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Disease diagnosis faces challenges such as misdiagnosis, lack of diagnosis, and slow diagnosis. There are several machine learning
techniques that have been applied to address these challenges, where a set of symptoms is applied to a classification model that
predicts the presence or absence of a disease. To improve on the performance of these techniques, this paper presents a
technique which involves feature selection using principal component analysis (PCA), a hybrid kernel-based support vector
machine (HKSVM) classification model and hyperparameter optimization using genetic algorithm (GA). The HKSVM in
this paper introduces a new way of combining three kernels: Radial basis function (RBF), linear, and polynomial.
Combining local (RBF) and global (linear and polynomial) kernels has the effect of improved model performance. This is
because the local kernels are better able to distinguish points closer to each other while the global kernels are more suited
to distinguish points that are far away from each other. The PCA-GA-HKSVM is used on 7 different medical datasets,
with two datasets being multiclass datasets and 5 datasets being binary. Performance evaluation metrics used were
accuracy, precision, and recall. It was observed that the PCA-GA-HKSVM offered better performance than the single
kernel support vector machines (SVMs).

1. Introduction

The fourth industrial evolution has come with big data, arti-
ficial intelligence (AI), and powerful machines with high
processing power. This has resulted in the rise of the utiliza-
tion of machine learning (ML) to solve complex problems.
ML is a field of artificial intelligence (AI) that involves using
algorithms to find patterns in data. One area that could ben-
efit greatly from this advancement is the medical field. More
specifically, ML has the ability to improve the field of disease
diagnosis.

One challenge in disease diagnosis is misdiagnosis. This
is a very common medical error that has been made by both
inexperienced and expert doctors [1]. A major contributor
to misdiagnosis is that symptoms vary per patient, and some
patients present symptoms that are medically unexplained
[2]. This makes it difficult to come up with a set of all the
possible rules that define the pattern of a disease. Another
challenge is lack of diagnosis. One factor that contributes
to this is that many diseases have similar symptoms, and

some symptoms are so mild that they are regarded as com-
mon signs of aging or normal discomforts. Hence, many
people are hesitant to seek medical attention. Another factor
is cost [3]. Many people cannot afford to obtain proper diag-
nosis. Thus, they may self-medicate without the guidance of
a doctor. Slow diagnosis is another challenge. There are few
specialists and sometimes, people have to wait a long time in
order to obtain a diagnosis. This is dangerous because the
disease could progress to later stages, making treatment
more difficult [4].

Fortunately, more medical data is available now more
than ever. There is a lot of data depicting a set of symptoms
and their correct diagnosis collected through methods such
as consultation, blood tests, and imaging tests. Applying this
data to ML models could help to address the challenges
mentioned above. It can result in faster diagnosis and less
cases of misdiagnosis by providing decision support to doc-
tors [5]. There are many studies that have applied ML tech-
niques to the problem of disease diagnosis. These studies
have shown that ML techniques can provide a reliable
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decision support system for disease diagnosis, especially in
situations where specialists are few, or when there is diffi-
culty in obtaining a definitive diagnosis [6].

Support vector machines have been shown to be a highly
effective ML model in the field of disease diagnosis. For
instance, Burbidge et al. [7] performed a comparative study
of SVM with other machine learning techniques. The bench-
mark test was performed using data obtained from the UC
Irvine machine learning repository to predict the inhibition
of dihydrofolate reductase by pyrimidines. Their results
showed that SVM outperformed a radial basis function net-
work, a decision tree, and three artificial neural networks.
Battineni et al. [8, 9] conducted a review of how machine
learning is used in chronic disease diagnosis. The analysis
involved a review of 453 papers published between 2015
and 2019. While they concluded that there was no single best
approach for ML in disease diagnosis, they found that logis-
tic regression and SVMs were the most commonly used and
were highly applicable in disease diagnosis.

