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This study will concentrate on recent research on EEG signals for Alzheimer’s diagnosis, identifying and comparing key steps of
EEG-based Alzheimer’s disease (AD) detection, such as EEG signal acquisition, preprocessing function extraction, and
classification methods. Furthermore, highlighting general approaches, variations, and agreement in the use of EEG identified
shortcomings and guidelines for multiple experimental stages ranging from demographic characteristics to outcomes
monitoring for future research. Two main targets have been defined based on the article’s purpose: (1) discriminative (or
detection), i.e., look for differences in EEG-based features across groups, such as MCI, moderate Alzheimer’s disease, extreme
Alzheimer’s disease, other forms of dementia, and stable normal elderly controls; and (2) progression determination, i.e., look
for correlations between EEG-based features and clinical markers linked to MCI-to-AD conversion and Alzheimer’s disease
intensity progression. Limitations mentioned in the reviewed papers were also gathered and explored in this study, with the goal
of gaining a better understanding of the problems that need to be addressed in order to advance the use of EEG in Alzheimer’s
disease science.

1. Introduction

Alzheimer’s disease (AD) is a neurological disease and is also
the most common form of age-related dementia in today’s
culture. In 2018, it was reported that 50 million people glob-
ally have Alzheimer’s disease. In 2030, this figure will be
around 82 million, and in 2050, it will be around 152 million
[1]. In recent decades, there has been a growing focus on
using advanced electroencephalography (EEG) signal
processing to predict or differentiate Alzheimer’s disease.
Neuroimaging studies have been extensively used to investi-
gate the causes of AD and to increase the accuracy of AD
diagnosis [2]. Since the brain is such a complex structure with
complex nonlinear dynamics, complexity studies utilizing
data from brain imaging such as EEG, magneto-encephalo-
grams, and functional magnetic resonance imaging (fMRI)
are becoming more common fMRI [3]. In several experi-

ments, brain impulses from just one channel, such as an elec-
trode in EEG, a channel in magneto-encephalograms, or a
voxel in fMRI, were studied. The brain complexity waves
have recently been utilized to help explain the complexity
of AD disorders [4]. Sufficient research into brain imaging
modalities may help to describe the pathways underlying
AD and to provide valuable evidence for the diagnosis.
Recently, some research has shown that degrees of difficulty
may be used as biomarkers in the early detection of AD.
There is currently no systematic study that reviews the vari-
ous modulation techniques and discusses the complexity of
AD brain disorders. Optimizing EEG analysis is important
for designing low-cost, noninvasive wearable applications to
screen Alzheimer’s patients [5]. The choice of critical EEG
channels may also aid in the development of new wearable
technologies and the optimization of computing resources.
Many experiments have looked at multiscale entropy
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(MSE) and MSE-based measurements of EEG signals from
Alzheimer’s patients [6].

MSE represents the degree of healthfulness of a biologi-
cal process by its production physiologic signals through
measuring the complexity of a physiologic time series over
various time scales [5]. Many experiments have shown that
the MSE values of EEG signals from normal persons are
higher on small scales than those from AD patients, but
lower on large scales than someone from AD patients [5,
7]. Furthermore, at broad scales, the slope of the MSE vs.
size plot was observed to be higher for AD patients than
for healthy controls. The EEG is a noninvasive experimental
tool that shows how brain synapses work in real time. Quan-
titative EEG (qEEG) research offers many perspectives on
EEG signals, including frequency, dynamic alterations, and
source imaging. Various researches have explained that
qEEG can diagnose the foregoing anomalies in AD patients
[8]: (1) changes in EEG patterns, (2) decreased coordination,
(3) diminished sophistication, and (4) neuromodulator
defects as potential markers for brain activity assessment.
Furthermore, qEEG offers objective and quantifiable data
that can be replicated in subsequent trials, as well as the ben-
efits of having less laboratory protocols and lower costs [8].
This makes it ideal for screening large-scale and early detec-
tion of AD. For the purpose, EEG has been thoroughly
researched as a useful instrument for analyzing AD over
the past few decades. Nonetheless, as far as we can see, few
of the study findings assist physicians with their daily work
or decision-making. The concern is that the EEG signal is
noise-sensitive, with nonstationary properties, which makes
detection difficult [9]. Furthermore, since there is so much
variation between subjects, it is difficult to distinguish
objects and patterns from natural brain function. Reliable
biomarkers and rigorous diagnostic techniques that can
derive valuable knowledge from jumbled EEG signals are
also required urgently [9, 10].

For EEG signal processing, the wavelet transform has
been suggested as an efficient tool for analyzing time and
frequency. It entails convolving the EEG signal with a
variable-width time window, and higher frequencies have
narrower window widths, whereas lower frequencies have
wider window widths. This adjusts well to the features of
EEG signals, which are made up of short-duration high-
frequency incidents and long-duration low-frequency inci-
dents [11]. EEG pulse time-frequency measurement
combined with machine learning (ML) methods could help
with diagnosis and understanding of AD. Overfitting could
be avoided by using machine learning algorithms like feature
selection, which exclude data that is redundant from high-
dimensional data [12]. The thesis is aimed at investigating
robust functional biomarkers dependent on time-frequency
features of qEEG and developing a computer-aided discrim-
inant scheme for automatically classification EEG signals of
AD and normal elderly controls (NC) as a result of the
promising results obtained with the wavelet transform anal-
ysis and machine learning methods [13].

