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Alzheimer’s disease is a common neurodegenerative disease in the elderly. This study explored the curative effect and possible
mechanism of Acori graminei rhizoma on Alzheimer’s disease. In this paper, 8 active components of Acori graminei rhizoma
were collected by consulting literature and using the TCMSP database, and 272 targets were screened using the PubChem and
Swiss Target Prediction databases. Introduce it into the software of Cytoscape 3.7.2 and establish the graph of “drug-active
ingredient-ingredient target.” A total of 276 AD targets were obtained from OMIM, Gene Cards, and DisGeNET databases.
Import the intersection targets of drugs and diseases into STRING database for enrichment analysis, and build PPI network in
the Cytoscape 3.7.2 software, whose core targets involve APP, AMPK, NOS3, etc. GO analysis and KEGG analysis showed that
there were 195 GO items and 30 AD-related pathways, including Alzheimer’s disease pathway, serotonin synapse, estrogen
signaling pathway, dopaminergic synapse, and PI3K-Akt signaling pathway. Finally, molecular docking was carried out to verify
the binding ability between Acori graminei rhizoma and core genes. Our results predict that Acori graminei rhizoma can treat
AD mainly by mediating Alzheimer’s signal pathway, thus reducing the production of Aβ, inhibiting the hyperphosphorylation
of tau protein, regulating neurotrophic factors, and regulating the activity of kinase to change the function of the receptor.

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease
characterized by a severe decline in cognitive function and
memory. The main pathological features were abnormal
deposition of A β and nerve fiber tangles formed by hyper-
phosphorylated tau protein accumulation [1, 2]. At present,
cholinesterase inhibitors are commonly used to improve the
patients’ cognitive function with AD [3], but these drugs can
only alleviate the disease but cannot reverse the disease’s
progression. Further studies have shown that the etiology
of Alzheimer’s disease may be related to a series of complex
factors, such as heredity and obesity [4]. In diseases with
complex pathogenesis, the study of the “multi-component,
multi-target” drug action mechanism plays a prominent role
[5]. As a multicomponent and multitarget discipline system,

network pharmacology has its unique advantages in study-
ing complex molecular mechanisms [6, 7].

In traditional Chinese medicine, AD is often classified as
“dementia” caused by brain marrow deficiency and evil, dis-
turbing brain orifices [8]. The data show that traditional
Chinese medicine has used buxu, kaiqiao, dissipation blood
stasis, and activating blood circulation to treat AD, and the
curative effect is reliable [9, 10]. Acori graminei rhizoma
(AGR) is a famous Chinese herbal medicine with a pungent
taste and warm nature. It has the effect of Xingshen Yizhi
and occupies the first place in the single traditional Chinese
medicine for the treat AD. Acori graminei rhizoma is widely
used in many fields, such as Alzheimer’s disease, epilepsy,
amnesia, aphasia caused by stroke, and tinnitus. Further-
more, it has been found that Acori graminei rhizoma can
play the role of anti-β-amyloid protein (A β) deposition,
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anticentral cholinergic nerve function damage, and anti-
neuronal apoptosis [11, 12]. However, the pharmacological
research on the treatment of AD is not perfect. In this paper,
the network relationship between active components and
targets of Acori graminei rhizoma and AD was analyzed by
using the method of network pharmacology to provide a
molecular study on the mechanism of action of Acori grami-
nei rhizoma in treating AD.