Jegan [10] presented a disease diagnosis system based on
SVM. They found that the SVM achieved higher accuracy
compared to other techniques. Safdar et al. [11] used RBF
kernel in SVM for diabetes diagnosis. Using the Pima Indian
diabetes dataset, 78% accuracy was achieved. Mohan [12]
analyzed several studies presenting decision support systems
that diagnosed heart disease. In the results, myocardial
infarction was classified by artificial neural networks
(ANN) with 97% accuracy and myocardial perfusion scintig-
raphy with 87.5% accuracy. A heart failure dataset was clas-
sified by a classification and regression tree (CART) with
87.6% accuracy. Heart valves were classified by neural net-
work ensembles classified heart with 97.4% accuracy. SVM
was able to classify arrhythmia screening resulting in
95.6% accuracy. Logistic regression managed to classify
acute coronary syndrome with an accuracy of 72%. From
this, it is seen that SVM achieved high accuracy. Trambaiolli
et al. [13] employed SVMs and Naive Bayes classification
algorithms in predicting liver disease. The dataset used was
ILPD obtained from UCI, comprising 560 instances and 10
attributes. The SVM achieved an accuracy of 79.66% in
3210.00ms while the correctness of Naive Bayes (NB) was
61.28% in a duration of 1670.00ms. From this, it can be seen
that SVM achieved higher accuracy. However, it took more
time compared to NB. Alam et al. [14] used SVM in diag-
nosing Alzheimer’s. They achieved an 87.0% accuracy and
91.7% sensitivity.

From these studies, it can be seen that SVMs are highly
effective in classification of symptoms. The performance of
SVMs heavily depends on the type of kernel used. Several
researchers have shown that techniques that combine more
than one kernel offer better performance and less occur-
rences of overfitting than single-kernel SVMs. Keerthika
and Premalatha [15] presented an approach to differentiate
between patients with Alzheimer’s disease and healthy con-
trols. PCA and a multikernel SVM was employed, yielding
84% stratification accuracy, and sensitivity and specificity
above 85%. The multikernel SVM performed better than
the linear kernel SVM. Shahbakhti et al. [16] proposed a car-
diovascular disease diagnosis assistant based on efficient fea-

ture selection and classification using HKSVM. Their model
resulted in an accuracy of 96.03% on the Cleveland dataset
which is available at the UCI ML repository. Tuysuzoglu
and Birant [17] presented Enhanced Bagging (eBagging) as
a novel approach for ensemble learning. The technique was
applied to SVM on several medical datasets. Their findings
showed that eBagging produced better results than a single
SVM.

It has also been shown that using feature selection tech-
niques offers better performance. Wu and Zhou [18] pre-
sented a technique that used PCA for feature extraction
and SVM for classification. The PCA was able to extract 3
optimized features from the dataset and a classification accu-
racy of 91.5%. Rubini and Perumal [19] used PCA in combi-
nation with SVM for cervical cancer diagnosis. The cervical
cancer data contained 32 risk factors and 4 target variables:
Hinselmann, Schiller, Cytology, and Biopsy. The targets
were classified using SVM, SVM with recursive feature elim-
ination, and SVM with PCA (PCA-SVM). PCA-SVM
proved superior to the other two. Rubini and Perumal [20]
suggested a chronic kidney disease diagnosis approach based
on grey wolf optimization (GWO) for choosing the best fea-
tures and HKSVM for classification. The outcome was
97.26% accuracy for the chronic kidney dataset on UCI
ML repository. Tan et al. [21] proposed a technique that
involved a multikernel support vector machine (MKSVM)
together with fruit fly optimization algorithm (FFOA) for
classification of diseases. The FFOA was used to find the best
features for prediction. This approach attained a precision of
98.5% on chronic kidney dataset, 89.11565% on Hungarian
chronic kidney disease dataset, 90.42904% on Cleveland
chronic kidney disease dataset, and 86.17886% on Switzer-
land chronic kidney disease dataset from the UCI Machine
Learning repository.

In order to improve the performance of the classification
models, several hyperparameter optimization techniques
have been shown to be successful. Santhanam and Padma-
vathi [22] proposed a disease diagnosis technique involving
GA and SVM. The technique was applied on five datasets
of different diseases from the UCI ML repository. The accu-
racies obtained were 84.07% for heart disease, 78.26% for
diabetes, 76.20% for breast cancer, and 86.12% for hepatitis.
Segera et al. [23] proposed a medical diagnosis approach
based on GA and SVM. The approach was applied to the
Pima Indians Diabetes from UCI repository. This technique
achieved an accuracy of 98.79%, which is higher than
96.71% achieved from SVM with data preparation based
on K-means clustering.