Many experiments have looked at multiscale entropy
and MSE-based measurements of EEG signals from Alzhei-
mer’s patients. MSE represents the degree of healthfulness

of a living process by its production physiologic signals
through measuring the complexity of a physiologic time
series over various time scales. Many experiments have
shown that the MSE values of EEG signals from healthy con-
trols are higher on small scales than those from AD patients,
but lower on large scales than those from AD patients.
Furthermore, at broad scales, the slope of the MSE vs. size
plot was observed to be higher for AD patients than for
healthy controls. Lately, machine learning techniques have
been introduced to EEG research in order to enhance the
recognition accuracy at AD patients of various severity
levels, as well as stable subjects. Any MSE time scale could
be used as a function in a machine learning algorithm [14].
For each EEG channel, Fan et al. [15] used 38 features
for machine learning, including MSE features and other
spectral and temporal features derived from the EEG data.
A total of 24 EEG recordings were obtained from stable,
mild, and severe AD patients. There were five binary and
one ternary classification problem to solve. Fan et al. used
19 EEG channels to remove 380 MSE functionality [15].
Each channel’s EEG signals contributed a series of 20 dis-
tinct MSE values calculated at scales 1–20. A total of 123
EEG recordings were obtained from stable people, people
with very minor AD, people with mild AD, and people
with moderate to serious AD.

2. Literature Review

During rest, generalized EEG slowdown has been noticed in
a variety of AD researches. This slowdown can be seen visu-
ally as a reduction in the dominant baseline rhythm’s tempo,
or spectrally as a rise in the strength of slow rhythms and a
reduction in the power of quicker rhythms [16]. Indeed, in
AD, the power spectrum’s peak frequency is usually among
8-12Hz variations to a lower range of 6–8Hz. Just a few
research has looked at EEG shifts in people with frontotem-
poral dementia. In frontotemporal dementia patients, quali-
tative examination of EEG recordings normally reveals no
irregular slowing [17]. We would like to find out that path-
ological EEG slowdown is a more serious version of the
general slowdown of the frame rhythm that occurs with
healthy aging. As a result, age-matched control groups are
needed in these studies; otherwise, the EEG-slowing effect
would be exaggerated. A visual grand complete EEG score
and the coordination probability as an indicator of func-
tional connectivity were used to equate mild to moderate
frontotemporal dementia and patients of Alzheimer’s dis-
ease to healthy controls (HC) [18]. The complete EEG score
in visual form did not vary significantly between frontotem-
poral dementia and HC. Using the visual grand total EEG,
patients of Alzheimer’s disease display substantial EEG slow-
ing and lack of reactivity as compared to frontotemporal
dementia and HC patients [19]. In high rates of frequency,
AD patients have a lower chance of synchronization than
frontotemporal dementia and HC patients, but there are
no variations between frontotemporal dementia and HC
patients (Figure 1). As a result, shifts in synchronization
are likely to follow the slowing trend. Higher frequency
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features, such as strength and synchronization, are dimin-
ished in AD but not in frontotemporal dementia.

The qEEG variations are between people with frontal
lobe dementia and others with Alzheimer’s disease, Parkin-
son’s disease dementia [21]. Lewy body disease has been
studied in some trials. The global field power for six fre-
quency bands was measured for the qEEG: δ (1 to 3.5Hz),
θ (4 to 7.5Hz), α (8 to 11Hz), β1 (12 to 15.5Hz), β2 (16
to19.5Hz), and β3 (20 to 23.5Hz). The number of quick fre-
quency bands was used to measure the spectral ratio α + β1
+ β2 + β3 and bands of low frequency δ + θ. Patients with
likely frontotemporal dementia were similar to AD patients
and healthy controls on cortical EEG sources’ spectral profile
[22]. The authors of this study used EEG band forces, coher-
ence, dominant frequency, peak frequency, and cortical
sources to distinguish sixteen patients with AD from nine-
teen patients by frontotemporal dementia. The most accu-
rate predictors of frontotemporal dementia and AD were
identified in a model using logistic regression analysis.
Activities such as elevated levels of visuospatial capacity
and episodic memory were among the predictors. The
model’s classification accuracy was 93.3 percent.

As a result, combining qEEG and neuropsychological
assessments substantially improves classification perfor-
mance and can be used for frontotemporal dementia and
AD differential diagnoses [23]. Using power spectral analysis
and uniform standardized low-resolution brain electromag-
netic tomography within δ, θ, α1, α2, β1, β2, and β3, Caso
et al. distinguished 39 Alzheimer’s disease patients from
among the frontotemporal dementia patients. As a result,
the sensitivity is at the degree of chance. In comparison to
HC, both studies showed higher expression of diffuse δ/θ
and lower central/posterior quicker frequency bands in AD

patients. Patients with frontotemporal dementia had
diffusely higher θ capacity than HC patients and lower δ
than AD patients. In comparison to frontotemporal demen-
tia patients, AD patients had diffusely higher θ power in the
power spectrum and reduced α2 and β1 in central/temporal
areas using standardized low-resolution brain electromag-
netic tomography. Slower frequencies are becoming more
important, whereas higher frequencies are becoming less
relevant. In patients with moderate levels of frontotemporal
dementia and in HC, studies of global field force, which is a
metric for the electric field pressure in the entire brain, were
combined with EEG neuroimaging observations with low-
resolution standardized brain electromagnetic tomography
(sLORETA) [24]. Important group effects were found in the
global field power in the δ (1.5 to 6Hz), α1 (8.5 to 10Hz), and
β1 (12.5 to 18Hz) bands. Differences in activation were seen
in the 1 band (health control > frontotemporal dementia) in
the orbital frontal and temporal lobes, the band
(Alzheimer’s disease > health control) in widespread areas like
the frontal lobe, and the δ band
(frontal lobe dementia > Alzheimer’s disease) in the parietal
lobe and sensorimotor region in low-resolution standardized
brain electromagnetic tomography research (Figure 2). As a
result, it does not appear that a particular brain area is essen-
tial in identifying these types.