2. Materials and Methods

2.1. Screening of Components of Acori Graminei Rhizoma.
Acori graminei rhizoma’s chemical constituents were
obtained by consulting the literature and TCMSP database
(http://lsp.nwu.edu.cn/tcmsp.php). In this study, the chemi-
cal components of Acori graminei rhizoma were screened
based on the pharmacokinetic parameters: absorption, dis-
tribution, metabolism, and excretion (ADME). The screen-
ing conditions were oral bioavailability ðOBÞ ≥ 30% and
drug − like ðDLÞ ≥ 0:18. Additionally, a chemical acting on
a specific part of the brain must effectively penetrate the
blood-brain barrier (BBB) to reach the brain target. To study
the mechanism of action of Acori graminei rhizoma on ner-
vous system diseases, BBB can be used as a screening index,

and the threshold value of BBB ≥ −0:30 (it is considered that
the molecule has certain permeability) is used as a threshold.
Finally, the active components of Acori graminei rhizoma,
which are not included, are collected and supplemented by
literature.

2.2. Acquisition of Component Targets. Import the compo-
nents into the PubChem database (https://Pubchem.ncbi
.nlm.nih.gov/), search and collect the 2D structure of the
components, import them into the Swiss Target Prediction
database (http://www.swisstargetprediction.ch/), and obtain
the component targets. Then, using the target protein name
in the Uniprot database (http://www.Uniprot.org), the genes
were standardized and sorted out, and finally, possible target
genes for the compound’s action were downloaded and
sorted out.

2.3. Acquisition of AD Targets. Search for “Alzheimer’s dis-
ease” in OMIM database (https://www.omim.org/), CTD
database (http://CTD.mdibl.org/), and Gene Cards database
(https://www.genecards.org/). Using Excel combined data,
the target protein was introduced into the Uniprot data-
base for gene standardization, and coincident genes were
removed to collect AD disease genes.

Table 1: Information of 8 active chemical constituents selected from Acori graminei rhizoma.

Molecule ID Molecule name Component number OB DL BBB

MOL002955 2′-O-Methylisoliquiritigenin AGR1 75.86 0.62 -0.16

MOL003571 Spathulenol AGR2 81.61 0.78 1.55

MOL003553 Calamendiol AGR3 61.13 0.18 0.67

MOL000269 Elemicin AGR4 21.94 0.06 1.28

MOL003549 Gamma-asarone AGR5 22.76 0.06 1.33

MOL002124 β-Asarone AGR6 35.61 0.06 1.24

MOL003547 α-Asarone AGR7 38.39 0.06 1.18

MOL000254 Eugenol AGR8 56.24 0.04 1.32
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Figure 1: Structure of 8 active components selected from Acori graminei rhizoma.
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2.4. Construction of “Drug-Active Ingredient-Target” Network.
The molecular formulas of the Acori graminei rhizoma
components were expressed by AGR1-AGRn (AGR is the
abbreviation of “Acori graminei rhizoma”). The compo-
nents and corresponding targets were introduced into the
Cytoscape3.7.2 software to construct the “drug-active
ingredient-target” network and then analyze it. In the
network, the active components and protein targets are
represented by a node, and an edge connects the nodes.
Acori graminei rhizoma’s core targets in AD treatment were
analyzed according to the betweenness centrality (BC),
closeness centrality (CC), and the median of Degree.

2.5. Construction of Intersection Target Network between
Drugs and Diseases. The intersection gene was introduced
into Wei Shengxin website (http://bioinfogp.cnb.csic.es/
tools/Venn/index.html), and the Venn diagram was used
to show the common target of AGR and AD. The intersec-

tion gene was introduced into the STRING database
(https://string-db.org/) and searched under the condition
of Homo sapiens. 0.40 and 0.70 were used as the moderate
correlation threshold and high correlation threshold of
Acori graminei rhizoma. The Node1 and Node2 in the
results were introduced into the Cytoscape 3.7.2 software.
The topological analysis and calculation were carried out using
the Network Analyzer tool to construct the “component-
target-disease” network. The core target was predicted accord-
ing to the median of BC, CC, and Degree value.

