Dengue remains one of the most serious and widespread mosquito-borne viral infections in human beings, with serious health problems or even death. About 50 to 100 million people are newly infected annually, with almost 2.5 billion people living at risk and resulting in 20,000 deaths. Dengue virus infection is especially transmitted through bites of Aedes mosquitoes, hugely
spread in tropical and subtropical environments, mostly found in urban and semiurban areas. Unfortunately, there is no particular therapeutic approach, but prevention, adequate consciousness, detection at earlier stage of viral infection, and appropriate medical care can lower the fatality rates. This review offers a comprehensive view of production, transmission, pathogenesis, and control measures of the dengue virus and its vectors.

1. Introduction

Dengue regards one of the utmost serious arboviral infections around the world. dengue virus (DENV) is transmitted through bites of female Aedes mosquitoes especially Aedes (Stegomyia) aegypti, Ae. albopictus [1], Ae. niveus, and Ae. polynesiensis [2]. DENV infection is almost similar to influenza and sometimes develops into possibly lethal difficulties or severe illness including dengue shock syndrome and dengue hemorrhagic fever. World Health Organization (WHO) reports that DENV infection has been shown to 30-fold increase around the globe over the past five decades, and approximately 100 million newly infected people are estimated in over 100 endemic countries with 20,000 deaths annually [3].

DENV and its vectors are primarily noticed in tropical and subtropical environments globally, frequently in urban and semiurban areas. In Bangladesh, DENV has been detected as a severe health hazard. Between 2000 and 2008, 50,148 people were hospitalized for dengue in Bangladesh. But in August 2019, nearly 60,000 dengue patients have been hospitalized, and approximately 100 deaths have been reported. Severe DENV infection is a leading cause of tenacious sickness and deaths of people of all ages in Asian and Latin American countries. Unfortunately, we have no particular treatment strategy for dengue infection. It may be because historically our pharmaceutical section did not come up with much attention to this vector-borne viral disease.

This review is aimed at sketching a current scenario on DENV, dengue infection, and dengue vectors along with the production, transmission, pathogenesis, and ways of control of DENV, and its vectors offers a comprehensive view of production, transmission, pathogenesis, and control measures of DENV and its vectors.

2. Dengue Virus (DENV)

DENV, a pathogenic arthropod-borne flavivirus (arbovirus), is a single-stranded and positive-sense RNA molecule belonging to the family Flaviviridae.

The Flaviviridae family includes viruses transmitted by arthropods that cause serious illness in humans. The family includes a single genus-Flavivirus, with several types [4]. Recently, another subdivision of the family into three genera has been proposed as follows: genus Flavivirus includes arboviruses (yellow fever virus, dengue fever virus); genus Pestivirus-viruses involved in animal pathology; and genus Hepacavirus-the proposed name for different variants of hepatitis C virus [4].

To date, 47 strains of DENV have been identified. The total number of four closely linked serotypes (from DENV -1 to -4) of DENV has been identified to date, but they are lightly antigenically distinct [5, 6], and those can be subdivided into several genotypes according to their gene sequences [7]. These serotypes are generally progressed from a mutual ancestor, and all are considered as the causative agent of approximately similar disease spectrum in humans due to DENV selecting different receptors based on cell types and virus strains [8]. Developed viral particles have a spherical shape with 11 kb in length and 40-50 nm in diameter, containing single-stranded and positive-sense RNA molecule, which has a 5-methyl cap with a single open reading frame [2]. Dengue virus and its common four serotypes have shown in Figure 1.

2.1. DENV Vectors. Dengue virus infection usually spreads through bites of infected female mosquitoes of genus Aedes, especially by the Aedes aegypti and Ae. albopictus [1]. However, the other two vectors such as Ae. polynesiensis and Ae. niveus have been identified as the secondary vectors in some regions throughout the world [2] (Figure 2).

Adult Ae. aegypti has a white scale that forms a lyre or violin shape at the dorsal side of the thorax, while the adult Ae. albopictus forms a white stripe at the middle point of the top of the thorax region. The white bands of every tarsal segment of the hind legs of these mosquitoes are known as the white stripe. The abdomen is generally found to be black or dark brown, but sometimes, it also bears white scales. Females are usually larger than males; on the other way, through finding small palps tipped with silver or white scales, they can be discriminated against properly. Males are specially identified by the plumose type of antennae. On the other hand, females are seen to bear short hair. Under a microscope, the mouthparts of the male are watched as a structural modification for nectar feeding, and female mouthparts are viewed as a modified structure for feeding on blood. The darkly coloured proboscis is found to be present in both sexes. In addition, two clusters of white scales presented on the segment above the proboscis are known as clypeus. The tip of the abdomen is pointed out as a distinctive feature of all Aedes species [9].

2.2. Geographical Distribution. DENV mainly originated from monkeys, then jumped to humans in Southeast Asia or Africa between 100 and 800 years ago. Geographically DENV has been restricted till the 1950s, but after the Second World War caused a rapid distribution throughout the world. Firstly, DENV infection was recognized in the Thailand and Philippines in the 1850s, and after the 1980s towards Latin America and the Caribbean. Presently, DENV is prevalent throughout the different countries (at least 100 countries) including in Asia, the Pacific, the Americas, Africa, and the Caribbean. DENV epidemics occurred in 26 states [10]. Scientific reports demonstrate that DENV-2 and 3 serotypes were mostly outbreaked before 2000 and
between 2000 and 2009, respectively. DENV-1 serotype started to dominate worldwide dengue outbreaks and after 2010, the DENV-4 [11].

The geographical distribution of DENV worldwide has been shown in Figure 3.

Ae. aegypti is scattered in tropical areas geographically, and it breeds artificially in containers (such as tyres, drums, flower vases including plastic food containers, tin cans, and old motor parts) that are filled with water [12].

Ae. aegypti is an insect of holometabolous type, which is fully developed after completing metamorphosis (i.e., four growing phases from egg to adult period). The duration of the life span of an adult may be 2 to 4 weeks; however, it depends on the environmental conditions, at least 4-5 times a female mosquito lays eggs throughout her whole life span and the average 10 to 100 eggs in a single spawn. Three diverse polytypic forms are found in *Ae. aegypti* such as sylvan, domestic, and peri-domicile [13].

A sylvan type is generally a rural form which breeds in tree holes, normally in forests; the domestic type commonly breeds in municipal surroundings, frequently inside or around houses; and the peri-domicile type usually survives in biologically modified regions as groves and coconut farms [14]. *Ae. aegypti* can survive above 4°C [15]; on the other hand, about 15-37°C temperature is required for a complete life cycle [16].