Few researchers have used all three techniques together
(feature selection, hybrid kernels, and hyperparameter opti-
mization). Ali et al. [24] presented a particle swarm opti-
mized hybrid kernel-based multiclass support vector
machine for microarray cancer data analysis. He proposed
a novel linear-Gaussian-polynomial (LGP) hybrid kernel-
based SVM for multiclass disease diagnosis. Dimensionality
reduction was also applied to the datasets used. This PSO-
PCA-LGP-MCSVM configuration achieved high accuracy
compared to existing techniques. The technique was applied
to microarray cancer datasets. Saseendran et al. [25]
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proposed a liver cancer diagnosis system based on linear dis-
criminant analysis (LDA) for dimensionality reduction,
SVM for classification, and GA for hyperparameter optimi-
zation. The method showed improved performance and
lower training time. The method achieved 90.30% accuracy,
82.25% sensitivity, 96.07% specificity, and 0.804 Matthews
Correlation Coefficient (MCC).

From the above studies, it can be seen that while ML has
been successfully applied to the problem of disease diagno-
sis, there are few researchers that have applied feature selec-
tion, HKSVM, and hyperparameter optimization techniques
to binary and multiclass diagnosis datasets all in one study.
This paper is aimed at bridging that gap by using PCA for
feature selection, using a HKSVM as a classification model,
and using GA for hyperparameter optimization.

This paper contains an introduction of the problem and
the solution as shown in this section. Section 2 explores
machine learning concepts while Section 3 contains a detailed
explanation of the PCA-GA-HKSVM technique that has been
proposed. Section 4 explores the datasets that the technique
was applied to. Section 5 presents the results obtained and dis-
cusses them. Section 6 gives a conclusion based on the results
and presents recommendation for further work.

2. Machine Learning

Machine learning (ML) is a field of artificial intelligence (AI)
that involves using algorithms to find patterns in data. This
is in contrast with traditional programming (TP) where all
the possible rules for a pattern have to be explicitly pro-
grammed and tested before the algorithm is used. For cases
where there are many rules, the TP approach can be difficult
to implement and maintain. Hence, ML can be more suitable
than TP in certain aspects:

(i) Complex problems where the rules that define a
pattern require a lot of fine tuning

(ii) Problems in which the rules that define a pattern are
too many hence making it difficult to maintain a TP
approach

(iii) Problems where the rules that define a pattern are
constantly changing

(iv) Problems where the rules are not known
completely, and it is desired to get insights about
the patterns

Disease diagnosis is one of the areas that is suited for
ML. Many diseases have similar symptoms, and symptoms
vary greatly between patients. A TP approach would be
incredibly tedious since it would require a lot of fine tuning.

2.1. Exploratory Data Analysis and Transformation. This
involves analyzing the dataset in order to get insights about
it and transforming the data based on the insights. Data is
analyzed for factors like:

(i) Leakage: this is when the training data includes
information that will not be available during infer-

ence. This could lead to a false sense of confidence
in the model performance

(ii) Correctness: incorrect data could arise due to fac-
tors like human error during data collection

(iii) Data types: model training involves matrix multipli-
cation; hence, string data needs to be converted to
numerical before being fed to the model

(iv) Missing data: these need to be either removed or
replaced before the data is fed into the model

(v) Class distribution: the data should contain sufficient
instances from all classes

2.2. Data Splitting. When an ML algorithm is applied to a
dataset, the result is usually an equation that represents the
pattern in the dataset. This is known as a machine learning
model. A machine learning dataset is usually split into a
training set, validation set, and test set. Before splitting, the
dataset is shuffled in order to ensure random class distribu-
tion, hence less chances of bias in the model.

2.3. Model Training.Model training involves fitting the algo-
rithm on the training set so as to find the optimal parameter
values for the model. If the model is too complex or the
training contains noise, too few features or instances, the
model may learn the peculiarities in the noise and will result
in poor generalization on unseen data. This is known as
overfitting.

There are several ways to avoid overfitting:

(i) Simplifying the model by constraining it. This is
known as regularization

(ii) Increasing the size of the train data

(iii) Removing outliers and errors in the train data to
reduce noise and peculiarities

On the other hand, the model may also underfit on the
training data. This occurs when the model is so simple that
it is not able to learn the patterns in the data.