2.6. GO Analysis and KEGG Analysis. Gene ontology (GO)
analysis and Kyoto Encyclopedia of Gene and Genome
(KEGG) analysis can provide gene expression data and sys-
tematic visualization information of target genes. In this
study, GO analysis and KEGG functional annotation and
enrichment analysis were carried out by using DAVID 6.8
database (https://david.ncifcrf.gov/). According to “P ≤ 0:01”
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Figure 2: “Drug-active ingredient-component target” network.
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on the Wei Shengxin website (http://www.bioinformatics
.com.cn/), significantly enriched biological annotations
were screened out according to biological information.
GO analysis chart and KEGG analysis bubble chart were
drawn to predict the pathway of Acori graminei rhizoma
in AD treatment.

2.7. Molecular Docking of “Drug Components-Core Targets.”
The LEDOCK molecular docking software was used to verify
the molecular docking, between Acori graminei rhizoma’s
active components and the core targets in the network
analysis, to explore the binding degree between the active
components and the core targets.

3. Results

3.1. Screening of Active Chemical Constituents of Acori
Graminei Rhizoma. In this study, there were a total of 105

chemical constituents of Acori graminei rhizoma in the
TCMSP database. Three components were screened and
numbered according to the conditions of OB ≥ 30%, DL ≥
0:18, and BBB ≥ −0:30, including 2′-O-methylisoliquiriti-
genin, calamendiol, and spathulenol. The molecule ID in
the table is the identity information of the component, the
name of molecule is the compound name of the ingredient,
and the component number represents the coding sorted
by the acronym of Acori graminei rhizoma.

Modern studies have shown that elemicin, gamma-
asarone, β-asarone, α-asarone, and eugenol are significant
constituents in Acori graminei rhizoma, while ADME
parameters of the above ingredients are outside the range
of screening in the TCMSP database. Our group added
them to the list, so there are eight components in total,
as shown in Table 1 and Figure 1.

HMOX1

GSK3B MPO
QPCT

SOAT1

HTR2C
PSEN2

CETP

SLC6A3

CDK5R1

HTR1A

DRD2

MTNR1A

HTR2A

CHRNA7

MAOB

MAPT

APP

CASP3

MAPK1

VEGFA

CALM1
INSR

NOS3

VCP

PDE4D

ESR2

CYP19A1

HSD11B1 CTSB

HDAC2

TTR

ACHE

LRRK2

ESR1

BACE1

Figure 4: Construction of protein-protein interaction network of
Acori graminei rhizoma under 0.4 threshold. 36 nodes represent
36 proteins, and 138 edges represent the interactions between 138
pairs of proteins. The size and color of the node represent the
degree, and the size and color of the edge represent the
comprehensive score.

Table 2: Topological values of core targets in protein-protein
interaction networks.

Core target Betweenness centrality Closeness centrality Degree

APP 0.36432506 0.72916667 23

CASP3 0.12727436 0.66037736 18

MAPK1 0.10814869 0.625 16

MAPT 0.05142191 0.60344828 14

VEGFA 0.05260249 0.58333333 12

ACHE 0.03699421 0.56451613 12

GSK3B 0.02680704 0.57377049 11

ESR1 0.04004646 0.58333333 11

LRRK2 0.01789274 0.56451613 11

DRD2 0.03274326 0.53030303 10
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Figure 5: Construction of a protein-protein interaction network
expressed by a common target at a threshold of 0.7. 30 nodes
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236 36 240

Alzheimer’s diseaseAcori graminei rhizoma

Figure 3: Venn diagram of the overlapping genes of Acori
graminei rhizoma and Alzheimer’s disease.
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3.2. Targets of Drug Ingredients. Imported the above eight
components into the PubChem database and Swiss Target
Prediction database and obtained the effective component
targets of Acori graminei rhizoma. The result included 657
targets, and after removing the repetition value, there
remained 272 targets in total.

3.3. Targets for AD Disease. Entered “Alzheimer’s disease”
into the OMIM database, Gene Cards database, and CTD
database to get the disease target, where the relevance score
or inference is greater than 0. Finally, we combined the data-
base information and deleted the coincident genes. Then, the
result consisted of 276 pieces of target information related to
AD diseases.