The extent of DENV epidemics not only depends on the presence of DENV and mosquito genotypes but also depends on how they interrelate with local temperature [17]. Nevertheless, a current study demonstrated that DENV infection can alter gene expression in the *Ae. aegypti* mosquito’s head that causes a loss of their olfactory preferences, thereby modifying oviposition site choice [18]. Now, the question is how safe is the host nervous system’s homeostasis during Dengue infection?

2.3. Life Cycle. Primarily, the DENV was transmitted via sylvatic cycles in Asia and Africa by *Aedes* mosquito and the nonhuman primates, with occasional appearances of human populations [19]. However, nowadays, the global spread of DENV follows its emergence of all types of transmissions (e.g., sylvatic cycles and vertical: mosquito to mosquito). Thus, its primary life cycle entirely involves the transmission between *Aedes* mosquitoes and humans [20]. One report suggests that dogs or other animals may act as incidental hosts and may serve as reservoirs of DENV infection [21]. Life cycles of mosquitoes have been shown in Figure 4.

2.4. Immune Defensive Pathways. The Toll pathway is one of the well-known potential immune defensive pathways against the DENV and its serotypes bearing *Ae. aegypti* [22]. In a study, after ten days postinfection of DENV, the antioxidant enzymes were found to suppress, while upregulated the expressions of Toll, JAK-STAT, and pathogen recognition receptor (PRR) [23]. It has also been analyzed that the JAK-STAT pathway is another important DENV defensive pathway in invertebrates [24, 25]. The mosquitoes of genus *Aedes* should be more vulnerable to DENV infection if the receptor JAK homolog HOP or Dome is inhibited by RNA interference (RNAi, e.g., ds RNA and prM RNA) [25, 26].
In a study, miR-375 was found to enhance DENV2 replication capacity [27]. In another study, in the period of DENV infection, miRNAs were identified in different forms (about sixty-six) in *Ae. albopictus*, where upregulated miR-34-5p targets the Toll pathway signalling protein (REL-1) [28]. Conversely, downregulated peptidoglycan recognition protein LE, and AMP defensin D. miR87 targets the Toll pathway [28].

![Geographical distribution of dengue worldwide.](image1)

Figure 3: Geographical distribution of dengue worldwide.

![Mosquito life cycle.](image2)

Figure 4: Mosquito life cycle.
Differential expression of miRNAs in DENV has been also reported by Yen et al. [29]. In this study, the authors highlighted the possibility of using artificial antiviral miRNAs to reduce the transmission of two major arboviruses in transgenic Ae. Aegypti. The miRNA-based approach resulted in a dual resistance phenotype for Dengue serotype 3 viruses (DENV-3).

The piRNAs also plays essential roles in the innate antiviral response in DENV [30–33]. Moreover, nonretroviral integrated RNA viruses (NIRVS) were recognized in Ae. aegypti and Ac. albopictus in a larger number [34].

The expression of cecropin-like AMPs was expressively upregulated by the infection of DENV [24]. In Ae. aegypti, the immune deficiency (IMD) pathway shows a significant role to resist DENV susceptibility, while the increase in viral replication [35]. The ubiquitin variant (Ub3881) residues may inhibit the DENV envelope protein, thereby and decrease the production rate of DENV in Aedes vectors [36, 37].

The DENV-containing blood meal first appears in the midgut of the vectors, which has the first line of defense systems, such as the infection barrier and the escape barriers [38, 39]. It is evident that, after a successful entry of DENV, something has happened inside the midgut cells such as uncoating, replication, and new virus particle assembly. The innate immune signalling pathways have been seen to be effective during the infection of DENV in Ae. aegypti. Exogenous siRNA pathways also play a substantial role against DENV infections in the Aedes midgut [40]. DENV infection causes the production of NO in the hemolymph, where the virus is released into the hemocoel from the midgut. The hemocytes allow replication other than the distribution of DENV. Interestingly, DENV replication in hemocytes is extensively inhibited by NO [41]. It has been reported that about 40 differentially bacterial types have been isolated from the gut of Ae. aegypti through a gut microbiome study [42]. In another study, colonization of Csp_P in the midgut of the Ae. aegypti also inhibited DENV infection [43]. The Talaromyces (Tsp) secretome shows a considerable modulating effect on the midgut transcriptome. Tsp secretome may display a significant role in the advancement of DENV infection in the midgut through downregulating trypsin encoding genes involved in the digestion of blood and through reducing the enzymatic activity of trypsin [44]. It is cited that the presence of gram-negative endosymbiotic bacteria Wolbachia spp. in Aedes mosquitoes effectively suppressed the DENV infection [45]. Wolbachia activates antimicrobial peptides defensin and cercopin Toll pathway through producing reactive oxygen species (ROS) after inducing a reduction-oxidation (Redox) reaction in the mosquitoes [46]. Wolbachia also upsurges vago1 expression in Ae. aegypti by acting as a ligand of the JAK-STAT pathway [47].

Ae. aegypti macroglobulin complement related factor (AaMCR) recognizes DENV particles. An anti-DENV effect on Aedes mosquitoes has been found to link with the upregulation of AMP expression in the hemocytes [48]. The salivary glands also contain the infection barrier and the escape barriers [49]. Moreover, incomplete apoptosis of DENV occurs here, which is required for the virus to release via saliva [50]. A study revealed that multiple immune defensive pathways (e.g., Toll and IMD) can be found here, and this can rise putative antibacterial proteins/peptides (e.g., attacin, cecropins, defensins, and gambicin) [24, 28, 35, 48, 51]. In the brain of Ae. aegypti, a homolog of Hikaru Genki (AaHig) has been found to express ubiquitous [52].

Lipid droplets (LDs) containing a few exclusive structural proteins (Perilipin 1, 2, and 3) and a fatty acid monolayer are exclusively found to present in a variety of organisms including DENV. These have been found to provide immunological defense of Aedes mosquitoes [53–55].

3. DENV Infection

3.1. Transmission. After initial midgut infection, DENV distributes systemically through the body cavity (commonly known as hemocel) of Aedes vectors, after that way disseminates in secondary tissues. The time taken between initial midgut infection and successive transmission of DENV by its vector (e.g., Ae. aegypti) is termed as extrinsic incubation period (7 to 14 days at 25-30°C). DENV stays in the midgut of the vectors which it may be due to the viral genome being stable here [36].

The ubiquitin-proteasome, an important pathway, acts significant activity in the regulation of infectious DENV production in vectors [36]. Finally, an infection of the salivary glands and the release of virions into the host’s saliva occur throughout the DENV transmission to the host [56]. Blood cells and plasma are important media for the four serotypes of DENV spreading into the host. A relation of domain III from the envelope glycoprotein of DENV-II with human plasma proteins has been identified by Huerta et al. [57]. DENV infection inductees after the attachment of the dengue virus to the target cell through interfaces between the various cell surface receptors and viral envelope (E) protein [58]. In mammalian cells, all categorized serotypes interact with mannose, heparan sulfate, nLC4Cer, and DC-SIGN/L-SIGN receptors.