To fix underfitting:

(i) Use a more complex model

(ii) Reduce the regularization hyperparameter

(iii) Add more predictive features to the algorithm

(iv) Add more instances to the dataset

2.4. Model Validation. In order for a model to be useful, it
needs to perform well on unseen data. A portion of unseen
data is usually held out for the purpose of validation. This
is known as a validation set. A validation set is helpful to
ensure that the best learning algorithm and hyperparameter
values have been chosen.

2.5. Crossvalidation. In many practical cases, there may not
be enough data to allow holding out a portion for validation.
If a portion of the data is held out for validation, there may
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not be enough for the model to train on; hence, the model
will not have good learning ability. In such cases, a helpful
technique would be one known as crossvalidation.

Crossvalidation involves splitting the dataset into k sub-
sets of a similar size, where k is the number of subsets. Each
subset is referred to as a fold. A common example is where
the dataset is split into five folds: {F1, F2, F3, F4, F5}. This
is known as fivefold crossvalidation. Five models are then
trained. The first model f1 is trained on folds F2, F3, F4,
and F5, and fold F1 is used as a validation set. Similarly,
the second model f2 is trained on folds F1, F3, F4, and F5,
and fold F2 is used as a validation set. The same pattern
applies to models f3, f4, and f5. The evaluation metric is cal-
culated for each model, and an average is taken to obtain the
final value.

Once the optimal hyperparameter values have been
found, the entire training set can be used for training.

2.6. Testing. Testing is the last step before the model can be
used for inference. Testing ensures that the model performs
as expected. It involves applying the model to an unseen
portion of the dataset not used for training or validation.
The test set should be representative of the real-world data
that the model will be used on.

3. PCA-GA-HKSVM

3.1. Principal Component Analysis (PCA). Processing very
large datasets is computationally intensive. There could also
be correlated features that only add noise to the model and
slow down the training [26]. Principal component analysis
(PCA) is a technique introduced by Pearson [11] as a way
to reduce the dimensionality of a dataset while preserving
as much information as possible. It can be used to identify
the minimum number of uncorrelated features. This results
in faster training time, better model performance, lower
computing costs during training, and easier data visualiza-
tion using plots.

PCA works by finding the closest hyperplane to the data,
then projecting the data onto it. The hyperplane should pre-
serve maximum variance, because this means that it loses
less information. After finding the axis that preserves maxi-
mum variance, it then finds a second axis that preserves the
largest of the remaining variance. This second axis is orthog-
onal to the first. A third axis is then identified orthogonal to
the previous two and so on until the number of axes is equal
to the number of dimensions in the dataset. The kth axis is
referred to as the kthprincipal component. Singular value
decomposition (SVD) is a matrix factorization method used
to find the principle components. SVD decomposes the train
set matrix x into a product of three matrices.

V =

:

v1

:

:

v2

:

:

v3

:

2
664

3
775, ð1Þ

where V has the unit vectors of the principal components.

In order for the dimensionality of the data to be reduced
to k dimensions, it should to be projected to a hyperplane
that is defined by the first k components, resulting in a
reduced training matrix Xreduced. This is done by multiplying
matrix X by matrix Vd , which contains the first d columns of
V.

Xreduced =XVd: ð2Þ

In this paper, MATLAB’s pca function [27] was used to
perform PCA on the dataset.

3.2. Hybrid Kernel-Based Support Vector Machine. The con-
cept of a support vector machine (SVM) was introduced by
Vladimir Vapnik [28]. SVM is a machine learning algorithm
that can be used to build a model that performs various
types of predictions such as classification, regression, and
outlier detection. It is mostly used on small- and medium-
sized datasets. SVMs have the ability to capture large feature
spaces because of their generalization principle based on
structural risk minimization (SRM) [29].

For a case where data is two-dimensional, the SVM
hyperplane is a line that separates the positive examples
from the negative ones. The boundary that separates the
examples is called the decision boundary. A linear SVM
finds the equation of the decision boundary using the deci-
sion function y’ =w⊺x + b. If the result is greater than one,
then the prediction is a positive class; otherwise, it is a neg-
ative class.

y′ =
0, if wTx + b ≤ 0

1, if wTx + b ≥ 0

( )
, ð3Þ

where

(i) w = weight vector

(ii) x = input feature vector

(iii) b = bias

The points where the decision function is zero result in
the formation of the decision boundary. The optimal hyper-
plane is one that separates the positive and negative exam-
ples with the largest margin. Training involves looking for
the values of b and w that give this optimal hyperplane. This
is so that the model can generalize well to future unseen
examples.