3.4. Construction and Analysis of the Drug-Target Network.
We used the Cytoscape 3.7.2 software to construct a PPI net-
work of drug-active ingredient-component targets based on
the previous results. The blue diamond represents the active
compound of Acori graminei rhizoma, the cyan octagonal
represents the target gene, and the green square represents
Acori graminei rhizoma, as shown in Figure 2. The network
has 281 nodes (1 drug node, eight active component nodes,
272 target nodes, and 577 edges). Network Analyzer calcu-
lates the PPI network. The median of BC and CC was
0.00006847 and 0.318182, respectively, and the median of
2 times of Degree value was 4. The core node needs to meet
the median card value of the above parameters. The value of
β-asarone and α-asarone is higher, followed by 2′-O-methy-
lisoliquiritigenin and other components. These active com-

ponents with higher parameters may play a relatively
important role in treating AD disease, and these compo-
nents may be drug docking targets.

3.5. Construction and Analysis of “Drug Ingredient-Target-
Disease” Network. The Venn diagram of the intersection
target was drawn through the Wei Shengxin website to ana-
lyze the intersection target between the component target of
Acori graminei rhizoma and AD. As shown in Figure 3, we
found 36 intersection targets between the component target
of Acori graminei rhizoma and AD, and the common targets
were APP, CASP3, MAPK1, ACHE, and others.

The purpose of uploading the above 36 targets to the
STRING database was to draw the protein-protein interac-
tion (PPI) network between drugs and diseases and then
gained the visual analysis through the Cytoscape 3.7.2 soft-
ware. The size and color of the node are correlated with
the Degree value positively. The larger the Degree value,
the larger the node and the darker the color, indicating that
the target is more important in this network relationship.
A PPI network with a threshold of 0.4 is constructed
(Figure 4). BC ≥ 0:00819305, CC ≥ 0:493055555, and Degree
≥ 14 (2 times median) are calculated by the Cytoscape 3.7.2
software. The core targets APP, CASP3, MAPK1, MAPT,
VEGFA, ACHE, GSK3B, ESR1, LRRK2, DRD2, and so on,
which are located in the center of the network and have
a high overall score, are selected and used as molecular
docking targets (Table 2). To calculate BC ≥ 0:00400246,
CC ≥ 0:4084507, and Degree ≥ 6 (2 times the median), we
constructed a PPI network with a threshold of 0.7
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Figure 6: GO analysis results. The results of biological processes show that Acori graminei rhizoma mainly mediates the response of the
disease to drugs and participates in signal transduction. The results of cell composition show that the plasma membrane and cytoplasm
are the key regions. The results of molecular function study show that binding to protein is the main pathway of action.
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(Figure 5), calculated the common target genes, and
deleted the unconnected nodes in a further study. The net-
work shows that APP, MAPK1, MAPT, NOS3, VEGFA,
and CASP3 are situated in the network center. The results
of the central target of Acori graminei rhizoma in the
treatment of AD disease suggest that it may play an effi-
cient role in the pharmacological action of Acori graminei
rhizoma.

3.6. Functional Pathway Annotation of Drug Ingredient
Targets. In this study, a total of 195 GO items were enriched,
and the first 15 GO items with the lowest P value were
selected for mapping (P < 0:05), as shown in Figure 6. The
Y-axis represents the GO entry, and the area size of the
X-axis and bar chart represents the number of genes belong-
ing to GO in the target gene set. In the biological process
(BP), the typical targets are mainly concentrated in the
response to drugs, the positive regulation of cell proliferation,
the response to nicotine, the response to hypoxia, the nega-
tive regulation of apoptosis, and so on. In the cellular compo-
nent (CC), the typical targets are mainly concentrated in the
plasma membrane, cytoplasm, extracellular body, mem-
brane, etc. In terms of molecular functional (MF), the typical
targets are mainly related to protein binding, enzyme bind-

ing, same protein binding, protein homodimerization activ-
ity, drug binding, and so on.