Additionally, the DENV-2 serotype is found to intensity of binding with GRP78, CD14-associated protein, HSP70/HSP90, and two other unidentified receptor proteins. Conversely, serotype DENV 1-3 bind with the laminin receptor while serotypes DENV 2-4 attach with an unknown protein receptor [59].

DENV after receptor-mediated endocytosis, virion fuses with acidic lysosomes, and its genomic RNA is released into the cytoplasm and translated into a polyprotein of ~3400 amino acids (genome is about 11000 bases of positive-sense, a single-stranded RNA (ssRNA)) that are further cleaved by viral and host proteases into three structural (capsid: C, membrane: M, and envelope: E) and seven nonstructural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) proteins [60].

C protein is a foremost structural component of DENV that is localized in the cytoplasm and nuclei [61, 62]. The nuclear localization of this protein is thought to be crucial for its well-organized replication [61, 63].
The lipid bilayer of virions is formed by lipid (approximately 17% by weight) between the nucleocapsid core and E/M outer shell [64, 65]. During the replication of DENV, a membrane-bound replication complex formation helps to incorporate host factors, viral proteins, and genomic RNA [66]. In this case, positive-strand (+) DENV genomic RNA acts as a template to synthesize complementary negative-strand (-) RNA, which is sequentially used for multiple (+) RNA genomes production that is obtainable for translation and regulation of replication cycles or packaging into virions [67]. However, in a study, Raquin and Lambrechts [68] showed the presence of DENV genomic RNA in the salivary glands of Ae. aegypti, indicating an active replication of DENV in its vector prior to transmission [68]. DENV itself encodes RNA-dependent RNA polymerases, and the infection cycle of this virus is catalyzed by other cellular factors [69].

DENV infections can alter many important proteins in the subcellular locales, including the Alix apoptosis-linked gene-2-interacting protein X; therefore, blocking this step may be one of the innovative beneficial approaches to reduce DENV replication in the host [70]. Instead, several genes have been identified that reduce infection of DENV when silenced by at least 60% in its most important vector Ae. aegypti. Among them, a putative cysteine-rich venom protein SeqID AAEL000379 (CRVP379) silencing has been found to reduce DENV infection significantly in the cells of midgut tissues of Ae. aegypti [71].

Loqs2, a gene has been found only in Aedes mosquitoes, which is essential for the appropriate effectiveness of RNA interference in this type of mosquito. However, without Loqs2, the viruses can multiply and consequently infect their salivary glands [72].

An interaction between DENV nonstructural protein 4A (NS4A) and host cellular vimentin has been demonstrated in localizing and concentrating the viral replication complex at the perinuclear site, in consequence assisting well-organized replication of viral RNA [73].

Figure 5 shows a general DENV transmission mode in its vector to hosts.

3.2. Pathogenesis. DENV is usually greater in tropical and subtropical environments throughout the world, frequently in urban and semiurban zones. People, exposed to infected mosquitoes of all ages are susceptible to DENV infection. DENV infection causes dandy fever, breakbone fever, and dengue hemorrhagic fever; and in severe cases, dengue shock syndrome has occurred. The rainy season is the most favorable climate for DENV infection outbreaks in tropical countries in Asia and South America. Generally, the infected female Aedes mosquitoes transmit DENV in humans. Although humans are not capable of transmitting DENV, it can be transmitted during the blood transfusion between an infected person to a noninfected (healthy) person [74, 75].

3.3. Physiological Data. After the incubation period (3 to 14 days) of DENV, the person may experience one or more early symptoms such as nausea, headache, rash, fever, muscular-skeletal pain, and joint pain [76]. In classic dengue fever, body temperature ranges from 39 to 40°F (5-7 days) [77]. In the meantime, the DENV may enter systematically into the bloodstream at the peripheral zones and sequentially damage lymph nodes and blood vessels resulting in dengue hemorrhagic fever [78]. Symptoms of the latter case include bleeding under the skin and from the gums and nose. On the other hand, difficulty in breathing appears in patients having dengue hemorrhagic fever, and severe progress of it can lead to dengue shock syndrome, if left untreated, can result in death.

3.4. Micronutrient Imbalance. The morphogenesis and translation and/or replication of DENV occur in the endoplasmic reticulum (ER) [79], where Ca2+ plays a significant activity in cell signaling. The immune response of T-cell has been drawn in DENV infection. At the time of secondary infection (i.e., infection after 1-2 days of fever onset), high concentration of interferon-alpha (IFN-α) is found, while high levels of soluble interferon γ (IFN-γ), interleukin 2 receptor (IL-2R), and soluble CD4 and CD8 were reported throughout the outset of vascular permeability [80, 81]. Dengue antigen is evident to increase the influx of Ca2+ into T-cells, thus reducing blood Ca2+ levels [82, 83].

A multifunctional intermediate messenger protein calmodulin is well known as a primary sensor of intracellular Ca2+ in the eukaryotic cells, which plays imperative utility for proper decoding of Ca2+ signalling [84]. DDX3X is a DEAD-box RNA helicase, which binds with the TRPV4 cation channel that regulates its functions. DDX3X is released by the TRPV4-mediated Ca2+ influx; at the same time, DDX3X nuclear translocation is derived through a process involving calmodulin and its kinase II-dependent pathway.

Therefore, pharmacological inhibition or genetic depletion of TRPV4 can diminish DDX3X-dependent functions, including translation and nuclear viral export. Thus, targeting TRPV4 may reduce the infectivity of some viruses, including dengue, Zika viruses, and hepatitis C [85]. In a study, the effect of W-7, a calmodulin antagonist in DENV infection in Huh-7 cells, was seen, where W7 was inhibited viral yield, NS1 secretion and viral RNA, and protein synthesis, possibly through direct inhibition of NS2B-NS3 activity and/or inhibition of the interaction between NS2A with Ca2+-calmodulin complex [86]. Calcium depletion can modulate cardiac functions, immunopathogenesis, and platelet functions in dengue infection [82]. Another study on 36 h postinfection of Huh7 cells has been demonstrated that calcium modulating cyclophilin-binding ligand influences the apoptosis process by changing the activation of caspase-3 and the potentiation of mitochondrial membrane [87].

3.5. Clinical Aspects. In most cases, asymptomatic or mildly symptomatic pathways are promising ways for transiting DENV infection [88].

The most common signs and symptoms include pain of bone, joint, muscle, and retro-orbital; headache; fever (40°C); maculopapular or macular rash; and minor hemorrhagic manifestations including purpura, malaise, ecchymosis, petechiae, epistaxis, hematuria, bleeding gums, aches or
pain, or a positive tourniquet test result. Dengue fever lasts from 3 to 7 days. Before appearing the warning signs of severe DENV infection, a slight portion of the infected patients goes to life-threatening conditions [89].

