I trial by Merck [114], and DNA
vaccines (the Naval Medical Research Center attempted to
develop a monovalent DNA plasmid vaccine) [111].

4.2. The Role of Natural Products and Their Bioactive
Constituents in Controlling DENV Infection. Natural prod-
ucts are the potential sources of many important modern
medicines [115–117]. Plants and/or their extracts having
antidengue activities are also distributed worldwide
[118–120]. To date, a number of medicinal plants have been
reported to act against DENV and/or their vectors, for
example, Alternanthera philoxeroides (Fam: Amarantha-
ceae) [121], Azidarachta indica (Fam: Meliaceae) [122], Boe-
senbergia rotunda (Fam: Zingiberaceae) [123], Carica
papaya (Fam: Caricaceae) [124], Cladosiphon okamuranus
(Fam: Chordariaceae) [78], Cryptonemia crenulata (Fam:
Halymeniaceae) and Gymnogongrus griffithsiae (Fam: Phyl-
lophoraceae) [125], Cymbopogon citratus (Fam: Poaceae),
Andrographis paniculata (Fam: Acanthaceae), Momordica
charantia (Fam: Cucurbitaceae), Ocimum sanctum (Fam:
Labiatae), Piper retrofractum (Fam: Piperaceae) [126], Fla-
gellaria indica (Fam: Flagellariaceae), Cladogynos orientalis
(Fam: Euphorbiaceae), Rhizophora apiculata (Fam: Rhizo-
phoraceae) and Houttuynia cordata (Fam: Saururaceae)
[127], Gymnogongrus torulosus (Fam: Phyllophoraceae)
[128], Lippia alba and L. citriodora (Fam: Verbenaceae)
[129], Meristiella gelidium (Fam: Solieriaceae) [130],
Mimosa scabrella (Fam: Fabaceae) [131], Psidium guajava
(Fam: Myrtaceae) and Euphorbia hirta (Fam: Euphorbia-
ceae) (Abd [132]), Quercus lusitanica (Fam: Fagaceae)
[133], Tephrosia crassifolia, Tephrosia madrensis, Leucaena
leucocephala, and Tephrosia viridiflora (Fam: Fabaceae)
[131, 134, 135], Uncaria tomentosa (Fam: Rubiaceae)
[136], Zostera marina (Fam: Zosteraceae) [137], Myristica
fatua, Cymbopogon citratus and Acorus calamus [138], Dor-
atoxylum apetalum [139], Psiloxylon mauritianum [140],
Acorus calamus (Fam: Acoraceae) [141], Cinnamosma fra-
grans [142], Pedalium murex [143], Aesculus hippocastanum
[144], Norantea brasiliensis [145], Azadirachta indica [146],
Spondias mombin [147], Angelica sinensis [148], Phyllanthus

spp. [149], Solanum xanthocarpum, Mesocyclops thermocy-
clopoides (Mahesh [150]), Delonix elata (Fam: Fabaceae)
[151], Acalypha alnifolia (Fam: Euphorbiaceae) [152], Com-
bretum collinum [153], and Solanum villosum [154].

The aqueous extract of Houttuynia cordata (10-100mg/
mL) against DENV-2 with human hepatocarcinoma cell lin-
eage (HepG2) cells showed that extract significantly
decreased intracellular DENV-2 RNA production with the
reduction in the expression of dengue protein. It also
showed a potential role in the release of the virion from
infected LLC-MK2 cells at 10-40mg/mL concentrations
[155]. 9 N-methylamine and Harmol may selectively inhibit
DENV-2 multiplication without virucidal effect in cell cul-
tures [156].

The ethyl acetate fraction of H. cordata and quercetin
showed in vitro activity against mouse hepatitis virus
(MHV) and DENV-2 with IC50 0.98 and 125μg/mL for
MHV while 7.50 and 176.76μg/mL for DENV-2 [157]. Del-
phinidin and epigallocatechin gallate showed a direct effect
on against West Nile virus (WNV) and also reduced the
infectivity of ZIKV and DENV. The effect of delphinidin
and, particularly of epigallocatechin gallate, was found
higher for the African strain (MR766) than for the American
strain (PA259459) [158].