In order to obtain the largest margin, the Euclidean
norm of w, kwk has to be minimized. Hence, the optimiza-
tion problem is

Min wk kwhile yi wxi – bð Þ ≥ 1,  for i = 1⋯N , ð4Þ

where

(i) kwk =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑D

j=1ðwðjÞÞ2
q

(ii) D = number of dimensions
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At the margin lines, the decision function is equal to
either 1 or -1 The lines are equidistant and parallel to the
decision boundary.

In most practical datasets, there is not a straight line that
can separate the positive from the negative examples. In this
case, the kernel trick is employed. This is by mapping the data
to higher dimensions where the examples may be separable.
For example, if there is a two-dimensional dataset that is not lin-
early separable, it can be transformed into three-dimensional
linearly separable data by mapping ϕ : x⟶ ϕðxÞ.

ϕ xð Þ = ϕ
x1
x2

 ! !
=

x21ffiffiffi
2

p
x1x2
x22

0
BB@

1
CCA, ð5Þ

where x is a dataset of n dimensions.
However, the most appropriate mapping is not usually

known beforehand. A solution would be to try all possible
mapping functions then fitting a linear SVM but this is not
computationally efficient.

An alternative and more efficient method is to use kernel
functions, which allow working in higher dimensions with-
out explicitly transforming the data. For instance, to trans-
form a two-dimensional vector to three dimensions, it can
be seen below that the square of the dot product of the initial
two-dimensional vector can be found from the dot product
of the transformed three-dimensional vector:

ϕ að ÞTϕ bð Þ =
a12ffiffiffi
2

p
a1b2

a22

0
BB@

1
CCA

T a12ffiffiffi
2

p
b1b2

b22

0
BB@

1
CCA = aTb

� �2
: ð6Þ

From above, it can be seen that it is sufficient to replace
the dot product of the transformed vectors by the square of
the original vectors instead of explicitly transforming the
data. Hence, a kernel is a function that can obtain the dot
product using only the original vectors.

A single kernel may not be able to provide a full repre-
sentation of the dataset. Even if that kernel exists, there is
no standard method that can be applied to choose a kernel.
Hence, a combination of multiple kernels may be employed
to provide better learning ability, leading to improved per-
formance [30].

There are different types of kernel functions. The most
widely used are

Linear : K linear = uTv,

Polynomial : Kpolynomial = γuTv + r
� �d ,

RBF : Krbf = exp −γ u − vk k2� �
,

Sigmoid : Ksigmoid = tanh γuTv + r
� �

:

ð7Þ

The hybrid kernel used in this project is a combination
of the RBF, linear, and polynomial kernels.

Let:
K1 be a combination of RBF and linear kernel:

K1 = γK linear − 1 – γð ÞKrbf : ð8Þ

K2 be a combination of RBF and linear kernel:

K2 = γKpolynomial − 1 – γð ÞKrbf : ð9Þ

K3 be a combination of linear and polynomial kernel:

K3 = γK linear − 1 – γð ÞKpolynomial: ð10Þ

Then, the final hybrid kernel used in this project is:

Kh = α1K1 + α2K2 + α3K3: ð11Þ

With the following constraints:

α1 + α2 + α3 = 1,

γ < = 1,
ð12Þ

where

(i) α1 = Coefficient for the linear-rbf hybrid kernel

(ii) α2 = Coefficient for the polynomial-rbf hybrid
kernel

(iii) α3 = Coefficient for the linear-polynomial hybrid
kernel

(iv) γ = Coefficient for the single kernels (RBF, linear,
polynomial)

(v) Krbf = RBF kernel

(vi) Kpolynomial = Polynomial kernel

(vii) K linear = Linear kernel

The optimal values for α1, α2, α3, and γ are determined
through hyperparameter optimization. The LIBSVM [31]
library was used to train the hybrid model with the precom-
puted kernel option.

The RBF kernel is a local kernel. This means it was able
to distinguish between points close to each other, resulting
in a better learning ability of the model. The polynomial ker-
nel and the linear kernel are global kernels. Hence, they were
able to better distinguish between points far away from each
other. This resulted in the model being able to generalize
well on new data. Hence, a combination of local and global
kernels prevents both underfitting and overfitting.