Severe DENV infection can cause organ impairment, bleeding, and plasma leakage. The warning signs during dengue infection include vomiting, abdominal pain, respiratory distress, clinical/fluid accumulation, lethargic condition, mucosal bleeding, liver enlargement (>2 cm), restlessness, lethargic condition, and rapid decrease in platelet count. An intensive care should be taken for the patients having infancy, pregnancy, chronic hemolytic diseases, renal failure, diabetes, obesity, and old age [2]. Chronic infections of DENV may preserve in the central nervous system and can be considered in progressive dementia patients [90].

In a recent study by Suppiah et al., the link between clinical manifestation characteristic of Dengue fever and genotypes, respectively, and DENV-specific phenotypes, was highlighted. Thus, it was found that the clinical symptoms are more severe in patients infected with DENV 2 serotype, compared to patients infected with DENV1 serotype. Musculoskeletal manifestations are characteristic of DENV

Table 1: Laboratory diagnostic approaches for DENV infection detection.

<table>
<thead>
<tr>
<th>Clinical sample</th>
<th>Diagnostic approach</th>
<th>Methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute serum (1-5 days of DF) and necropsy tissue</td>
<td>Virus isolation</td>
<td>Mosquito or mosquito cell culture inoculation RT-PCR, real-time PCR</td>
</tr>
<tr>
<td></td>
<td>Nucleic acid detection</td>
<td>NS1 Ag rapid test, NS1 Ag capture ELISA, immunohistochemistry</td>
</tr>
<tr>
<td></td>
<td>Antigen detection</td>
<td></td>
</tr>
<tr>
<td>Paired sera</td>
<td>IgG or IgM seroconversion (S1 to S2)</td>
<td>ELISA</td>
</tr>
<tr>
<td>S1: acute serum from 1 to 5 days</td>
<td></td>
<td>HI</td>
</tr>
<tr>
<td>S2: convalescent serum 15-21 days</td>
<td></td>
<td>Plaque reduction neutralization test</td>
</tr>
<tr>
<td>Serum after day 5 of DF</td>
<td>IgM detection</td>
<td>MAC-ELISA, IgM rapid tests (lateral flow)</td>
</tr>
<tr>
<td></td>
<td>IgG detection</td>
<td>IgG ELISA, HI, IgG rapid tests (lateral flow)</td>
</tr>
</tbody>
</table>

Abbreviations: Ag: antigen; DF: dengue fever; ELISA: enzyme-linked immunosorbent assay; HI: hemagglutination inhibition assay; IgG: immunoglobulin G; IgM: immunoglobulin M; MAC: immunoglobulin M antibody capture; NS1: non-structural protein 1; RT-PCR: reverse-transcription polymerase chain reaction.
serotype 3 infection [91]. Also, nonstructural proteins (e.g., NS1, NS3, and NS5) can be targeted to develop a novel vaccine strategy [92, 93].

3.6. Diagnosis. Unfortunately, still, the signs and symptoms are the foremost tools for the DENV infection diagnosis [94, 95]. Fever or flu-like fever is the initial tool of DENV infection.

To date, the well-known tests for detecting the presence of DENV include identification of the responsible viral genomic sequences, DENV serotype, viral antigen(s) (e.g., NS1 by MAC-ELISA assays) and/or antibodies in response to it (e.g., IgG, IgM), and platelet counts.

Other important diagnosis includes viral RNA detection (by nucleic acid amplification tests (NAAT) or RT-PCR), detection of dengue specific monoclonal antibodies, IgM captured ELISA, alive and/or viral isolation from mosquito cell lines [96–100]. Immune-fluorescence tests, capture ELISA, and hemagglutination assays are the commonly used laboratory methods [101]. Other test includes +ve tourniquet test, leukopenia, HCT concurrent with a rapid decrease in platelet count, AST or ALT ≥ 1000 IU/L, and impaired consciousness [102]. Some important diagnostic approaches and methodology have been shown in Table 1.

4. Control of DENV and Its Vectors

Public awareness counts as one of the major consequences of the management of DENV, which essentially helps to avoid or inhibit the contacts of the infected *Aedes* mosquitoes or other animals and their derivatives [103]. In this way, *Ae. aegypti* was properly eradicated during the 1960s from different areas of the USA. For this, a well-educated society needs the strongest collaborative activities with skilful and well-trained mosquito control staff [104].

It is possible to control DENV infection by using different interesting methods.

4.1. Preventive Measures. Preventive measures should be the first and best choice in this case, such as the prevention of direct contact of blood or blood-derived products from the infected patients and infected vectors from the infected host [105]. Daytime is the most suitable time for biting *Aedes* mosquitoes; consequently, its contact can be diminished or avoided using the following techniques:

(i) By using nets (e.g., insecticide-treated nets) and mosquito repellents (e.g., coils, solids (sticks), aerosols, liquids, pump sprays, and nonsticky creams)

(ii) By wearing gloves and other defensive clothing

(iii) Through well-planed management of wastes and stored water

(iv) By destroying the mature *Aedes* mosquitoes or larvae through applying some protective chemicals (e.g., N,N-Diethyl-3-Methylbenzamide, diethyl carbonate, metofluthrin, oil of lemon-eucalyptus,