In another study, it was found an absence of anti-DENV
activity in chemical constituents like acetyl-L-carnitine,
melatonin, α-tocopherol, and folic acid while resveratrol
exhibited some limited anti-DENV activity [159]. Organo-
sulfur compounds in garlic were tested against DENV-2
NGC (New Guinea C) virus U937 human macrophage-
like cells and Huh-7 human liver cells. The organosulfur
compounds reduced the levels of proinflammatory cyto-
kines (TNF-α, IL-8 and IL-10) and affect the oxidative
stress response [160].

The methanol extract of Rumex dentatus showed the
highest antiviral efficacy by inhibiting DENV-2 replication,
with IC50 of 0.154 and 0.234μg/mL, while gallic acid showed
with IC50 of 0.191μg/mL and 0.522μg/mL at 45 and 90 PFU
of DENV-2 infection, respectively [161].

Naringenin (citrus flavanone) was evaluated against den-
gue viruses (serotypes 1–4) in Huh7.5 cells which impaired
virus replication in human cells with IC50 = 35:81, 17:97,
117:1, and 177:5 μM, respectively [162]. Annona muricata
aqueous leave extract was evaluated against dengue virus
type 2. Selectivity index of the extract was found more than
10 against DENV-2 which showed potential as a nature-
based antiviral drug [163]. Three spirotetronate compounds
(2EPS-A, -B, -C) isolated from Actinomadura strain showed
strong DENV-2 NS2B-NS3 protease inhibition with IC50
values of 1:94 ± 0:18, 1:47 ± 0:15, and 2:51 ± 0:21 μg/mL,
respectively [164].

In vitro activity of essential oils of β-caryophyllene was
evaluated against DENV-2. β-caryophyllene acts on the ini-
tial steps of the viral replication cycle and showed inhibition
with IC50 = 22:5 ± 5:6 μM against DENV-2 [165]. The etha-
nol extract of polyherbal formulation Nilavembu kudineer
showed antiviral activity against DENV-2 virus infection in
Vero and human macrophage cell line (THP-1 cells) from
0.78% till 0.01% of the human dose [166].
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The aqueous leave extract of Orthosiphon stamineus was
evaluated against DENV-2. The extract exhibited the ability
to reduce DENV-2 replication in the pretreated cell while
ineffective in inhibiting cell death in the posttreated cell
[167]. Antiviral activity of natural alkaloid anisomycin was
evaluated against DENV and ZIKV viruses. The compound
prevented DENV and ZIKV multiplication in human cell
lines, inhibited viral protein expression, and also impaired
viral replication in the posttreated cell. In a lower dose, it
also showed a significant decrease in viremia levels in ZIKV
infected AG129 mice [168]. A natural antimicrobial agent
(latarcin peptide) was evaluated against DENV replication
in infected cells. The peptide exhibited a significant inhibi-
tory effect (IC50 = 12:68 ± 3:2 μM) against the dengue prote-
ase NS2B-NS3pro at room temperature and also reduced the
viral RNA in a dose-dependent manner [169].

The crude extract ofRhodiola imbricata showed an antiviral
immune response against the dengue virus. It induced inter-
feron (IFN) b and other cytokines and also upregulated MIF-
2a, PKR, and NF-κB phosphorylation in infected cells [170].
The antiviral effect of C. longa extract showed low cytotoxicity
and effective inhibitor (IC50 = 17:91 μg/mL) against DENV-2
infected Huh7it-1 cells [171]. The hydroalcoholic extracts of
leaves and bark of Uncaria guinanensis DENV-2-infected
Huh-7 cells reduced intracellular viral antigen and inhibited
the secretion of viral nonstructural protein [172]. The chemical
compound 5-hydroxy-7-methoxy-6-methylflavanone inhibited
DENV2 infectivity in LLC/MK2 (EC50 = 15:99 ± 5:38) as well
as Vero cell lines (EC50 = 12:31 ± 1:64 μM) and DENV4
(EC50 = 11:70 ± 6:04 μM). Phospholipase A2, a chemical con-
stituent ofCrotalus durissus terrificus venom, was inhibited den-
gue virus and yellow fever virus infection in Vero cells, inducing
a partial exposure of genomic RNA through glycerophospholip-
ids cleavage [173]. Tomatidine has inhibited dengue virus
mainly at late stages of infection towards all dengue virus sero-
types and controlled the activating transcription factor 4
(ATF4) expression. It showed inhibition of DENV2
(EC50 = 0:82 μM) infectionmainly independent of ATF4 [174].