We obtained a total of 30 enrichment pathways through
KEGG pathway enrichment and drew the bubble diagram
according to the first ten pathways with the lowest P value
combined with biological annotations (Figure 7). Y-axis rep-
resents the name of the pathway, X-axis and bubble area
represent the number of genes belonging to this signal path-
way in the target gene set, and bubble color represents
enrichment significance, that is, the size of P value. These
common targets are enriched in Alzheimer’s disease, seroto-
nergic synapses, HIF-1 signal pathways, estrogen signaling
pathways, alcoholism, cocaine addiction, dopaminergic syn-
apses, prolactin signal pathways, gap junctions, and neuro-
active ligand-receptor interactions. The analysis of this
series of practical tests can provide valuable information to
explain the possible mechanism of Acori graminei rhizoma
in AD treatment.

3.7. Results of “Drug Component-Core Target” Molecule
Docking. The study used ten core targets with a high score
in protein-protein interaction for molecular docking. Since
there was no data on LRRK2, the rest nine core targets were
selected to conduct molecular docking with Acori graminei
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Figure 7: KEGG results show that related pathways include Alzheimer’s disease, serotonergic synapses, estrogen signal pathways,
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rhizoma. The docking score is shown in Table 3. It is gener-
ally believed that a score of less than 5 kJ/mol indicates a
good binding activity between the compound and the target.
The molecular docking results show that the score of core
compounds (β-asarone, α-asarone, 2′-O-methylisoliquiriti-
genin, gamma-asarone) and core targets (APP, CASP3,
MAPK1, ACHE) is less than 5 kJ mol-1, indicating that the
core compounds have good binding activity with core tar-
gets. The docking mode between β-asarone and nine core
targets is shown in Figure 8.

4. Discussion

Studies have shown that among the single drugs of tradi-
tional Chinese medicine in treating Alzheimer’s disease,
Acori graminei rhizoma appears with the highest frequency
[13, 14], so we choose Acori graminei rhizoma as the
research object, which has a significant clinical application
value. Eight candidate active components such as α-asarone,
β-asarone, and eugenol in Acori graminei rhizoma were
screened in this study. The “drug-active ingredient-target”
network diagram was constructed by the Cytoscape 3.7.2
software, and it was found that a complex interaction

between components and target. The PPI network of
“component-target-disease” is constructed based on the
STRING database. According to the topology parameters,
the factors with high scores are APP, CASP3, MAPK1,
MAPT, VEGFA, ACHE, GSK3B, ESR1, LRRK2, DRD2,
and so on. A close relationship exists between amyloid
precursor protein (APP) and β-amyloid protein (A β) accu-
mulation. APP produces A β through secretase cleavage.
Excessive secretion and accumulation of A β in the brain will
cause cytotoxicity and injury, cause an inflammatory reac-
tion, and finally lead to nerve cell apoptosis and degenerative
lesions [15–17]. Caspase-3, as a highly enriched molecule in
PPI analysis, can directly and effectively cleave APP to the
direction of A β formation [18]. Interestingly, acetylcholin-
esterase (AChE) can not only hydrolyze acetylcholine
(ACh) but also accelerate A β aggregation and amyloid fibril
formation [19]. The D2 receptor in the dopamine-related
pathway is closely related to the abnormal accumulation of
tau protein. Clinical use of D2 receptor antagonists can
reduce the concentration of insoluble tau protein and neuro-
toxicity [20]. The change of glycogen synthesis kinase (GSK3
β) activity affects tau hyperphosphorylation and participates
in AD’s formation and development [21]. The activity of

Table 3: Results of molecular docking of key targets and their corresponding compounds.