Figure 6: Potential antiviral mechanism and molecular targets of the bioactive compounds inhibiting viral entry and replication of dengue virus.
<table>
<thead>
<tr>
<th>Botanical name</th>
<th>Plants part</th>
<th>Isolated compounds</th>
<th>Model</th>
<th>Results</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garcinia mangostana</td>
<td>Fruits</td>
<td>α-Mangostin</td>
<td>DENV infection in human peripheral blood mononuclear cells (PBMC) in vitro ↓ virus replication, ↓ TNF-α, ↓ IFN-γ, ↓ IL-6, ↓ MIP-1β, ↓ IP-10</td>
<td>IC$_{50}$ = 3 μM</td>
<td>[196, 197]</td>
</tr>
<tr>
<td>Anacolosapervilleana</td>
<td>Leaves</td>
<td>Octadeca-9,11,13-triynoic acid</td>
<td>DENV NS$_5$ RNA-dependent RNA polymerase (RdRp) assay in vitro</td>
<td>IC$_{50}$ = 1 μM ↓ viral protein synthesis</td>
<td>[198]</td>
</tr>
<tr>
<td>Streptomyces aureofaciens</td>
<td>Fermentation</td>
<td>Narasin</td>
<td>DENV2-infected hepatocytes Huh-7 cells in vitro</td>
<td>EC$_{50}$ = 450, 174.2, 632.7 μg/mL</td>
<td>[199]</td>
</tr>
<tr>
<td>Glycyrrhiza glabra</td>
<td>Root</td>
<td>Glycyrrhizin</td>
<td>DENV2 infected Vero E6 cells in vitro</td>
<td>IC$_{50}$ = 8.1 μM</td>
<td>[200]</td>
</tr>
<tr>
<td>Squalus acanthias</td>
<td>Liver</td>
<td>Squalamine</td>
<td>Human endothelial cells HMEC-1 in vitro</td>
<td>↓ viral infection IC$_{50}$ = 100 μg/mL</td>
<td>[201]</td>
</tr>
<tr>
<td>Zastera marina. Rees</td>
<td>Marine eelgrass</td>
<td>Zoasteric acid</td>
<td>DENV serotypes (1–4) in vitro</td>
<td>IC$_{50}$ = 24, 46, 14, 47 μmol/L</td>
<td>[202]</td>
</tr>
<tr>
<td>Quercus lusitanica</td>
<td>Galls</td>
<td>Methyl gallate</td>
<td>DENV-2 infected C6/36 cells in vitro</td>
<td>↓ DENV-2 NS2B/3 protease IC$_{50}$ = 0.3 mg/mL</td>
<td>[203]</td>
</tr>
<tr>
<td>Flacourtia rambontchi</td>
<td>Stem bark</td>
<td>Flacourtosides A, E</td>
<td>DENV NS$_5$ polymerase RdRp in vitro</td>
<td>IC$_{50}$ = 9.3 – 9.5 μmol/L</td>
<td>[204]</td>
</tr>
<tr>
<td>Gymnochrinus richeri</td>
<td>Stalked fossil crinoid</td>
<td>Gymnochrome B</td>
<td>DENV-2, DENV-4 infected PS cells in vitro</td>
<td>ED$_{50}$ = 0.029 nmol/mL</td>
<td>[205]</td>
</tr>
<tr>
<td>Gymnochrinus richeri</td>
<td>Living fossil crinoid</td>
<td>Gymnochrome D, isogymnochrome D</td>
<td>DENV-1 infected PS cells in vitro</td>
<td>Reduction of foci was smaller than 1 μg/mL</td>
<td>[206]</td>
</tr>
<tr>
<td>Arrabidaea pulchra</td>
<td>Leaves</td>
<td>Verelasaside, caffeoykalleryanin, ursolic acid</td>
<td>DENV-2 infected Vero cells in vitro</td>
<td>EC$_{50}$ = 3.2, 2.8, 3.4 μg/mL</td>
<td>[207]</td>
</tr>
<tr>
<td>Trigonostemon cherrieri</td>
<td>Bark and wood</td>
<td>Trigocherrin A, trigocherriolides A and B</td>
<td>DENV NS$_5$ polymerase RdRp in vitro</td>
<td>IC$_{50}$ = 12.7, 3.1, 16.0 μmol/L</td>
<td>[208]</td>
</tr>
<tr>
<td>Micromonospora rhodorangea</td>
<td>Whole part</td>
<td>Geneticin</td>
<td>DENV-2 infected HUH-7 cells in vitro</td>
<td>ED$_{50}$ = 2 μg/mL</td>
<td>[209]</td>
</tr>
<tr>
<td>Castanospermum australe</td>
<td>Seeds</td>
<td>Castanospermine</td>
<td>DENV-2 infection of Huh-7 and BHK-21 cells 10^5 PFU of mouse-adapted DENV-2 in vitro/in vivo</td>
<td>IC$_{50}$ = 1 μM ↓ mortality in a mouse model Dose = 10, 50, and 250 mg/kg</td>
<td>[210]</td>
</tr>
<tr>
<td>Coptis chinensis Franch</td>
<td>Rhizomes</td>
<td>Palmitane</td>
<td>DENV-2 infected Vero cells in vitro</td>
<td>EC$_{50}$ = 26.4 μmol/L</td>
<td>[211]</td>
</tr>
<tr>
<td>Psychotria Ipecacuanha</td>
<td>Roots</td>
<td>Emetine hydrochloride</td>
<td>DENV-2 infected Huh-7, BHK-21 in vitro</td>
<td>IC$_{30}$ = 0.5 μM</td>
<td>[212]</td>
</tr>
<tr>
<td>Distictella elongate (Vahl) Urb</td>
<td>Leaves and fruits</td>
<td>Petcolinarin and acacetin-7-O-Rutinoside</td>
<td>DENV-2 infected Vero, LLCMK2 cells in vitro</td>
<td>EC$_{50}$ = 86.4 and 11.1 μg/mL</td>
<td>[213, 214]</td>
</tr>
<tr>
<td>Scutellaria baicalensis</td>
<td>Roots</td>
<td>Baicalein</td>
<td>DENV-2 infected Vero cells in vitro</td>
<td>IC$_{50}$ = 6.46 μg/mL</td>
<td>[215]</td>
</tr>
<tr>
<td>Botanical name</td>
<td>Plants part</td>
<td>Isolated compounds</td>
<td>Model</td>
<td>Results</td>
<td>References</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>Cryptocarya chartacea</td>
<td>Barks</td>
<td>Chartaceones C-F</td>
<td>Dengue virus NS<sub>5</sub>, RdRp inhibition in vitro</td>
<td>IC<sub>50</sub> = 1.8 to 4.2 μM</td>
<td>[216, 217]</td>
</tr>
<tr>
<td>Boesenbergia rotunda</td>
<td>Rhizomes</td>
<td>Panduratin A 4-hydroxyanduratin B</td>
<td>DENV-2 NS2B/NS3 protease in vitro</td>
<td>Ki (inhibitory constants) = 21, 25 μmol/L</td>
<td>[123]</td>
</tr>
<tr>
<td>Tephrosia s.p.</td>
<td>Aerial parts</td>