In silico analysis showed that Nimbin is found to be
effective and reducing the morbidity and mortality against
the envelope protein of DENV 1-4 infection [175]. Quinic
acid derivatives were found effective against DENV1-4 and
exhibited impaired dengue virus replication in infected
Huh7.5 cell lines [176]. The antiviral activity of isobutyl gal-
late was evaluated against DENV. Isobutyl gallate exhibited
no cytotoxic activity against Huh 7 and possessed strong
activity (IC50 = 4:45 μg/mL against DENV [177]. Gallic acid,
fisetin, quercetin, and catechin inhibited infectious viral par-
ticles production against DENV-2 infected Vero cells
[178–180]. Gedunin was evaluated against the DENV
infected BHK-15 cells. Gedunin showed a significant reduc-
tion (EC50 = 10μM). In addition, the molecular docking study
showed the strong interaction of the compound with the ATP/
ADP binding site of the host protein (Hsp90) [181].

The study of thrombocytopenia (≤30,000/μl) in adult
dengue infections, leaves of Carica papaya extract, was
enhanced platelet counts, TNFα, and IFNγ levels while it
reduced IL-6 levels in patients [182]. In another pilot study
was done in Srilanka, two doses of leaves extract at 8 h of

intervals were found an increase in total WBC and platelet
count within 24 h of treatment [183]. The 25mL leave juice
of C. papaya (two times a day for 5 days) was found an
increase in total WBC and platelet count after 2 days of drug
administration in Pakistani patients [124].

The aqueous leave extract of C. papaya was tested
against DENV-infected THP-1 cells and its role on platelet
augmentation. The leave extract was facilitated in platelet
augmentation and showed antidengue activity by a signifi-
cant reduction in the envelope expression, erythrocyte dam-
age, nonstructural (NS1) proteins, lipid peroxidation, and
intracellular viral load. In addition, thrombocytopenic rats
administered with aqueous extract exhibited increased IL-6
and thrombopoietin levels [184]. In Indonesia, hydroalco-
holic leave extract of C. papaya was given in capsule form
to the patient having a thrombocyte count of <150,000/μL
along with 20% hematocrit. The recovery of patients was
found faster via speedy increase platelets levels [185].

The leave extract of Hippophae rhamnoides was tested in
DENV-2 infected BHK-21 cells. The extract was found
potential antidengue activity by sustaining the cell viability
in infected cells, decreasing TNF-α and increasing IFN-γ
levels [186]. Aqueous extract of the Scutellaria baicalensis
roots was tested against DENV 1-4 serotype-infected Vero
cells. The extract exhibited strong virus replication property
(IC50 = 74:33 to 95.83μg/mL for DENV 1-4 serotypes)
[187]. The aqueous extract of Solanum villosum green
berries showed the highest mortality against Stegomyia
aegypti [154]. The silver nanoparticles (AgNPs) were synthe-
sized from Holarrhena antidysenterica bark extract which
showed strong larvicidal activity (LC50 = 9:3 ppm) as com-
pared with other organic solvents and aqueous extract alone
[188]. The synthesized AgNPs from Gmelina asiatica leave
extracts showed potent larvicidal activity
(LC50 = 22:44μg/mL) against Anopheles stephensi lar-
vae [189].

4.3. Chemicobiological Data. Isolated compounds of medici-
nal plants and/or their derivatives may be one of the poten-
tial tools for the treatment of DENV and act against the
vectors [190], such as essential oils [191], polyphenols
[192], flavonoids [140], alkaloids [193], glycosides [194],
and tannins [195].