Snaedal et al. used qEEG to see whether they could tell
the difference between 239 patients with AD, 52 patients to
Parkinson disease, and 14 patients to FDT [26]. For group-
ing, the authors of this Icelandic analysis used θ, α2, and
β1, as well as peak frequency. When utilizing a SVM method
to classify cases of degenerative diseases from HC, a good-
to-excellent distinction was observed, but this was less so
when the risk of comorbidity was high [27]. The investiga-
tors were able to distinguish AD from Parkinson’s disease
dementia with 91 percent accuracy, 93 percent for Parkin-
son’s disease dementia-frontotemporal dementia, and 88
percent for AD-frontotemporal dementia. Given the limited
sample size of frontotemporal dementia patients, the preci-
sion of these statistical figures must be viewed with caution.
In general, experiments including frontotemporal dementia
face challenges in attracting volunteers, so the significance
of this research should not be overlooked. Nonetheless, ade-
quate feature subset selection is required for classification
analysis, particularly in experiments with long vectors with
features, such as this one, which included 1120 entries. It is
unclear if the genetic algorithm’s 10-fold cross-validation
used a different preparation, assessment, and research
collection in this analysis. This study reduced the original
count of 382 studies to 126 studies after eliminating unqual-
ified studies, as seen in Figures 3(a) and 3(b). EEG (64
percent), magneto-encephalograms (28 percent), and fMRI
and practical near-infrared spectroscopy were the three
types of studies (7%).

3. Preprocessing of EEG Signals

Hans Berger invented EEG, a noninvasive technique of func-
tional imaging for studying the brain, in 1923. EEG
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Figure 1: Electrode interaction effects caused significant group
multiplication in the 8–10Hz frequency range [20].
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measures the electrical output of a community of neurons to
capture electric signals of the brain from the cerebral mantle
[28]. EEG has a poorer spatial resolution than functional
MRI but has a better temporal view into neuronal activity.
Until operation EEG signals, five frequency bands are usu-
ally examined, δ (up to 4Hz), θ (4 to 8Hz), α (8 to 12Hz),
β (12 to 26Hz), and γ (26 to 100Hz) [29]. Table 1 summa-
rizes these frequency bands and their associations with
human activity.

EEG has a frequency range of 1–100Hz and a voltage
range of 10–100μV. To detect a disorder or decipher brain
function using EEG data, utilizing the Fourier transform or
wavelet transform, extract features and utilize spectral infor-
mation from raw EEG dataset [29]. After that, the extracted
features or transformed raw data are utilize to train a ML-
based classifier, with deep learning algorithms proving to
be effective at automated feature extraction for testing.
Centered on the location of the reference electrode, EEG
recording can be done in two ways [29].

Experts believe that picture preprocessing is a bad idea
since it affects or alters the raw data’s actual nature. Intelli-
gent picture preprocessing, on the other hand, can give

benefits and address issues, resulting in enhanced locally
and globally feature recognition. Image preprocessing may
have a significant beneficial impact on the quality of feature
extraction and machine vision findings. The statistical
normalizing of a data collection, which is a frequent step
in many visual feature techniques, is comparable to image
preprocessing [30]. This is why a thorough study of picture
preprocessing is important. A local binary encoder utilizing
gray scale data, for instance, will involve different prepro-
cessing than a color SIFT method; moreover, some investi-
gative effort may be necessary to fine-tune the picture
preprocessing stage for optimal results. The pixel intensity
measurements of point pairs are dealt with using local
binary features. As a consequence, the evaluations are highly
insensitive to lighting, brightness, and contrast, and picture
preprocessing may not be required to get satisfactory
findings. Current literature-based local binary pattern tech-
niques do not generally require significant picture prepro-
cessing; instead, they depend on a simple matching
criterion that can be modified to accommodate for lighting
or contrast [30]. A Fourier transform calculated across the
whole picture or block is an example of a global or regional
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basis space feature that spans a regular-shaped polygon.
However, basis space characteristics, such as the Fourier
spectrum of the LBP summary, which may be computed
over histogram bin values of a local identifier to give rota-
tional normalization, may be part of the local features.
Another case is the Fourier descriptor, which is used to con-
struct polygon factors for radial line segment lengths to offer
rotational invariance by displaying the roundness of a fea-
ture. Rather than fixing issues, enhancements are utilized
to optimize for certain feature measuring techniques. Sharp-
ening and color balance are two common picture processing
improvements [30].

Harris hawk’s optimization [31], multiswarm whale [32],
Moth-flame optimizer [33–35], gray wolf [36, 37], fruit fly
[38, 39], bacterial foraging optimization [40], boosted binary
Harris hawk’s optimizer [41], an1t colony [42, 43],
biogeography-based whale optimization [44], and grasshop-
per optimizer [45] are some optimization methods based on
metaheuristic algorithms. Furthermore, biological applica-
tions of machine learning are common, such as tuberculosis
[46], thyroid nodules [47], Parkinson’s disease [48], and
paraquat-poisoned individuals [49, 50]. The reference elec-
trode is located on an electrically inactive region, and the
active electrode is located on an electrically active area
(e.g., an ear lobe). Scalp EEG is the standard technique for
capturing EEG signals, which involves placing electrodes
on the surface of the skull [51]. The biggest disadvantage
of scalp EEG is that due to the vast spacing among neurons
within the skull and the electrodes, the captured signals
become blurred. Intracranial electroencephalography signals
are recorded by inserting electrodes on the exposed region of
the brain to improve signal strength in terms of interference
and amplitude [51].

