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Higher heating value (HHV) is one of the properties of biomass fuels which is essential in investigating their special characteristics
and potentialities. In this paper, various techniques based on Gaussian process regression (GPR) were utilized to assess this value
for biomass fuels, including several kernel functions, i.e., exponential, Matern, rational quadratic, and squared exponential. An
extensive databank was collected from literature. The findings were compared, and the results indicated that Exponential-based
model was more accurate, with the coefficient of regression (R2) of 0.961 and the mean relative error (% MRE) of 3.11 for total
data. Compared to former models presented by previous researchers, the model proposed in this study showed a higher ability
to predict output values. With various analyses, it can be concluded that the proposed method has a high rate of efficiency in
assessing the HHV of various biomass.

1. Introduction

The use of fossil fuels has problems and disadvantages such
as environmental pollution, asphaltene deposition, and lim-
ited resources [1–3]. There have been growing attempts at
reducing the use of conventional fossil fuels and finding suit-
able replacements to use in a world with an ever-increasing
population and industrial expansion, a compromised envi-
ronment, and steadily depleting energy sources. Among
these alternatives, biomass has become of particular interest
due to its carbon neutrality and ease in being processed
(e.g., chemically, thermally, and biochemically) to produce
energy [4]. In recent years, coal-fired power stations have
turned to use biomass to replace part of their fuel. This
way, without needing to change any of their equipment, they
can lower their use of coal and thus contribute to environ-
mental and economic prosperity [5, 6].

Characteristics of biomass fuel, before being incorporated
as a renewable source of energy, must be fully identified.
Among these characteristics, the higher heating value is fun-
damental for allocating the feedstock for specific uses. The
conventional method of measuring the HHV for liquid and
solid fuel is adiabatic oxygen bomb calorimetry, which is,
however, expensive and inefficient [7]. There are two
methods of finding correlations for HHV: ultimate and prox-
imate. The former is capable of identifying the composition
of the fuel and its elements [8] but is more expensive than
the latter method and cannot function without specific prior
experiments. This has led to the widespread use of the prox-
imate method of analysis [9]. This method works by first
determining the changes in the enthalpy of products and
reactants of a specific type of fuel. The procedure is not com-
plicated but it takes a long time and requires equipment that
might sometimes be unavailable. As a result, calculations are
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made by other empirical methods using the data from prox-
imate or elemental analysis. Proximate analysis, which is
simpler and faster, has more widespread use for measuring
the HHV. From the gathered data, fixed carbon (FC), volatile
matter (VM), and ash are the factors incorporated in calcula-
tions [10, 11].

In previous years, the use of artificial intelligence (AI)
methods has many applications in various fields, and
researchers have investigated complete and close analyses
to develop empirical methods (which mostly involve linear
and nonlinear models) to reliably approximate the HHV of
different types of biomass fuel [12]. Despite the efforts to
estimate biomass, the complications associated with its struc-
ture make understanding the relationship between HHV and
the data from proximate or ultimate analysis problematic. As
a result, attention has recently been turned to artificial intel-
ligence and its high potential to solve complicated problems.
Mesroghli et al. utilized ANN models to assess the HHV of
coal [13]. Ghugare et al. assessed the HHV of solid biomass
fuel utilizing MPL-ANN and GA-based models and used
ultimate analysis to find correlation [14]. Another attempt
at estimating HHV of biomass was undertaken by Hossein-
pour et al. [15] using iterative neural network-adapted partial
least squares. The data gathered by the proximate analysis
were incorporated into an ANFIS model by Akkaya to esti-
mate the heating value (HV) of biomass [16]. Uzun et al.
experimented with various ANN structures to estimate the
HHV of biomass [17]. Finally, Estiati et al. utilized ANN
together with a few linear models [18].

The present study involves expanding models of estimat-
ing the HHV for biomass fuels to replace the ultimate anal-
ysis with the proximate analysis, which is both cheaper and
faster. Innovative models are introduced based on Gaussian
process regression modeling including four kernel functions,
i.e., exponential, Matern, rational quadratic, and squared
exponential. To design the models, the data regarding the
HHV of various biomass were gathered from 382 studies.
A comparison is drawn of these models with those studied
and published in the past. The new models were further
studied for their efficacy and usefulness in six types of bio-
mass fuel.

2. Materials and Methods

2.1. Data Collection. The independent variables of volatile
matter (VM), ash (A), and fixed carbon (FC) content on
dry basis are the inputs in the present study. The output is
the data regarding the HHV of biomass. Here, the aim is to
find the most practical y or function f for the input data x1,
x2, x3, i.e., FC, VM, and A, and y or function f indicates
the HHV of biomass fuels.