<td>Glabranine 7-O-methylglabranine</td>
<td>DENV-2 serotype in vitro</td>
<td>70% inhibition IC<sub>50</sub> = 25 mM</td>
<td>[134]</td>
</tr>
<tr>
<td>Mimosa scabrella</td>
<td>Seeds</td>
<td>Mannose/galactose (1:1)</td>
<td>DENV-1 (Hawaii strain) virus in vitro</td>
<td>↓ virus titer IC<sub>50</sub> = 347 μg/mL</td>
<td>[114, 131]</td>
</tr>
<tr>
<td>Leucaena leucocephala</td>
<td>Aerial parts</td>
<td>Mannose/galactose (1:4)</td>
<td>DENV-2 serotype in vitro</td>
<td>↓ virus titer IC<sub>50</sub> = 25 μg/mL</td>
<td>[114, 131]</td>
</tr>
<tr>
<td>Gymnogongrus torulosus</td>
<td>Red seaweed</td>
<td>DL-galactan hybrids</td>
<td>DENV-2 serotype infected Vero cells in vitro</td>
<td>IC<sub>50</sub> = 0.19 – 1.7 μg/mL</td>
<td>[128]</td>
</tr>
<tr>
<td>G. griphthsiae and C. crenulata</td>
<td></td>
<td>Sulfated G3d and C2S-3 polysaccharides</td>
<td>DENV-2 serotype infected Vero cells in vitro</td>
<td>IC<sub>50</sub> = 1 μg/mL</td>
<td>[125]</td>
</tr>
<tr>
<td>Cladosiphon okamuranus</td>
<td>Brown seaweeds</td>
<td>Fucoidan</td>
<td>DENV-2 infected BHK-21 cells in vitro</td>
<td>IC<sub>50</sub> = 4.7 μg/mL</td>
<td>[78, 218]</td>
</tr>
<tr>
<td>Nephelium lappaceum</td>
<td>Whole plant</td>
<td>Geraniin</td>
<td>DENV-2 E domain III (rE-DIII) protein in vitro</td>
<td>IC<sub>50</sub> = 1.75 μM</td>
<td>[219, 220]</td>
</tr>
<tr>
<td>Scutellaria baicalensis</td>
<td>Radices</td>
<td>Baicalin</td>
<td>DENV-2 (NGC strain) infected Vero cells in vitro</td>
<td>IC<sub>50</sub> = 13.5 ± 0.08 μg/mL</td>
<td>[221, 222]</td>
</tr>
<tr>
<td>Camellia sinensis</td>
<td>Dried leaves</td>
<td>Epigallocatechin gallate</td>
<td>Dengue virus (serotypes 1–4) infected Vero cells in vitro</td>
<td>EC<sub>50</sub> = 14.8, 18, 11.2, and 13.6 μM</td>
<td>[223]</td>
</tr>
<tr>
<td>Zoanthus spp.</td>
<td>Animal materials</td>
<td>Zoanthone A</td>
<td>DENV-2 NS<sub>3</sub> polymerase in vitro</td>
<td>EC<sub>50</sub> = 19.61 ± 2.46 μM</td>
<td>[224]</td>
</tr>
<tr>
<td>Mammea americana</td>
<td>Seeds</td>
<td>Coumarin A, Coumarin B</td>
<td>DENV-2/NG strain in vitro</td>
<td>IC<sub>50</sub> = 9.6 and 2.6 μg/mL</td>
<td>[225]</td>
</tr>
<tr>
<td>Tabernaemontana cymosa</td>
<td>Seeds</td>
<td>Lupeol acetate Voacangine</td>
<td>DENV-2 infected A549 cells in vitro</td>
<td>EC<sub>50</sub> = 37.5 and 10.1 μg/mL</td>
<td>[225]</td>
</tr>
<tr>
<td>Angelica keiskei</td>
<td>Roots</td>
<td>Brefeldin A</td>
<td>DENV serotypes (1–4) in vitro</td>
<td>IC<sub>50</sub> = 54.6 ± 0.9 nM (DENV-2)</td>
<td>[226]</td>
</tr>
<tr>
<td>Uncaria rhynchophylla</td>
<td>Leaves</td>
<td>Hirsutine</td>
<td>DENV-1 infected A549 cells in vitro</td>
<td>IC<sub>50</sub> = 61.32 ± 13.5, 57.9 ± 0.1, and 65.7 ± 6.3 nM (DENV - 1, 3, 4)</td>
<td>[227]</td>
</tr>
<tr>
<td>Viola yedoensis Makino</td>
<td>Aerial parts</td>
<td>Luteolin</td>
<td>DENV infected HEK-293 T, A549, and BHK-21 cells in vitro</td>
<td>EC<sub>50</sub> = 4.36 to 39.16 mM</td>
<td>[228]</td>
</tr>
<tr>
<td>Persea americana</td>
<td>Fruits</td>
<td>(2R,4R)-1,2,4-Trihydroxyheptadec-16-yne</td>
<td>DENV serotypes (1–4) in vitro</td>
<td>EC<sub>50</sub> = 14.61, 10.98, 12.87, and 14.61 μM</td>
<td>[229]</td>
</tr>
<tr>
<td>Nephelium lappaceum</td>
<td>Rind</td>
<td>Geraniin</td>
<td>DENV-2 RNA synthesis in Vero cells in vitro</td>
<td>IC<sub>50</sub> = 1.78 μM</td>
<td>[195]</td>
</tr>
<tr>
<td>Palythoa mutuki</td>
<td></td>
<td>Peridinin</td>
<td>DENV NS2B/NS3 protease in vitro</td>
<td>IC<sub>50</sub> = 4.50 ± 0.46 μg/mL</td>
<td>[230]</td>
</tr>
<tr>
<td>Botanical name</td>
<td>Plants part</td>
<td>Isolated compounds</td>
<td>Model</td>
<td>Results</td>
<td>References</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------</td>
<td>--</td>
<td>--</td>
<td>---------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Formosan zoanthid</td>
<td>Fruiting bodies</td>
<td>Ganodermanotriol</td>
<td>IC₅₀ = 50, 25 μM</td>
<td></td>
<td>[231]</td>
</tr>
<tr>
<td>Faramea bahiensis</td>
<td>Leaves</td>
<td>5-Hydroxy-4′-methoxy-flavanone-7-O-β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside</td>
<td>DENV-2 in HepG2 cells in vitro</td>
<td>↓ viral replication ↓ infected cell number</td>
<td>[232]</td>
</tr>
<tr>
<td>Rhodiola rosea</td>
<td>Roots</td>
<td>Salidroside</td>
<td>DENV serotype-2 infection in vitro</td>
<td>↓ DENV envelope protein ↑ RNA helicases</td>
<td>[233]</td>
</tr>
<tr>
<td>Swietenia macrophylla</td>
<td>Seeds</td>
<td>Swielimonoid B</td>
<td>EC₅₀ = 7.2 ± 1.33 μM</td>
<td></td>
<td>[234]</td>
</tr>
</tbody>
</table>
Figure 7: Chemical structures of natural compounds acting against dengue.
diethyl phthalate, ethyl hexanediol, and picaridin) [106, 107].