4. Feature Extraction of EEG Signals

Every prediction models must have consistent features that
are well associated with the preictal and interictal levels.
Those features may be classified as univariate (means that
the measurements were taken separately on any EEG chan-
nel) or multivariate (means that the EEG measurements on
two or up channels) on the basis of the amount of EEG
channels. Of these may be further classified as linear or non-
linear elements. For ES estimation, Waser et al. contrasted
the efficiency of univariate and bivariate tests that included
methods that are both linear and nonlinear [52]. They dis-
covered that preictal deviations occurred 5-30 minutes
before the start of ES by using univariate tests. Bivariate

tests, on the other hand, worked preferred by capturing pre-
ictal changes least 240 minutes afore the start of an ES.
Figure 4 depicts some of the linear and nonlinear ES estima-
tion measures utilized in the related work. Nonlinear tests
worked better or were equivalent to linear measures in some
cases. Machine learning algorithms, such as artificial neural
networks, k-means clustering, decision trees, SVM, and
fuzzy logic, are used to identify preictal and interictal
patterns from EEG results [53]. To draw conclusions, most
people use thresholds based on function values. Machine
learning-based research, on the other hand, has mostly
focused on the processing of optimized features for projec-
tion. At the clinical stage, the EEG signal is provided in the
couple the time and frequency domains. Since EEG signals
are nonstationery and brain rhythms occur in time domain,
also, the signal must be interpreted in both time and
frequency domains [53] (see Figure 4).

The calculation of relative EEG power in each EEG
frequency band is performed to check the slowing result in
the EEG signal of Alzheimer’s disease patients. Low-
frequency bands (δ and θ bands), i.e., frequency area among
0.5 to 8Hz, have a high relative power. The normative
measure of EEG signal irregularity, such as Lempel Ziv com-
plexity [54, 55], is used to quantify this irregularity. The spec-
trum of EEG signal is resulted by neurodegenerative disorders
like mild cognitive impairment (MCI) and AD. Alzheimer’s
disease and mild cognitive impairment allow the EEG signal
to slow down, according to recent research. The power in
low-frequency bands (δ and θ bands, 0.5–8Hz) is increased
in EEG signals from Alzheimer’s patients, while power in
high-frequency bands (α and β bands, 8–30Hz) is reduced.
The power spectral density function aids in the evaluation
of each epoch’s spectral characteristics [56]. To achieve a nor-
malized Postsynaptic density, also, the postsynaptic density is
multiplied with the overall power in the frequency range of
0.1 to 40Hz [56]. To acquire data from the EEG, good signal
processing methods are needed because the data recorded by
the EEG is a complex waveform. Doma and Pirouz [57]
explained why the EEG signals are not stored in their normal
state and why the captured data is not used for study in its
original form. It is preferable to preprocess the EEG signals
before beginning the process of extracting indications. The
Fast Fourier Transformmethod is themost widely used signal
processing method. Spectral, mapping, morphological locali-
zation, time metric, correlation, auxiliary, segment analysis,
and other signal processing approaches should be noted.
Figure 5 depicts the use of neural networks in the area of
EEG signal processing in this study.

Table 1: Frequency bands in EEG and associated studies of brain control [29].

Bands Range (Hz) Human nature and the relationship

δ 1-4 Infants and average adults’ deep sleep periods are the most common places to see it.

θ 4-8 A high θ rhyme meaning in awake adults indicates irregular cognitive function.

8-12 In normal relaxed people, it is usually found in the posterior area of the brain.

β 12-26 Present in the frontal lobe of the brain and in nervous people who are conscious.

γ 26-1000 Predominantly present in people who are anxious, satisfied, or conscious.

5BioMed Research International



Sadati et al. [58] used an adaptive diffusion neural net-
work to diagnose epilepsy. Use DWT subband energy to
extract features. However, their proposed method achieved
an accuracy of about 85.9%. Ocak [59] proposed a method
for feature extraction and DWT using approximate entropy
and achieved an accuracy of more than 96% when using
DWT and not using DWT. Nunes et al. did not just classify
sentences A and E [60], but checked the complete data set of
the University of Bonn (data sets A, B, C, D, and E) and
checked various combinations of feature extraction and clas-
sification methods. The average accuracy of wood as a clas-
sifier is 89.2%. Subasi and Gursoy [61] studied various
analysis methods to reduce the size of EEG data and com-

bined EEG data with principal component analysis (PCA),
linear discriminant analysis (LDA), and independent com-
ponent analysis (ICA). Subasi [62] uses wavelet transform
for feature extraction and expert model for classification.
The overall accuracy of this method has reached 94.5%.
Recently, Chen [63] introduced the double Fourier tree of
complex waveforms as a feature extraction method and used
the nearest neighbor classifier for classification. The pro-
posed method achieved the ideal classification accuracy
(100%). Djemili et al. used another newer method, which
also achieved the desired classification speed. [64] uses
empirical mode decomposition for feature extraction, and
uses a multilayer perceptual neural network as a classifier.
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5. Classification on Alzheimer Disease

EEG data are utilized to detect human brain diseases, as well
as mental and emotional states, using a variety of deep learn-
ing architectures. The electroencephalogram (EEG)monitors
the brain’s neuro-activities, also known as brainwaves. Alpha
waves, thetawaves, betawaves, gammawaves, and deltawaves
are five distinct frequency waves. The neuroscience commu-
nity has used several deep learning algorithms to analyze these
brain waves in order to diagnose brain diseases and recognize
human feelings [65]. Convolutional neural network (CNN),
auto encoder (AE), recurrent neural network (RNN), deep
belief network (DBN), restricted Boltzmann machine
(RBM), multilayer perceptron neural network (MLPNN),
optimized deep neural network, and EEG-functional mag-
netic resonance imaging- (EEGfMRI-) based deep learning
are some of the most common learning algorithms.