3.3. Hyperparameter Optimization. One factor that greatly
affects how the model learns from the training data is the
hyperparameters. Hyperparameter tuning involves training
the model on different values of the hyperparameters, then
choosing the ones that give the optimal performance.
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There are several methods of tuning hyperparameters
such as the grid-search technique. Genetic algorithm (GA)
has been shown to perform better than faster [32].

GA falls under a computation technique known as evo-
lutionary computation. It was developed at the University
of Michigan by John Holland and his colleagues and stu-
dents [17]. A population of possible solutions undergo
mutation just like in natural genetics, resulting in children.
The process is repeated as each individual is given a fitness
value. Those with higher fitness values are used to produce
results with even higher fitness values until a stopping crite-
rion is reached. Starting with an initial population, new off-
springs are generated by applying crossover or mutation
operators to them. The new off-springs then replace the ini-
tial population, and the process is repeated.

MATLAB’s ga function [33] was used as the genetic
algorithm. Fivefold crossvalidation was used as a fitness
function with the crossvalidation accuracy as the fitness
value. Since the genetic algorithm tries to minimize the fit-
ness value and the highest crossvalidation accuracy was of
interest, the fitness value was a product of the crossvalida-
tion accuracy and -1.

3.4. PCA-GA-HKSVM Process. The entire PCA-GA-
HKSVM process was done in MATLAB R2018a on a Linux
PC with 4GB RAM. The flowchart is shown in Figure 1, and
the process is outlined as follows:

(1) Load a dataset into MATLAB

(2) Explore the dataset to get insights about:

(i) The data types of the features, whether numeri-
cal or categorical

(ii) The range of feature values

(iii) Presence of outliers, missing data, and bad qual-
ity data such as values out of range

(iv) Presence of correlated features

(v) Class distribution

(3) Transform the data according to insights obtained in
step (2). This involves:

(vi) Encoding categorical features

(vii) Imputing missing data

(viii) Scaling the data

(ix) Removing bad quality data points such as
improbable values of age and temperature

(x) Shuffling the dataset to ensure random class
distribution

(4) Apply MATLAB’s pca function to the dataset to
obtain:

(xi) The principal component coefficient matrix

(xii) A matrix containing the principal component
scores

(xiii) A vector with the principal component
variances

(xiv) A vector with the percentage of the total vari-
ances explained by each principal component

The reduced matrix contains the principal components
that account for at least 95% of the variance.

(5) Transform the data into LIBSVM format

(6) Split the data into train and test sets, with 80% for
training and 20% for testing

(7) Compute the kernel matrix using the new HKSVM
presented

START

Dataset

Exploratory data analysis

Data preprocessing

Feature selection (PCA)

Data splitting

Training data

Algorithm (HKSVM)

Hyperparameter
optimization (GA) Poor performance

Good performance

Production data Model Prediction

FINISH

Test data Evaluate

Figure 1: Flowchart of PCA-GA-HKSVM process.
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(8) Use the negative 5-fold crossvalidation accuracy of
the HKSVM as a fitness value in MATLAB’s ga
function to obtain the optimal coefficient values of
the HKSVM

(9) Apply the entire training set to train the HKSVM
with the optimal hyperparameter values returned
in step (8) to obtain a model

(10) Apply the test data to the model and obtain the
accuracy, precision, and recall of the model

4. Performance Evaluation

Several datasets were used to train and test the PCA-GA-
HKSVM. The data was sourced from the UCI Machine
Learning Repository and Kaggle.

The respiratory disease dataset [34] is a multiclass data-
set containing 20 features and 44,454 instances which can
help in distinguishing between cold, flu, COVID-19, and
allergies. Its labeling was based on symptoms listed in the
Mayo Clinic website. The class representation is heavily
imbalanced, with one class containing 25,000 instances and
another containing less than 2000 instances. The dataset
was reduced to an average of 1000 instances per class in
order to reduce bias.

The Chronic Kidney Disease dataset [35] is a binary data-
set containing 400 instance and 24 features. The label class
indicates the presence or absence of chronic kidney disease.

The Heart Disease dataset [36] is a subset of the UCI
machine learning repository heart disease dataset that dates
from 1988 and is from four databases: Cleveland, Hungary,
Switzerland, and Long Beach V. It contains 303 instances,
13 attributes, and a target class to depict the presence or
absence of heart disease.