The data from 382 proximate analyses regarding bio-
mass and their HHVs were gathered from open literature.
The data collected have been reported elsewhere [19]. The
data regarding HHV were categorized into the following
six groups:

(1) Byproducts of fruits

(2) Agri-wastes

(3) Wood chips and/or tree species

(4) Grasses, leaves, and fibrous materials

(5) Other waste materials

(6) Briquettes, charcoals, and pellets

Learning from literature, 30% of the data were randomly
set apart as a test set to prevent overtraining [20]. Designing
and training the nonlinear regression and AI models were
performed using the remaining 70%. The test dataset helped
examine the precision of the results and generalize the newly
proposed models.

2.2. Gaussian Process Regression. To establish Gaussian pro-
cess regression (GPR), it is required to select random training
dataset L = fxL,i, YL,igni=1 and testing dataset T = fxT ,i, YT ,igni=1
from a particular distribution. The training dataset is
employed to set the tuning parameters of the model [21, 22].
The testing dataset, which includes the excluded observations
of the previous stage, is utilized to perform the approximate
justification of the extended model. Also, x is the input vari-
able, while y denotes the target variable. They are impacted
by noise. The general form of GPR modeling is formulated
as [22]:

yL,i = f xL,ið Þ + εL,i, i = 1:2:3⋯⋯n, ð1Þ

in which xL is the independent variable of the learning dataset,
yL is the learning dataset target, and ε~Nð0, σ2noiseInÞ repre-
sents the observation noise of an independent Gaussian distri-
bution (where σ2

noise stand for the noise variance, while Inoise
represent the unit array variance). Then, the measured targets
are connected to the function f ðxÞ by using a Gaussian noise
model [23, 24]. It is worth mentioning that f values are
assumed to be random variables in the GP. Likewise,

yT ,i = f xT ,ið Þ + εT ,i,  i = 1:2:3⋯⋯::n, ð2Þ

in which xT is the testing dataset independent variable, while
yT is the testing dataset target. Also, f ðxÞ is a latent parameter
and has a GP distribution with a mean ofmðxÞ and covariance
of kðx, x’Þ [23].

f xT ,ið Þ ~ Gp m xð Þ, K x:x′
� �� �

: ð3Þ

To specify the mean function mðxÞ, one can utilize an
explicit basis function, even though it would lead to a complex
specification of a fixedmðxÞ. To simplify the calculations, one
can let mðxÞ be zero [25–27]:

f xL,ið Þ ~Gp 0, K x:x′
� �� �

: ð4Þ

One can combine Equation (1) and Equation (4) to obtain
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the prior distribution of y [25]:

y ~N 0, K x:x′
� �

+ σ2noiseIn
� �

: ð5Þ

The above equations could be collected as [27]:

⟶
f l

⟶
f T

2
66664

3
77775 ~N 0,

K xL:xLð Þ K xL:xTð Þ
K xT :xLð Þ K xL:xTð Þ

" # !
,

⟶
εl
⟶
εT

2
66664

3
77775 ~N 0,

σ2noiseIn 0

0 σ2noiseIn

" # !
:

ð6Þ

These equations can be summed up into a Gaussian
formulation as [21]:

⟶
yl
⟶
yT

2
66664

3
77775 ~N 0,

K xL − xLð Þ + σ2noiseIn K xL:xTð Þ
K xT :xLð Þ K xL:xy

� �
+ σ2noiseIn

" # !
:

ð7Þ

Then, the Gaussian conditioning rule could be applied to
find the posterior distribution of yT , [27]:

yT
!��yL!� �

~N μr ,〠r
� �

, ð8Þ

where the mean value and covariance are written as:

μT =m yTð Þ��!
= K xT :xLð Þ K xL:xLð Þ + σ2

noiseIn
� �−1

yL
!,

〠r = K xT :xTð ÞK xT :xTð Þ + σ2
noiseIn − K xT :xLð Þ K xL:xLð Þ + σ2

noiseIn
� �−1

K xT :xLð Þ:
ð9Þ

The theoretical GPR modeling concept is implemented. It
is possible to predict the testing dataset outputs through the
independent variable and training dataset [28]. These formu-
lations are supportive of the claim that the mean function
and covariance could provide a complete GP description
through the introduction of the Gaussian distribution. It is
important to select a Kernel function (i.e., a strong covariance
function) in the training phase. The Kernel matrix has a sym-
metric, invertible matrix. This contributes to GPR model
robustness in target prediction. To identify the optimal Kernel
function, the present study manipulated four common Kernel
functions, namely, (1) rational quadratic, (2) exponential, (3)
squared exponential, and (4) Matern functions, to perform
the learning process. The rational quadratic covariance func-
tion is defined as:

KRQ x:x′
� �

= σ2 1 +
x − x′2
2αℓ2

 !−α

, ð10Þ

in which σ denotes the amplitude, σ2 is the variance, ℓ repre-
sents the length scale, and α > 0 is the scale mixture that ascer-
tains the change weights at both small and large scales. The
exponential covariance function is formulated as:

KE x:x′
� �

= σ2 exp −
x − x′
ℓ

 !
: ð11Þ

The squared exponential covariance function is expressed
as:

KSE x:x′
� �

= σ2 exp −
x − x′
ℓ2

 !
: ð12Þ

Finally, the Matern covariance function is represented as:

KM x:x′
� �

= σ2
21−v

Γ vð Þ
ffiffiffiffiffi
2v

p x − x′
ℓ

 !
Kv

ffiffiffiffiffi
2v

p x − x′
ℓ

 !
, ð13Þ

where Γ is the gamma function, Kv represents the modified
Bessel function, and ℓ and v are positive variables. In fact,
the exponential covariance function and squared exponential
covariance function are two particular forms of the Matern
covariance function. Setting v to 0.5 converts the Matern
covariance function into the exponential covariance function.
Also, the Matern covariance function transforms into the
squared exponential covariance function at a v approaching
infinity. In light of its additional parameter (i.e., v) as a larger
degree of freedom, the Matern covariance function could
make more accurate estimates as compared to the exponential
and squared exponential covariance functions.

3. Results and Discussion

3.1. Analysis of Validity and Reliability. For the accuracy and
reliability evaluation of the developedGPRmodels in the higher
heating value prediction of biodiesels, the present study per-
formed a multivariable statistical test. This work coupled some
typical statistical measures and some graphical depictions.

3.2. Statistical Variables. For the performance evaluation of
the proposed models, the present study exploited the mean
square error (MSE), the mean of relative error (MRE), stan-
dard deviation (STD), root mean square error (RMSE), and
coefficient of determination (R2).
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Figure 1: A point-by-point comparison of the modeled estimates to experimental quantities under the (a) exponential, (b) Matern, (c)
squared exponential, and (d) rational quadratic kernel functions.

Table 1: A comparison of the models in MRE, RMSE, MSE, STD, and R-squared for the training, testing, and total data under various Kernel
functions.

Model Phase R2 MRE (%) MSE RMSE STD

GPR (exponential)

Train 0.973 2.70 0.45 0.67 0.46

Test 0.907 4.53 1.03 1.02 0.63

Total 0.961 3.11 0.58 1.02 0.52

GPR (Matern)

Train 0.951 3.57 0.78 0.88 0.59

Test 0.932 4.07 0.80 0.90 0.52

Total 0.944 3.82 0.83 0.90 0.59

GPR (squared exponential)

Train 0.941 3.40 0.72 0.85 0.58

Test 0.947 4.91 1.18 1.09 0.69

Total 0.940 3.99 0.89 1.09 0.62

GPR (rational quadratic)

Train 0.946 3.94 0.92 0.96 0.64

Test 0.928 3.65 0.59 0.77 0.40

Total 0.943 3.86 0.84 0.77 0.59
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MRE =
1
n
〠
n

i=1

yexp :,i

��� − ypred:,i
���

ypred:,i
,

MSE = 1
n
〠
n

i=1
yexp:i − ypred:i
� �2

,

RMSE =
ffiffiffiffiffiffiffiffiffiffi
MSE

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠
n

i=1
yexp:i − ypred:i
� �2s

,

STD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n − 1
〠
n

i=1

yexp:i − ypred:i
yexp:i

 !2
vuut ,

R2 = 1 −
∑n

i=1 ypred:i − yexp:i
� �2

∑n
i=1 ypred:i − yexp:i
� �2 :

ð14Þ

The statistical parameters related to the mentioned
models are calculated and given in Table 1. Dashti and his

colleagues used different models to predict the HHV data
[19]. The input and output data used in our paper are similar
to their work. The most powerful model they presented was
the GARBF model, which has ability to estimate the target
values with R2 and MSE equal to 0.9500 and 0.7401, respec-
tively. However, according to the values obtained in Table 1
of our paper, the GPR (exponential) model has the ability
to estimate these values with an accuracy of 0.961 and 0.58,
respectively.

3.3. Point-by-Point Agreement Plot. Figure 1 compares the
HHV estimates of the GPR models to the measured values,
in which “Data Index” represents the sample number, “Train
Exp.” Represents the experimental training set, “Train Out-
put” stands for the training set estimate, “Test Exp.” denotes
the experimental testing dataset, and “Test Output” repre-
sents the testing dataset estimates. According to this figure,
most estimates are in good agreement with the experimental
data points in all the models. Also, the exponential approach
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Figure 2: A cross plot comparison of the modeled estimates to the experimental data under the (a) exponential, (b) Matern, (c) squared
exponential, and (d) rational quadratic kernel functions.
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has the highest accuracy and lowest discrepancy. This is
supportive of the statistical evaluation findings.