Most classification trials, to our knowledge, have used
data obtained from healthy people [66]. EEG data was used
in 27 of these experiments to characterize feelings. Since our
method uses a four-electrode EEG sensor, we will concen-
trate on studies that have used a small number of electrodes.
Past experiments that used EEG data from up to four elec-
trodes connected to healthy individuals are summarized in
Table 1. Seo et al. [67, 68] and Kim et al. [69] used EEG data
obtained from two electrodes. Lee et al. [70], for example,
learned an SVM model but did not disclose the model’s
accuracy. Furthermore, rather than teaching a model, Kim
et al. used general research to examine the association
between EEG and eye-tracking data [69]. Lee et al. [70] did
not go into depth about the methods they used for model
output validation (if any). Finally, 5-fold cross-validation
and leave-one-out cross-validation were used by Seo et al.
[67, 68] to test their models. The experiments in Table 2
are aimed at classifying the feelings of healthy people; as
a result, their findings may not be specific to patients with
neurological disorders. However, based on these findings,
we can infer that EEG data collected from electrodes on
the forehead has the capacity to distinguish human emo-
tions. As a result, classifying emotions using EEG data
taken from an AD patient’s forehead may be a promising
avenue to pursue.

The association among signals x and y as a frequency
structure, varying from 0 to 1, is known as coherence.
Volume conduction through the scalp can have an effect
on this measurement. In two trials, θ range coherence was
found to be stronger in than in AD [54, 55]. In one study
[74], α and β coherence were shown to be lower in dementia
with Lewy body disease relative to AD, whereas other studies
[75] found higher α and β coherence in dementia with Lewy
body disease. Granger causality is also utilizing to describe
how the time course of the EEG in channel X could be used
to estimate possible EEG signal values in channel Y . Accord-
ing to one study, parietal area Granger causality is slightly
greater in dementia with Lewy body disease than in AD,
with a high precision of ~100%. The PLI calculates a stable
causal delay among two signal sources and is slowly influ-
enced with volume conduction on the scalp. PLI ratings
range from 0 to 1, with 0 indicating no causal synchroniza-

tion and 1 indicating complete causal synchronization.
Dementia with Lewy body disease had a lower PLI within
the α spectrum than AD, suggesting more extreme improve-
ments in connectivity in dementia with Lewy body disease.
The changes in α network connectivity are consistent with
another analysis that found lower mean α band guided phase
shift entropy in dementia with Lewy body disease relative to
AD, which tests posterior-to-anterior connectivity [76].

Weighted phase lag index (PLI) is a variation of phase
lag index that entails weighting the PLI rates by the imagi-
nary portion of the cross-spectrum between the two time-
series [77]; the latter part of the cross-spectrum is related
to the phase difference, or delay, between the signals. The
two signs are nearly overlapping if the imaginary component
is close to 0. One advantage of weighted PLI can be signifi-
cantly raised by loud conducting sources, although this effect
is less pronounced in weighted PLI [78]. Only one study
used this method and found that dementia with Lewy body
disease had a lower weighted PLI in the β band than Alzhei-
mer’s disease [79]. LLC is a connectivity metric that is calcu-
lated with the aid of precise low-resolution brain
electromagnetic tomography tools. LLC is less affected by
volume conduction and calculates functional cortical source
connectivity by eliminating zero-lag instantaneous step cou-
pling among cortical sources of resting state EEG rhythms.
When comparing AD to dementia with Lewy body disease,
LLC in the α and δ levels was lower in AD, which Babiloni
et al. [22] speculated may indicate that AD had more cortical
disconnection as both disorders progressed to dementia
[22]. To test functional network connectivity, a graph tech-
nique focused on weighted network, and least spanning tree
(MST) processes was used. The one study that looked at
weighted PLI found that dementia with Lewy body disease
(LBD) had lower connectivity and more network segregation
in the β network than AD [80]. MST was used in four exper-
iments [81, 82], all of which found that dementia with LBD
had a less degree, less Euclidean distance, upper diameter,
higher eccentricity, and less leaf-fraction than AD [82],
implying a less-efficient network. Lewy body disease tends
to have a randomized sequence consistent with decreased
performance and synchronization [82]. EEG connectivity
results in dementia with Lewy body disease (LBD) are
summarized in Table 3.