The Breast Cancer Wisconsin dataset [37] contains fea-
tures that are computed from a digitized image of a fine nee-
dle aspirate of a breast mass. There are 30 features and 569
instances. The target class depicts whether the mass is malig-
nant or benign. Hence, the dataset can be used as guidance
on whether there is a likelihood of a mass being cancerous.

The Lymphography dataset [37] contains observations
provided by the Oncology Institute. It contains 148 instances
with 18 attributes. The target contains four classes: normal,
metastases, malignant lymph, and fibrosis.

The Acute Inflammation dataset [38] contains 6 attributes
and 120 datasets. It was obtained from the UCI Machine
Learning Repository. The target class of the dataset shows
whether the features are indicative of either acute nephritis
of renal pelvis origin or acute bladder inflammation.

Table 1: Results of hyperparameter optimization.

Dataset Crossvalidation accuracy α1 α2 α3 γ

Respiratory diseases 96.31% 0.2208 0.3938 0.3855 0.2275

Nephritis 100% 0.3950 0.4253 0.1797 0.1615

Acute bladder inflammation 98.97% 0.4117 0.4579 0.1304 0.7639

Breast cancer 94.94% 1 0 0 1

Chronic kidney disease 95.94% 1 0 0 1

Lymphography 86.44% 0.8635 0.1365 1.3878e-17 0.4877

Heart disease 80.97% 0.949 0.0075 0.0075 1.00

Table 2: Precision values for the different datasets.

Dataset Class 1 Class 2 Class 3 Class 4

Respiratory 1.0000 0.8932 1.0000 0.9725

Lymphography 0.8 0.8571 0.8221 0.8081

Nephritis 1 1 — —

Acute bladder inflammation 1 1 — —

Breast cancer 0.9559 0.8913 — —

Chronic kidney disease 1 0.9074 — —

Heart disease 0.8427 0.7759 — —

Table 3: Recall values for the different datasets.

Dataset Class 1 Class 2 Class 3 Class 4

Respiratory 0.9204 1.0000 0.9697 0.9636

Nephritis 1 1 — —

Acute bladder inflammation 1 1 — —

Breast cancer 0.9286 0.9318 — —

Chronic kidney disease 0.8387 1 — —

Lymphography 0.8571 0.8 0.8621 0.7936

Heart disease 0.7426 0.8654 — —

Table 4: Accuracy of PCA-GA-HKSVM vs. single kernel SVMs.

Dataset
PCA-GA-
HKSVM

RBF Linear Polynomial

Respiratory
diseases

96.3547% 93.81% 93.05% 75.13%

Nephritis 100% 98% 100% 98%

Bladder
inflammation

100% 98% 100% 98%

Breast cancer 92.98% 65.54% 87.61% 89.11%

Chronic kidney
disease

93.7500% 92.21% 90.63% 92.74%

Lymphography 82.8576% 69.41% 79.76% 79.76%

Heart disease 80.49% 80.49% 77.64% 69.414%
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4.1. Performance Evaluation Metrics. The performance of the
model was evaluated based on several metrics. These are the
following.

4.1.1. Accuracy. The crossvalidation accuracy for each model
was investigated. However, accuracy is usually not the most
efficient performance evaluation metric in cases where one
class was more frequent than others or where the cost of
misclassification of one class was greater than another.
Hence, more classification metrics were needed.

4.1.2. Confusion Matrix. To get a better sense of the actual
performance even in skewed datasets, a confusion matrix
was obtained for each dataset. Number of instances where
one class was classified as another was obtained and used
to generate the matrix. Each row represents an actual class,
while each column represents a predicted class. Negative
classes that were correctly classified are called true negatives.
On the other hand, negative classes that were wrongly clas-
sified are called false negatives. Positive classes that were cor-
rectly classified are called true positives. On the other hand,
positive classes that were wrongly classified are called false
positives. A perfect classifier only has true positives and true
negatives; hence, its confusion matrix only contains nonzero
values in its top-left to bottom-right diagonal.