3.4. Cross Plot. Figure 2 illustrates the cross plots of experi-
mental HHV quantities versus the corresponding estimates.
It further supports the reliability of the proposed models.
As can be seen, the linear trend with an R2 range of 0.90-
0.97 demonstrates that the predictions and measurements
are consistent for both the training and testing datasets. As
can be seen in Figure 2(a), the most accurate results were
obtained by the exponential kernel function.

3.5. y ~ y ~ Relative Deviation Distribution. Figure 3 depicts
the relative deviation distributions of the HHV estimates of
the developed GPR models. It should be noted that the rela-
tive deviation (RD) is calculated as:

RD %ð Þ = 100 ×
yexp :,i − ypred:,i

yexp :,i

 !
: ð15Þ

These graphs help determine the degree to which the cal-
culations are realistic based on the experimental quantities.
The reliability of the estimates is described by locations of
the training and testing data points concerning the horizon-
tal zero-line. According to Figure 3, most relative deviations
were found to be from -20% to 20%, which is a favorable
range. Furthermore, the points are mostly resting near the
horizontal line (Figure 3(a)), in particular those of the expo-
nential kernel function.

3.6. Sensitivity Analysis. The present study employed a sensi-
tivity analysis to relate the exponential outputs to the inde-
pendent input variables. Furthermore, this work employed
the relevancy factor (RF) as Pearson’s method as [29, 30]:

RF = ∑n
i=1 xk − xk:ið Þ2∑n

i=1 �y − yið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i=1 xk − xk:ið Þ2∑n
i=1 �y − yið Þ2

q , ð16Þ

in which k denotes the input type, while n represents the
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Figure 3: Relative deviations of the GPR models versus HHV measurements under the (a) exponential, (b) Matern, (c) squared exponential,
and (d) rational quadratic kernel functions.
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Figure 5: William plots of (a) exponential, (b) Matern, (c) squared exponential, and (d) rational quadratic kernel functions.
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number of data points. Also, x is the input value, �xk is the aver-
age value of input k, y is the target, and �y is the average value of
the target [31, 32]. RF varies in the range of [-1, 1]; a negative
RF represents an inverse relationship between the inputs and
output, while a positive RF stands for a direct relationship. A
smaller difference between RF and the above-mentioned limits
would imply a stronger input-output relationship.

Figure 4 shows the relative deviation results of the pro-
posed models. As can be seen, all input variables have a direct
effect on the HHV. Hence, the proposed models can be said
to be able to emulate the effects of several inputs on the
target.

3.7. Outlier Detection. Laboratory data values are always
accompanied by uncertainty. The present work employed
the Williams plot of standardized residuals (R) versus lever-
age (H) to shed some light on uncertain points. The diagonal
entries represent the leverage values in the projection matrix

H = XðXTXÞ−1XT , in which X represents the explanatory
variable matrix, while T stands for the transpose matrix oper-
ator [33, 34]. A leverage value above the threshold implies
uncertainty and a high-leverage point. The leverage thresh-
old is obtained as [35, 36]:

H∗ =
3 number of inputs + 1ð Þ
number of data points

: ð17Þ

Figure 5 illustrates the William plots of the proposed
models. One can qualify the data points based on the corre-
sponding locations in the plots. The model applicability
domain is represented by the squared area of −3 ≤ R ≤ 3
and H <H∗. The area of ≤R ≤ 3 and h >H∗ represents the
good high leverage data. A question mark represents the
model’s ability to estimate data points resting in this area.
The points that lie in the domains R > 3 or R < −3 are referred
to as the bad high leverage data (i.e., outliers). According to
Figure 5, a small number of points exist in the bad high lever-
age and good high leverage areas; the remaining points fall in
the model applicability domain.

4. Conclusion

The present study adopted GPR and implemented a compre-
hensive modeling work on extensive data collected from the
literature. HHV was modeled as a function of fixed carbon
(FC), volatile matter (VM), and ash s by using four Kernel
functions. The data were divided into training and testing
datasets. This study utilized cross plots, relative deviation
diagrams, sensitivity analyses, and Williams plots along with
the parametric analysis of errors (including MRE, MSE,
RMSE, and R2). The developed GPR models were found to
have high performance in the HHV estimation of biodiesels.
The exponential function exhibited the highest accuracy,
while the squared exponential function showed the lowest
accuracy—the MRE and adjusted R2 were calculated to be
3.11% and 0.961 for the exponential function, respectively,
while they were obtained to be 3.99% and 0.94 for the
squared exponential function, respectively. The cross plots
and relative deviations demonstrated satisfactory consistency

between the HHV measurements and estimates. Finally, the
outlier analysis was performed to evaluate data validity and
GPR model reliability.

Data Availability

The data used to support the findings of this study are pro-
vided within the paper.
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