6. EEG Signal Complexity Analysis of AD

A variety of nonlinear approaches have been used to investi-
gate the features of brain function in Alzheimer’s patients,
yielding a host of intriguing findings. Resting-state record-
ings offer more accurate estimates of brain adaptability
because they are not affected with task-specific arousal or
discrepancy in impetus or success [84]. Resting brain func-
tion records and task-related observations show network
dynamics that are close [85, 86] and also represent the influ-
ence of metabolically active networks. The time resolution of
the EEG signal is very high, and it has been discovered that
the signals have been studied mostly in various frequency
bands and using from electrodes to show the diversity in
signal rates.
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6.1. The Signal Complexity Analysis in EEG. The signal com-
plexity of the resting-state EEG in spinal cord injury, MCI,
and AD patients is compared to standard controls in this
segment. As applied to EEG signals, multiplex complexity
technique, such as LZC, entropy complexity, and another
complexity characteristics, has been shown to vary between
spinal cord injury, MCI, AD, and control subjects in many
experiments. Hogan et al. [87] discovered that MCI patients
had a low entropy. According to a new analysis, the difficulty
rates of EEG signals from AD patients are lower than those
of spinal cord injury patients in all channels. ApEn and
SampEn [3] in EEG signals have been seen to be slightly
lower in healthy control and Alzheimer’s disease patients
relative to healthy individuals [88]; Garn et al. used various
approaches [89] to investigate the complexity of EEG signals
from AD patients and maturity clinical trial. In the EEGs of
patients with AD, consistent findings were observed, includ-
ing a substantial decrease in complexity at electrodes P3, P4,
O1, and O2 positioned over the parietal, occipital, and tem-
poral areas as compared with the healthy people. The medial
temporal lobe, which is linked to short-term memory, is
impaired during the MCI stage, as are the lateral temporal
lobe and parietal lobe. The frontal lobe is compromised in
the moderate stage of Alzheimer’s disease. The occipital lobe
is compromised during the acute stage of Alzheimer’s dis-
ease [90]. The brain states that form during the transition
from safe to AD have been studied using a variety of entropy
approaches. The majority of the research has concentrated

on specific regions of the brain. Patients with Alzheimer’s
disease and healthy control have less En values in all five
areas (EnAD EnMCI EnControl), with major variations in
the frontal, temporal, and central areas. These findings indi-
cate that the frontal, temporal, and central EEG impulses in
AD and MCI patients’ brains were slightly less complex than
those in HC. Furthermore, AD patients have the least diffi-
culty and the most consistency. The complexity of EEG
signals declines with disease progression, as predicted, par-
ticularly for comparing HC issues to Alzheimer’s disease
patients [91].

6.2. Conditions of EEG Recording and Symptoms of AD.
Many experiments have looked at the impact of AD and its
development on EEG signals over the past few decades. EEG
signals have been used in studies under a variety of recording
environments, which can be divided into two categories:

6.2.1. Resting State. The brain background activation is mea-
sured by recording spontaneous EEG activity in the absence
of some sort of stimuli. The acquisition of EEG data
becomes less difficult, rather relaxed, and less stressful for
the user, particularly for aged people [92], since the person
is not expected to perform any particular task. A condition
of rest EEG records include recordings made while resting-
awake as well as recordings made while sleeping. AD has
been shown to have four distinct impacts on resting-state
EEG signals:

Table 2: EEG data are used to classify the emotions of healthier individuals (up to four electrodes).

Investigation Emotional responses to be targeted Method Accuracy Test

[71] Happiness, rage, sorrow, fear, relaxation Support vector machine (SVM) 73.32
Leave-one-out cross-

testing

[72]
Engagement, perplexity, dissatisfaction, positive

attitude
SVM, k-nearest neighbors (KNN) 95.69 —

[73] Sorrow, displeasure
Multiclass support vector machine

classifier
84.83 —

[70] Arousal, sensitivity SVM, K-means — —

[67] Dissatisfaction, satisfaction KNN 86.73 5-fold cross-testing

[68] Dissatisfaction, satisfaction Multilayer perceptron (MLP) 79.98 5-fold cross-testing

[69] Boredom, frustration Analysis — —

Table 3: Lewy body disease, a review of studies on EEG connectivity controls.

Author Subband Metrics Outcome

[82] β Phase transfer entropy AD > LBD
[80] β Weighted phase lag index AD > LBD
[81] α Phase lag index AD > LBD
[83] α Phase lag index AD > LBD
[81] α Phase lag index AD > LBD
[83] α Phase transfer entropy AD < LBD

[22] α Lagged linear connectivity AD < LBD/Parkinson’s disease dementia
[22] δ Lagged linear connectivity AD < LBD/Parkinson’s disease dementia
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(1) Slowing. In AD patients, power spectrum transitions
from up-frequency ingredients (α, β, and γ) to low-
frequency components (δ and θ) are normal [14,
93, 94]. The lack of cholinergic innervations in AD
patients is believed to be the cause of this transition,
which is proportional to the progression of the dis-
ease. The slowing of the EEG has been quantified
using features obtained from the power curve, power
spectrogram, and wavelet analysis

(2) Reduced Complexity. By comparing AD patients to
healthy controls, a reduction in the complexity of
brain electrical activity has been found [14, 94–96].
Massive neuronal death and decreased interactions
in cortical regions are likely to blame for this decline,
which results in simplified EEG dynamics. Entropy
metrics, auto mutual detail, Lempel-Ziv complexity,
fractal dimension, and the Lyapunov exponent are
some of the signal processing techniques used to
investigate the complexity of EEG signals [92]

(3) Synchronization Declines. This has been seen in
many AD patients as a decrease in communication
between cortical regions. While the cause of this syn-
drome is unknown, it is believed to be linked to atro-
phy in neural network connectivity

(4) Deficiencies in Neuromodulation. Via cross-frequency
interaction effects, the utilization of amplitude modu-
lation to test EEG rhythms and brain neuromodula-
tory acting has lately been proposed [92]

6.3. EEG Recordings Associated with a Particular Event. The
signals from the EEG are time-blocked, meaning they are
captured in response to the occurrence of a single event.
EEG operation is step locked as well as time-blocked, earn-
ing it the term event-related potentials. Induced activity is
described as EEG activity that is not phase locked and can
be examined using either event-related (de) synchronization
[23] or event-related oscillations. Sensorial perceptive,
motor, and cognitive functions can all be linked to events.
Recent studies of the utilized event-connected EEG for
Alzheimer’s disease detection have been published in the
AD literature. Although event-connected EEG studying
enables researchers to investigate the impact of AD on indi-
vidual brain circuits, these monitoring environments are not
suitable for most AD patients, who experience a rise in
anxiety and frustration, as well as a decline in their ability
to do new things, even in the early stages of the disease. As
a result, even completing a basic memory task may cause
the patient pain and anxiety; they can become disoriented
or unable to accomplish it [97]. Resting-state protocols, also,
do not include extraneous stimulation, making them more
straightforward and convenient for patients. Furthermore,
these protocols produce less artifacts.