CYD-TDV (brand name Dengvaxia), an one and only FDA approved live-attenuated dengue vaccine prepared by applying rDNA technology through substituting the pre-membrane (PrM) and envelope (E) structural proteins of the 17D strain of attenuated yellow fever vaccine with those from the dengue serotypes excepting DENV-5 serotype, is manufactured by Sanofi Pasteur [108, 109]. Other vaccines under development are DENVax/TAK-003 (recombinant chimeraic vaccine with DENV-1, -3, and -4 components on the DENV-2 backbone, developed at Mahidol University in Bangkok) [110, 111], TetraVax-DV (tetra-valent mixture of monovalent vaccines, being tested in Brazil and Thailand in phase II trial) [112], TDEN PIV (inactivated tetra-valent vaccine, being experimented by the Walter Reed Army Institute of Research and GSK in phase I clinical trials) [113], V180 (recombinant subunit vaccines expressed in Drosophila cells, undergoing phase I trial by Merck [114], and DNA vaccines (the Naval Medical Research Center attempted to develop a monovalent DNA plasmid vaccine) [111].

4.2. The Role of Natural Products and Their Bioactive Constituents in Controlling DENV Infection. Natural products are the potential sources of many important modern medicines [115–117]. Plants and/or their extracts having antiviral activities are also distributed worldwide [118–120]. To date, a number of medicinal plants have been reported to act against DENV and/or their vectors, for example, Alternanthera philoxeroides (Fam: Amaranthaceae) [121], Azadirachta indica (Fam: Meliaceae) [122], Boesenbergia rotunda (Fam: Zingiberaceae) [123], Carica papaya (Fam: Caricaceae) [124], Cladosiphon okamarusus (Fam: Chordariaceae) [78], Cryptonemia crenulata (Fam: Halymeniales) and Gymnogongrus griffithiae (Fam: Phyllophoraceae) [125], Cymbopogon citratus (Fam: Poaceae), Andropholis paniculata (Fam: Acanthaceae), Momordica charantia (Fam: Cucurbitaceae), Ocimum sanctum (Fam: Labiatae), Piper retrofractum (Fam: Piperaceae) [126], Flaggellaria indica (Fam: Flagellariaceae), Cladogynos orientalis (Fam: Euphorbiaceae), Rhizophora apiculata (Fam: Rhizophoraceae) and Houttuynia cordata (Fam: Saururaceae) [127], Gymnogongrus torulosus (Fam: Phyllophoraceae) [128], Lippia alba and L. citriodora (Fam: Verbenaceae) [129], Meriistella gelidum (Fam: Solieriacae) [130], Mimosa scabrella (Fam: Fabaceae) [131], Psidium guajava (Fam: Myrtaceae) and Euphorbia hirta (Fam: Euphorbiaceae) (Abd. [132]), Quercus lisitaniaca (Fam: Fabaceae) [133], Tephrosia crassifolia, Tephrosia madrensis, Leucaena leucocephala, and Tephrosia viridiflora (Fam: Fabaceae) [131, 134, 135], Uncaria tomentosa (Fam: Rubiaceae) [136], Zosteria marina (Fam: Zosteraceae) [137], Myristica fatua, Cymbopogon citratus and Acorus calamus [138], Doratoxylum apetalum (Fam: [139], Psiloxylon mauritianum [140], Acorus calamus (Fam: Acoraceae) [141], Cinnamomos fragrans [142], Pedalium murex [143], Aesculus hippocastanum [144], Norantea brasiliensis [145], Azadirachta indica [146], Spondias mombin [147], Angelica sinensis [148], Phyllanthus spp. [149], Solanum xanthocarpum, Mesocyclops thermocyclooids (Mahesh [150], Delonix elata (Fam: Fabaceae) [151], Acalypha alnifolia (Fam: Euphorbiaceae) [152], Combretum collinum [153], and Solanum villosum [154].

The aqueous extract of Houttuynia cordata (10-100 mg/mL) against DENV-2 with human hepatocarcinoma cell line (HepG2) cells showed that extract significantly decreased intracellular DENV-2 RNA production with the reduction in the expression of dengue protein. It also showed a potential role in the release of the virion from infected LLC-MK2 cells at 10-40 mg/mL concentrations [155]. 9 N-methylamine and Harmol may selectively inhibit DENV-2 multiplication without virucidal effect in cell cultures [156].

The ethyl acetate fraction of H. cordata and quercetin showed in vitro activity against mouse hepatitis virus (MHV) and DENV-2 with IC [50] 0.98 and 125 μg/mL for MHV while 7.50 and 176.76 μg/mL for DENV-2 [157]. Delphinidin and epigallocatechin gallate showed a direct effect on against West Nile virus (WNV) and also reduced the infectivity of ZIKV and DENV. The effect of delphinidin and particularly of epigallocatechin gallate, was found higher for the African strain (MR766) than for the American strain (PA259459) [158].

In another study, it was found an absence of anti-DENV activity in chemical constituents like acetyl-L-carnitine, melatonin, α-tocopherol, and folic acid while resveratrol exhibited some limited anti-DENV activity [159]. Organosulfur compounds in garlic were tested against DENV-2 NGC (New Guinea C) virus U937 human macrophage-like cells and Huh-7 human liver cells. The organosulfur compounds reduced the levels of proinflammatory cytokines (TNF-α, IL-8 and IL-10) and affect the oxidative stress response [160].

The methanol extract of Rumex dentatus showed the highest antiviral efficacy by inhibiting DENV-2 replication, with IC [50] of 0.154 and 0.234 μg/mL, while gallic acid showed with IC [50] of 0.191 μg/mL and 0.522 μg/mL at 45 and 90 PFU of DENV-2 infection, respectively [161].

Naringenin (citrus flavanone) was evaluated against dengue viruses (serotypes 1–4) in Huh7.5 cells which impaired virus replication in human cells with IC [50] = 35.81, 17.97, 117.1, and 177.5 μM, respectively [162]. Aminoa muricata aqueous leave extract was evaluated against dengue virus type 2. Selectivity index of the extract was found more than 10 against DENV-2 which showed potential as a nature-based antiviral drug [163]. Three spiroteronate compounds (2EPS-A, -B, -C) isolated from Actinomadura strain showed strong DENV-2 NS2B-NS3 protease inhibition with IC [50] values of 1.94 ± 0.18, 1.47 ± 0.15, and 2.51 ± 0.21 μg/mL, respectively [164].

In vitro activity of essential oils of β-caryophyllene was evaluated against DENV-2. β-caryophyllene acts on the initial steps of the viral replication cycle and showed inhibition with IC [50] = 22.5 ± 5.6 μM against DENV-2 [165]. The ethanol extract of polyherbal formulation Nilavembu kudineer showed antiviral activity against DENV-2 virus infection in Vero and human macrophage cell line (THP-1 cells) from 0.78% till 0.01% of the human dose [166].
The aqueous leaf extract of *Orthosiphon stamineus* was evaluated against DENV-2. The extract exhibited the ability to reduce DENV-2 replication in the pretreated cell while ineffective in inhibiting cell death in the posttreated cell [167]. Antiviral activity of natural alkaloid anisomycin was evaluated against DENV and ZikaV viruses. The compound prevented DENV and ZikaV multiplication in human cell lines, inhibited viral protein expression, and also impaired viral replication in the posttreated cell. In a lower dose, it also showed a significant decrease in viremia levels in ZikaV infected AG129 mice [168]. A natural antimicrobial agent (laticarpine peptide) was evaluated against DENV replication in infected cells. The peptide exhibited a significant inhibitory effect (EC50 = 12.68 ± 3.2 μM) against the dengue protease NS2B-NS3pro at room temperature and also reduced the viral RNA in a dose-dependent manner [169].