4.1.3. Precision. From the confusion matrix, the precision was
obtained. This refers to the ratio of true positives to all the pos-
itive predictions made.

precision = TP
TP + FP

, ð13Þ

where

(i) TP = true positives

(ii) FP = false positives

4.1.4. Recall. Another metric that was obtained from the
confusion matrix is the recall. This refers to the true-
positive rate. It is the ratio of true positives in the predictions
to actual positives in the dataset.

recall =
TP

TP + FN
, ð14Þ

where

(i) TP = true positives

(ii) FN = false negatives

5. Results and Discussion

5.1. Hyperparameter Optimization. Crossvalidation training
was done on the models with genetic algorithm to find the
optimal values for α1, α2, α3, and γ as described in Section
3. The obtained results are shown in Table 1.

From Table 1, it can be seen that in most datasets, the
coefficient rbf-linear ðα1Þ was the highest. In the Breast Can-
cer and Chronic Kidney Disease datasets, the effect of the
linear-rbf kernel alone resulted in the highest crossvalidation
accuracy. It can also be seen that in most datasets, the opti-
mal value of the coefficient γ was closer to 1 than to zero.

5.2. Precision. From the confusion matrix, the following pre-
cision values were calculated for each class in each dataset.

From the precision values in Table 2, it can be seen that
the PCA-GA-HKSVM had perfect precision in classes of
some datasets. In all datasets, the precision was above 0.75.

5.3. Recall. From the confusion matrix, the following recall
values were calculated for each class in each dataset.

From the recall values in Table 3, it can be seen that the
PCA-GA-HKSVM had perfect recall in classes of some data-
sets. In all datasets, the recall was above 0.7.

5.4. Comparison with Single Kernel Models. The table below
presents the accuracy of the PCA-GA-HKSVM in compari-
son with the single kernel models.

From the accuracy values in Table 4, it can be seen that
the PCA-GA-HKSVM achieved more than 80% accuracy
in all the datasets. It also out-performed the single-kernel
SVMs. The testing accuracy values were similar to the cross-
validation accuracy values; hence, the PCA-GA-HKSVM did
not overfit on the data.

The friedman() function in MATLAB was applied in
order to conduct Friedman’s test on the accuracies obtained
from 10 runs of 5-fold crossvalidation for each model and
dataset. Table 5 shows that the p values obtained for each

Table 5: p value from Friedman’s test.

Dataset p value

Respiratory diseases 0.0952

Nephritis 0.2610

Bladder inflammation 0.1251

Breast cancer 0.0537

Chronic kidney disease 0.0825

Lymphography 0.0943

Heart disease 0.0621

Table 6: Running time in seconds.

Dataset
PCA-GA-
HKSVM

RBF Linear Polynomial

Respiratory diseases 61.456 2.182 31.27 2.378

Nephritis 13.616 0.545 0.675 0.598

Bladder
inflammation

3.480 0.533 0.532 0.512

Breast cancer 62.737 0.800 2.233 6.557

Chronic kidney
disease

58.228 0.708 2.671 3.903

Lymphography 5.563 0.358 0.999 0.472

Heart disease 47.759 0.798 3.050 0.648
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dataset were all above 0.05, which is the maximum desired
value in order for the null hypothesis to be rejected.

From Table 6, it can be seen that the PCA-GA-HKSVM
has the longest training time. This is because of the addi-
tional PCA-GA steps in the process.

6. Conclusion

The main objectives of this project were to develop a new and
effective hybrid kernel-based SVM for disease diagnosis and to
use themodel in conjunction with feature selection and hyper-
parameter optimization. The following were achieved:

(i) Feature selection of disease data using PCA: it was
observed that selection of the most important fea-
tures helped to reduce the training time of the
model without reducing the accuracy

(ii) The creation of a new hybrid kernel based model
using a combination of local and global kernels: it
was observed that the resulting kernel offered satis-
factory performance in disease diagnosis using dif-
ferent datasets

(iii) Hyperparameter optimization of the created
HKSVM using GA: while this slowed down the
training process, it was quite efficient in finding
hyperparameter values that improved the accuracy
of the model

(iv) Performance evaluation for the new PCA-GA-
HKSVM technique: the PCA-GA-HKSVM tech-
nique generally had higher accuracy than the
single-kernel SVMs

Several drawbacks were also observed. This includes
slow training time and high p value from Friedman’s test.
Further work could involve more advanced vectorization
techniques to improve on running time and training on
larger datasets.

Data Availability

All the data used in the preparation of this paper are avail-
able from the authors upon request.
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