Some new articles on resting-state research for Alzhei-
mer’s disease detection have also been published. None of
them, however, have focused solely on the subject of EEG-
regarding Alzheimer’s disease detection. Some reviews, for
example, do not look at EEG as a primary diagnostic tool

[93, 94, 98], whereas others are solely concerned with EEG
signal synchronization [95, 96]. Furthermore, other publica-
tions [99, 100] offer a wider overview of the entire dementia
continuum, not just AD. In revisions [101, 102], the key
function types for Alzheimer’s disease detection are thor-
oughly explored. As a result, the current research adds to
previous studies of EEG-regarding Alzheimer’s disease
detection by regularly and exclusively analyzing papers on
resting-state EEG to offer a comprehensive overview of the
current state of the subjects.

7. Datasets

Three styles of datasets had been used for enforcing and ver-
ifying our methods. The first datasets are used for epilepsy
diagnosis, and the 1/3 is used for autism diagnosis. The first
dataset is provided through the Bonn University, Germany,
and protected 5 units, named A, B, C, D, and E. Each set
includes precisely a hundred single-channel EEG signals.
Sets A and B had been accrued from scalp EEGs of neuroty-
pical persons, while units C, D, and E had been accrued the
use of intracranial EEGs from epileptic persons. The general
duration of every sign is about 23.6 s. The records had been
accrued with a sampling frequency of 173.61Hz. The refer-
ence furnished in [103] indicates an extra specified descrip-
tion of this dataset. The study crew from MIT, USA [104],
affords the second one dataset, which incorporates 906 h of
EEG records accrued from 23 epileptic patients. In this
study, handiest records for the primary twelve epileptic
topics had been used, in conjunction with the ones of 11
neurotypical topics. This record consists of 23 EEG channels
with a sampling frequency of 256Hz [105].

The 1/3 dataset become furnished with the aid of using
King Abdulaziz University (KAU) Brain–Computer Inter-
face (BCI) Group, Jeddah, Saudi Arabia. The dataset become
accumulated in a comfortable kingdom and cut up into
groups: the primary institution become named the neuroty-
pical institution and protected information from ten health-
ful volunteer subjects (all men, age 9–sixteen years) with
common intelligence and with none intellectual disorders.
The 2nd institution become classified the autistic institution
and protected 9 subjects (six men and 3 females, elderly 10–
sixteen years) with ASD. The EEG indicators had been accu-
mulated from the subjects’ scalps in a comfortable kingdom
the usage of an EEG information-acquisition machine that
protected the subsequent components: a g.tec EEG cap with
excessive accuracy, sixteen Ag/AgCl sensors (electrodes) pri-
marily based totally at the 10–20 global acquisition machine,
g.tec USB amplifiers (gtec scientific engineering company,
Schiedlberg, Austria), and BCI2000 software (The Brain-
Computer Interface R&D Program on the Wadsworth
Center of the New York State Department of Health in
Albany, NY, USA). The dataset become filtered with the
aid of using a band-byskip clear out with a passband of
0.1–60Hz, and a notch clear out become used with a
stopband frequency of 60Hz. All EEG indicators had been
digitized at a sampling frequency of 256Hz. The EEG series
time ranged from 12 to forty min for autistic sufferers with a
complete of as much as 173min. For neurotypical sufferers,
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the recording is various among five and 27min with a
complete of as much as 148min.

8. Prodromal Dementia with LBD

Even at the mild cognitive impairment level, EEG anomalies
on visual rating have been noted to be more frequent in
dementia with LBD. When comparing MCI with Lewy bod-
ies (MCI-LB) to MCI due to AD (MCI-AD), MCI-LB had
more diffused anomalies (76 percent vs. 8%) and FIRDA
(22 percent vs. 0%) [106]. EEG severity ratings were also
slightly lower in MCI-LB, with just 16 percent of MCI-LBs
having regular EEGs compared to 49 percent of MCI-ADs
[106]. MCI-LB empirical EEG results have been compared
to those published in dementia with Lewy body disease
and Alzheimer’s disease, with MCI-LB having a lower dom-
inant frequency than MCI-AD [106, 107]. This results in a
higher θ/α ratio and higher pre-α power, as well as lower α
and β power and a lower θ/α ratio [106–108]. In identifying
MCI-LB (Table 4), Schumacher et al. 2020b found that spec-
tral strength tests had sensitivities of 23 to 51 percent, preci-
sion of 81 to 97 percent, and a region under receiver

operating specification curve of 0.54 to 0.71 [108]. Van der
Zande et al. 2020, but on the other hand, registered an
AUROC of 0.76 to 0.97, but no sensitivities or specificities
[106]. The MCI-LB connection was only studied in one
study, which showed that LLC was lower in MCI-LB and
MCI-AD as compared to age-matched controls, but no
difference between the MCI groups [22] (see Table 4).