The crude extract of *Rhodiola imbricata* showed an antiviral immune response against the dengue virus. It induced interferon (IFN) and other cytokines and also upregulated MIF-immune response against the dengue virus. It induced inter- and effector RNA in a dose-dependent manner [169].

Infection of virus involves various stages:

(i) In the initial steps, DENV binds to cell receptors including mannose-binding receptor (MR) and DC-SIGN (dendritic cell-specific ICAM3 grabbing nonintegrin) receptor present at the surface of the cell, followed by fusion and entry

(ii) Clathrin-mediated endocytosis and transport of DENV take place along with pH-dependent fusion with endocytosis

(iii) The genomic ssRNA (positive-sense) is translated hooked on a polyprotein, which is smitten into all proteins
(iv) Transcription and ribonucleic acid (RNA) replication occurs at the endoplasmic reticulum (ER) surface

(v) A synthesized dsRNA genomic virus is taking place at ER. At the ER, virions bud and are passed to the Golgi, where DENV prM (membrane) protein is cleaved, and virion maturation takes place and is released by exocytosis.

Natural compounds inhibit several proteins involved in the transcription as well as translation machinery essential in the DENV life cycle.

Furthermore, natural compounds block the virus replication by modulating the inflammatory redox-sensitive pathways and host cell signaling. Details of plant-derived natural compounds and their antidengue activities are stipulated in Table 2, and their chemical structures have been displayed in Figure 7.

Monocyte macrophages are thought to be the principal target cells for the DENV, the cause of dengue fever and hemorrhagic fever. Besides Ca\(^{2+}\), depletion of Mg\(^{2+}\) is also evident during binding of DENV to monocyte macrophages and cells of T cell and B cell lineages in in vitro studies [8]. It has been seen that the monocyte-derived macrophages discriminated in the presence of vitamin D3 restrict DENV infection and moderate the classical inflammatory cytokine (e.g., TNF-\(\alpha\) and IL-1\(\beta\), -4, and -10) response, where a reduced surface expression of C-type lectins, including the mannose receptor [214].

In another report, 1,25(OH)2D3 is evident to suppress the levels of IL-4 and IL-17A and modulate the levels of IL-12p70 and IL-10 in DENV infected U937-DC-SIGN cells and THP-1 macrophages, suggesting an immunomodulatory power that can ameliorate inflammation during dengue infections [196]. These findings have also complied with an earlier report [217]. In a clinical study, patients (\(n = 64\)), received a single dose of 200,000IU vitamin D, was found to decrease the risk of dengue fever [220]. A challenge test done with 10 healthy individuals supplemented with 1000 or 4000 international units (IU)/day of vitamin D during 10 days suggested that 4000IU/day of vitamin D represents an adequate dose to control DENV progression and replication [222].

5. Conclusions and Perspectives

To date, it is not possible to recognize intricate details and the complexity of the target of DENV of the other suitable vectors/secondary or hosts for its entrance, production, transmission, and pathogenesis. Several preventive measures have been taken; however, still, there is a deficiency of operant treatment modalities of DENV infections in human and pet animals. DENV-mediated imbalance of micronutrients may be one of the effective significances of numerous pathophysiological situations, such as Ca\(^{2+}\) depletion for muscle pain, irregular heartbeats, muscle weakness, fatigue, painful signs and symptoms, and deficiency of vitamin D in case of inflammatory conditions. The deficiency of vita-

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by CONICYT PIA/APOYO CCTE AFB170007.

References

[130] P. C. De Si-Tischer, L. B. Talarico, M. D. Noseda, S. M. Guar-
marés, E. B. Damonte, and M. E. Duarte, "Chemical struc-
ture and antiviral activity of carrageenans from Merististella
gelidium against herpes simplex and dengue virus," *Carbohydr-

Gorin, and M.-R. Sierakowski, "In vitro and in vivo antiviral
properties of sulfated galactomannans against yellow fever
virus (BeH111 strain) and dengue 1 virus (Hawaii strain)," *Antiviral Research*, vol. 60, no. 3, pp. 201–208, 2003.

[133] S. Y. Muliawan, L. S. Kit, S. Devi, O. Hashim, and R. Yusof,

"Antiviral effect of flavonoids on the dengue virus," *Phyto-

[139] J. G. Haddad, A. C. Koishi, A. Gaudry et al., "Doratoryxylon
apetalum, an indigenous medicinal plant from Mascarene

[140] E. Chain, J. G. Haddad, A. C. Koishi et al., "The polyphenol-
rich extract from Psiloxylon maurotanum, an endemic medicinal plant from Reunion Island, inhibits the early stages of dengue and Zika virus infection," *International Journal of Molecular Sciences*, vol. 20, no. 10, p. 2382, 2019.

[141] X. Yao, Y. Ling, S. Guo et al., "Tatanan A from the _Acorus

[147] E. E. Ajagbub, S. P. Danga, I. U. Chijoke, and F. B. Okoye,
"Mosquito adulticidal activity of the leaf extracts of Spondias mombin L. against Aedes aegypti L. and isolation of active

sinensis (Umbelliferae) with proven repellent properties against Aedes aegypti, the primary dengue fever vector in Thailand," *Parasitology Research*, vol. 114, no. 6, pp. 2187–2198, 2015.

[150] P. M. Kumar, K. Murugan, K. Kovendan et al., "Mosquitoici-
dal activity of solanum xanthocarpum fruit extract and cope-
pod Mesocyclops thermocycloides for the control of

[151] G. Marimuthu, S. Rajamohan, R. Mohan, and Y. Krishnamoorthy,
"Larvicidal and ovidical properties of leaf and seed extracts of Delonix elata (L.) gamble (family: Fabaceae) against malaria (Anopheles stephensi Liston) and

larvicidal activity of Acalypha alnifolia Klein ex Willd. (Euphorbiaceae) leaf extract against the malarial vector, Anopheles stephensi, dengue vector, Aedes aegypti and Ban-

activity of Combretum collinum Fresen against Aedes

[154] N. Chowdhury, A. Ghosh, and G. Chandra, "Mosquito Larvi-
cidal Activities Of Solanum Villosom Berry Extract Against