The antiviral mechanism of natural compounds inhibit-
ing viral entry and replication is shown in Figure 6.

Infection of virus involves various stages:

(i) In the initial steps, DENV binds to cell receptors
including mannose-binding receptor (MR) and
DC-SIGN (dendritic cell-specific ICAM3 grabbing
nonintegrin) receptor present at the surface of the
cell, followed by fusion and entry

(ii) Clathrin-mediated endocytosis and transport of
DENV take place along with pH-dependent fusion
with endocytosis

(iii) The genomic ssRNA (positive-sense) is translated
hooked on a polyprotein, which is smitten into all
proteins
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(iv) Transcription and ribonucleic acid (RNA) replica-
tion occurs at the endoplasmic reticulum (ER)
surface

(v) A synthesized dsRNA genomic virus is taking place
at ER. At the ER, virions bud and are passaged to
the Golgi, where DENV prM (membrane) protein
is cleaved, and virion maturation takes place and is
released by exocytosis

Natural compounds inhibit several proteins involved in
the transcription as well as translation machinery essential
in the DENV life cycle.

Furthermore, natural compounds block the virus repli-
cation by modulating the inflammatory redox-sensitive
pathways and host cell signaling. Details of plant-derived
natural compounds and their antidengue activities are stipu-
lated in Table 2, and their chemical structures have been dis-
played in Figure 7.

Monocyte macrophages are thought to be the principal
target cells for the DENV, the cause of dengue fever and
hemorrhagic fever. Besides Ca2+, depletion of Mg2+ is also
evident during binding of DENV to monocyte macrophages
and cells of T cell and B cell lineages in in vitro studies [8]. It
has been seen that the monocyte-derived macrophages dis-
criminated in the presence of vitamin D3 restrict DENV
infection and moderate the classical inflammatory cytokine
(e.g., TNF-α and IL-1β, -4, and -10) response, where a
reduced surface expression of C-type lectins, including the
mannose receptor [214].

In another report, 1,25(OH)2D3 is evident to suppress
the levels of IL-4 and IL-17A and modulate the levels of
IL-12p70 and IL-10 in DENV infected U937-DC-SIGN cells
and THP-1 macrophages, suggesting an immunomodula-
tory power that can ameliorate inflammation during dengue
infections [196]. These findings have also complied with an
earlier report [217]. In a clinical study, patients (n = 64),
received a single dose of 200,000 IU vitamin D, was found
to decrease the risk of dengue fever [220]. A challenge test
done with 10 healthy individuals supplemented with 1000
or 4000 international units (IU)/day of vitamin D during
10 days suggested that 4000 IU/day of vitamin D represents
an adequate dose to control DENV progression and replica-
tion [222].

5. Conclusions and Perspectives

To date, it is not possible to recognize intricate details and
the complexity of the target of DENV of the other suitable
vectors/secondary or hosts for its entrance, production,
transmission, and pathogenesis. Several preventive measures
have been taken; however, still, there is a deficiency of oper-
ative treatment modalities of DENV infections in human
and pet animals. DENV-mediated imbalance of micronutri-
ents may be one of the effective significances of numerous
pathophysiological situations, such as Ca+2 depletion for
muscle pain, irregular heartbeats, muscle weakness, fatigue,
painful signs and symptoms, and deficiency of vitamin D
in case of inflammatory conditions. The deficiency of vita-

min D leads to oxidative stress and the inflammatory process
[235], which may contribute to lowering the standard levels
of platelet in patients with DENV. The internal bleeding and
fatigue of the infected patients perform the leading functions
for platelet deficiency.

Taken together, the biochemical markers and immuno-
logical parameters can be considered as important diagnos-
tic tools in DENV infection. Besides preventive measures,
the medicinal plants and their derivatives might be alterna-
tive tools in the treatment of DENV infection. Calcium
along with vitamin D supplements can be used in DENV
infection. More researches are necessary regarding to the
successful diagnosis, prevention, and control of dengue
worldwide.
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