Several research looked at whether EEG features would
predict dementia development in MCI patients. In one
study, MCI patients who progressed to dementia with Lewy
body disease (MCI-LB) had a lower mean frequency and α/θ
ratio than those who suggested MCI-AD [107]. Other
research utilized CSA to assess progression from MCI to
dementia with Lewy body disease, AD, or no progression
at 3 years in patients by MCI, with an average accuracy of
76%. Both patients with MCI who progressed to dementia
with Lewy body disease had a CSA pattern of >1 (1-5) at
baseline, while 93 percent of patients who improved to
Alzheimer’s disease had a CSA pattern of 1 (stableα) at base-
line [111]. However, in 75% of patients with MCI, the
involvement of one or more central or positive clinical char-
acteristics of dementia with Lewy body disease predicted

Table 4: Basic EEG features’ classification accuracy.

EEG features Studies TPR FPR ACC AUC

Dementia with Lewy bodies vs. AD [81] 97% 100% 99% —

EEG severity grade [109] 72–79% 76–85% — 0.78–0.90

Grand total EEG
[22]
[100]

65–78% 67–74% 70–73% 0.72–0.75

Occipital α power [22] 78% 67% 73% 0.72

δ standard deviation [110] 92% 83% — 0.94

θ FP + θ power + θ − αDFV [111] ~100% ~100% ~100% —

Combined spectral array pattern [83] 93% 97% 95% —

Phase lag index β band [82] 80% 85% 0.86

Minimum spanning tree-phase lag index [80] 47% 100% 66% 0.78

P300- reversed amplitude distribution gradients

[21]
[80]
[112]
[113]

76–100% 77–100% 66–100% 0.78–0.93

Machine learning algorithms [106] — — —

EEG severity grade > 2 [106] — — — 0.76

Diffuse abnormalities
[106]
[108]

51% 86% — 0.84

Peak/dominant frequency
[106]
[108]

61% 81% — 0.70–0.89

β power
[106]
[108]

41% 97% — 0.71–0.91

α power [108] 56% 83% — 0.66–0.85

Pre-α power
[106]
[108]

33% 89% — 0.68

θ power
[106]
[108]

23% 89% — 0.60–0.94

δ power
[106]
[108]

49% 83% — 0.54–0.55

θ/α ratio [106] — — — 0.64–0.92
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progression to dementia with Lewy body disease. The dom-
inant frequency variability was comparable when MCI
patients who advanced to dementia with Lewy body disease
(MCI-LB) were compared to dementia with Lewy body dis-
ease patients, despite dementia with Lewy body disease
patients having lower mean dominant frequencies [111].
After having comparable MMSE scores at baseline and a
similar decrease on follow-up (20.6 in dementia with Lewy
body disease and 20.5 in Alzheimer’s disease), follow-up
EEG of MCI-dementia with LBD patient’s demonstrated
improvement, with all patients with CSA 1 plus progressing
to CSA 2 or 3. In contrast, considering the cognitive impair-
ment, follow-up EEG of patients with MCI-AD revealed no
progression (93 percent with CSA trend 1).

9. Conclusions

Alzheimer’s disease is a sophisticated brain disease with
massive financial, social, and medical consequences. It is rec-
ognized as the leading cause of dementia, characterized by
amyloid peptide and phosphorylated tau (p-tau) protein
accumulation and aggregation, as well as dementia, neuron
loss, and brain atrophy. Despite decades of study, no accept-
able medication exists that will stop the progression of
Alzheimer’s disease by acting on the illness’s root cause,
whereas currently existing therapies merely give symptom-
atic relief and do not provide a definitive cure or protection.
Clinical signs, health information, family consultations, and
current screening procedures such as clinical, neurological,
and psychiatric examinations are used to diagnose Alzhei-
mer’s disease, whereas neuropsychological testing can be
acknowledged as a tool for detecting unbiased signs of mem-
ory disturbances in the early stages, and laboratory studies
such as thyroid function tests and serum vitamin B12 are
used. To wrap up this report, we will discuss some of the
remaining problems and study topics. Obtaining EEG data
from MCI or AD patients is currently very complicated. In
comparison to ECG and other biomedical records, such
databases are not open to the public. As a consequence, con-
sistently benchmarking and evaluating the latest approaches
for the detection of Alzheimer’s disease from EEG signals are
difficult. Furthermore, almost none of those techniques inte-
grate biophysical information about AD; comprehensive
mathematical models of AD pathology combined with
EEG data analysis can aid in improving AD diagnosis. Com-
bining EEG with another signal and imaging methods, such
as MRI dMRI, TMS, and SPECT, may yield even better
results. The relationship among AD risk criteria (e.g., ele-
vated homocysteine levels in the blood) and EEG character-
istics needs to be studied further. Furthermore, the exact
relationship between cognitive and memory loss and EEG
disorders in Alzheimer’s patients is still largely unknown.
It is also crucial to see how EEG can help differentiate
between MCI and various phases of AD, as well as between
AD and other dementias. The EEG monitoring state is an
important degree of freedom: it may be recorded (i) when
the subject is at rest; (ii) when the subject is performing
working-memory or other tasks; and (iii) when the subject
is being activated with auditory, visual, tactile, or other cues.

EEG signals can be more or less discriminative for MCI
and AD depending on the recording situation; a thorough
exploration of various recording situations with the goal of
detecting MCI and AD is needed. In the future, it is also
essential to evaluate the EEG in clinical studies of Alzhei-
mer’s disease, where the disease’s development can be
closely monitored; such studies may help us relate EEG
abnormalities to AD neuropathology. Another intriguing
line of investigation is the effect of treatment and therapy
on the EEG of AD patients.
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