Serial number Core target Compound LeDock score

1

APP

α-Asarone -11.83 kJ/mol

2 β-Asarone -11.58 kJ/mol

3 2′-O-Methylisoliquiritigenin 15.72 kJ/mol

4

CASP3

α-Asarone -14.00 kJ/mol

5 β-Asarone -14.04 kJ/mol

6 2′-O-Methylisoliquiritigenin -24.45 kJ/mol

7

MAPK1

α-Asarone -14.63 kJ/mol

8 β-Asarone -15.05 kJ/mol

9 2′-O-Methylisoliquiritigenin -23.12 kJ/mol

10

MAPT

α-Asarone -14.55 kJ/mol

11 β-Asarone -14.63 kJ/mol

12 2′-O-Methylisoliquiritigenin -23.24 kJ/mol

13

VEGFA

α-Asarone -14.80 kJ/mol

14 β-Asarone -14.80 kJ/mol

15 2′-O-Methylisoliquiritigenin -19.31 kJ/mol

16

ACHE

α-Asarone -15.51 kJ/mol

17 β-Asarone -15.59 kJ/mol

18 2′-O-Methylisoliquiritigenin -24.70 kJ/mol

19

GSK3B

α-Asarone -13.54 kJ/mol

20 β-Asarone -13.60 kJ/mol

21 2′-O-Methylisoliquiritigenin -22.74 kJ/mol

22

ESR1

α-Asarone -15.35 kJ/mol

23 β-Asarone -15.38 kJ/mol

24 2′-O-Methylisoliquiritigenin -23.49 kJ/mol

25

DRD2

α-Asarone -14.84 kJ/mol

26 β-Asarone -15.17 kJ/mol

27 2′-O-Methylisoliquiritigenin -21.57 kJ/mol
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GSK3 β is regulated by the classical antiapoptotic signal
pathway phosphatidylinositol 3-kinase/protein kinase B
(PI3K/AKT) pathway [22–24]. At the same time, mitogen-
activated protein kinase (MAPKs) is another important
pathway to regulate cell growth and apoptosis, in which
the p38MAPK pathway is also related to the pathogenesis
of AD. The activation of p38MAPK leads to hyperphosphor-
ylation of tau, which leads to neurofibril entanglement.
p38MAPK accelerates the course of AD by producing neu-
rotoxic proinflammatory factors, increasing A β deposition,
and activating caspase-3 to induce apoptosis of hippocampal
neurons [25].

In this study, 10 key targets of Acori graminei rhizoma
in treating AD were obtained, but the LRRK2 lacked relevant
data so that the rest nine targets were selected for molecular
docking with drugs. The molecular docking of 2′-O-methy-
lisoglycine to the core target is very strong, which suggests
that it has a research prospect. In molecular docking, we
found that β-asarone has a strong binding activity with
APP, and it also has a good performance in the docking dia-
gram. In the process of consulting the relevant literature, we
found that β-asarone can indeed affect the related targets of
AD, which suggests that β-asarone may be a key component
in treating AD. β-asarone may reduce the production of A β
and reduce the toxic damage of A β to neurons and synaptic
ultrastructure by inhibiting the overexpression of APP or
promoting the decomposition and excretion of APP [26].
At the same time, β-asarone can inhibit the phosphorylation
of JNK in hippocampal neurons, upregulate the expression
of Bcl-2 protein, and downregulate the expression of
caspase-3 at the transcriptional level, thus play a role in anti-
apoptosis of hippocampal neurons [27]. Other studies have

shown that β-asarone in the volatile oil of Acori graminei
rhizoma can restore the phosphorylation level of GSK-3 β
and activate Wnt/β-catenin pathway, thus reducing AD
caused by tau hyperphosphorylation and A β accumulation
[28]. Furthermore, β-asarone has the effect of acetylcholine
inhibitor to reduce AChE and can inhibit the production of
A β 42 [29], which can alleviate the AD’s development. Inter-
estingly, other components of Acori graminei rhizoma also
play a specific role in interfering with AD. Eugenol in the
component inhibits NF-κB and MAPK pathway and has
antiapoptosis and antioxidant activities and may also play a
role in treating AD [30, 31]. α-Asarone can protect glial cells
by inhibiting the release of inflammatory cytokines [32, 33].

To explain the selected key targets’ role in gene function
and signal pathway, GO functional enrichment analysis and
KEGG pathway enrichment analysis were carried out in this
study. According to the analysis results, some common
targets are enriched in Alzheimer’s disease, serotonergic syn-
apses, HIF-1 signal pathways, estrogen signal pathways,
dopaminergic synapses, neuroactive ligand-receptor interac-
tions, and so on. Serotonin can maintain nerve excitability.
When its expression decreased, it will aggravate brain
neuron damage and clinical manifestation of cognitive
impairment [34]. Eugenol in Acori graminei rhizoma can
normalize the concentration of 5-hydroxytryptamine in the
brain [35], which helps recover nerve injury and improve
AD symptoms. In the treatment of β-asarone combined with
L-dopa, it was found that β-asarone may reduce dopaminer-
gic neurons’ damage by regulating the HSP70/MEF2D/
Beclin1 pathway in rats [36]. It corresponds to the dopami-
nergic synapses in KEGG analysis, and the dopamine system
plays an efficient role in the pathological process of AD.

APP CASP3 MAPK1

MAPT VEGFA ACHE

GSK3B ESR1 DRD2

Figure 8: Molecular docking diagram of β-asarone and core target.
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Figure 9: Hypothetical mechanism of Acori graminei rhizoma in the treatment of AD (the yellow box is the signal pathway, the red box is
the target of the direct action of the drug, and the green box is the participating biological process).
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Interestingly, only moderate dopamine signals can opti-
mize the cognitive function of brain [37]. Estrogen receptor
(ESR1) is one of our group’s core targets [38], and the estro-
gen pathway is one of the crucial pathways obtained from
enrichment analysis. Studies have shown that estrogen has
a neuroprotective effect on AD [39], but the expression of
estrogen or ESR1 in AD is downregulated [40]. β-Asarone,
one of the main components of Acori graminei rhizoma,
decreased the concentration of calcium, inhibited apoptosis,
and alleviated the dementia damage of vascular endothelial
cells induced by β-amyloid protein in the AD cell model
[41]. Studies have shown that ESR1 may participate in
AD’s pathophysiology by regulating the transport of calcium
ions. However, there are no specific studies to show whether
Acori graminei rhizoma can regulate calcium concentration
through the estrogen pathway to restore normal brain func-
tion by affecting ESR1. It needs further exploration. In order
to facilitate the discussion and analysis of the mechanism of
Acorus tatarinowii in the treatment of Alzheimer’s disease,
our research team selected the more relevant signal path-
ways, action targets, and biological processes and made a
hypothetical mechanism diagram (Figure 9).

5. Conclusion

To sum up, in this study, the network pharmacology method
was used to analyze the complex network relationship
between multicomponents as well as multitargets of Acori
graminei rhizoma and AD disease targets, which was to
explore the molecular mechanism of Acori graminei rhi-
zoma in the treatment of AD. As a result, we found promi-
nent signal molecules such as APP, CASP3, and MAPK1,
as well as key signal pathways like Alzheimer’s disease and
serotonergic synapses. Among them, pathways, for instance,
alcoholism and cocaine addiction, are closely related to the
pathogenesis, suggesting that these potential pathways are
worth studying. At the same time, we predict that the main
components of Acori graminei rhizoma in treating of AD
are α-asarone and β-asarone. The therapeutic effect of Acori
graminei rhizoma on AD has been carried out clinically, and
the curative effect is remarkable. On this basis, this study pre-
liminarily verified the pharmacological mechanism of Acori
graminei rhizoma in the treatment of AD, which laid a foun-
dation for further research from the level of cell biology.
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