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Background. The aim of this study was to identify potential key genes, proteins, and associated interaction networks for the
development of lung cancer in nonsmoking women through a bioinformatics approach. Methods. We used the GSE19804
dataset, which includes 60 lung cancer and corresponding paracancerous tissue samples from nonsmoking women, to perform
the work. The GSE19804 microarray was downloaded from the GEO database and differentially expressed genes were
identified using the limma package analysis in R software, with the screening criteria of p value < 0.01 and ∣log2 fold
change ðFCÞ ∣ >2. Results. A total of 169 DEGs including 130 upregulated genes and 39 downregulated were selected. Gene
Ontology and KEGG pathway analysis were performed using the DAVID website, and protein-protein interaction (PPI)
networks were constructed and the hub gene module was screened through STING and Cytoscape. Conclusions. We
obtained five key genes such as GREM1, MMP11, SPP1, FOSB, and IL33 which were strongly associated with lung cancer
in nonsmoking women, which improved understanding and could serve as new therapeutic targets, but their functionality
needs further experimental verification.

1. Introduction

Until recently, lung cancer (LC) is the malignant neoplasm
with the highest incidence and mortality worldwide, the
tumor with the highest cancer mortality rate among men
and the second highest cancer mortality rate among women
[1]. Smoking is the major independent risk factor in the
development of LC [2, 3]. Nonetheless, 15% of men and
53% of women with LC have never consumed tobacco [4].
Among them, nonsmokers are more common in women
with lung cancer [5]. Therefore, there might be many other
important factors that affect the occurrence and develop-
ment of lung cancer in nonsmokers, such as air pollution,
second-hand smoke, genetic factors, and occupational expo-
sure. Although many genes have been screened to under-
stand the causes of lung cancer in nonsmoking female
patients, such as TP53 [6], PI3K [7], EML4-ALK [8], and

BIRC5 [9], the molecular mechanism is still unclear. It is
crucial to recognize the unique molecular phenotypic char-
acteristics of nonsmokers with lung cancer for early diagno-
sis and targeted therapy.

With the development of gene microarray technology
and the application of bioinformatics tools, whole gene
expression profiling can be used to compare the expression
changes of thousands of genes simultaneously and compre-
hensively screen all relevant genes of cancer, as well as to
reveal the interrelationship between different gene expres-
sion changes, thus providing clues for studying the intrinsic
connection between genes [10–12]. Bioinformatics-based
data analysis plays an important role in the study of oncol-
ogy [13]. In recent years, a large number of gene microarray
datasets have been developed from lung cancer specimens,
from which a series of differentially expressed genes (DEGs)
have been identified, and gene annotation and pathway
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functions have been carried out [14, 15]. The analysis of
DEGs may provide a possibility for diagnosis marker and
therapeutic targets at the molecular level of LC.

In this work, we acquired mRNA expression profiles
from the GSE19804 dataset through the GEO website
(https://www.ncbi.nlm.nih.gov/geo/), which is a public data-
base that allows archiving, uploading, and querying microar-
rays. A total of 60 nonsmoking women with lung cancer
were absorbed in GSE19804 [16, 17], and samples were col-
lected from tumor (marked cancer) and adjacent normal tis-
sue (marked normal). We used the limma [18] package built
in R [19] software to obtain DEGs from mRNA expression
profiling data and categorized them into up- and downregu-
lated genes. Then, gene function and pathway analysis of
DEGs was performed with DAVID (https://david.ncifcrf
.gov/). Protein-protein interaction (PPI) network was con-
ducted by STRING [20] (https://string-db.org/) and visual-
ized by Cytoscape [21]. The core gene module (Module 1)
of the network was identified by MCODE [22] app. Ulti-
mately, we performed overall survival analysis for each gene
in Module 1 via the Kaplan-Meier Plotter [23] (https://
kmplot.com/analysis/). By applying this approach, the genes
that were flitted may be associated with the development of
lung cancer in nonsmoking women, which were identified as
potential biomarkers for diagnosis, prognosis, therapeutic

targets, and clinical pharmaceutical research. The frame-
work of this study is shown in Figure 1.

2. Methods and Materials

2.1. Data Acquisition and Preprocessing. The microarray
data GSE19804 [16, 17] was downloaded from the Gene
Expression Omnibus (GEO) database (https://www.ncbi
.nlm.nih.gov/geo/). The platform of GSE19804 was Affyme-
trix Human Genome U133 Plus 2.0 Array, which contained
60 female lung cancer patients who have never smoked and
60 normal controls. mRNA expression matrices of patients
can be obtained from the microarray. All the samples were
collected from Taiwan. Subsequently, the probe identifica-
tion numbers were transformed into official gene symbols.
After deletion of duplicate genes, one-to-many and non-
mRNA probes, the next differential gene analysis was per-
formed on all gene expression data.

2.2. Identification of DEGs. DEG analysis is the finding of
statistically significant genes from the multitude of genetic
information on gene expression microarrays. All the gene
expression data were analyzed using the limma package of
R Studio [19, 24] software. The limma [18] package per-
forms differential analysis of gene expression data and
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Figure 1: The frame of this study.
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experimental design through linear modeling. We applied
the limma package for preliminary DEG screening of tumor
tissues (marked cancer) and adjacent normal tissues
(marked normal). With the parameters of the filter set to ∣
log2 fold change ðFCÞ ∣ ≥2 and adjust p value < 0.01, the
resulting DEGs would proceed to the next step.

2.3. Functional and Signal Pathway Enrichment Analysis.
Gene Ontology (GO) [25] is the standardized portrayal or
semantic interpretation of terms used to characterize genes
and their products, including biological process (BP), cellu-

lar component (CC), and MF (molecular function). The
KEGG pathway [26] is a set of manually drawn pathway
maps representing our understanding of molecular interac-
tions, reactions, and networks of relationships in metabo-
lism, genetic information processing, etc. We used the
online tool DAVID [27] website (https://david.ncifcrf.gov/)
for GO and KEGG pathway annotation of candidate genes,
setting the terms to “Homo sapiens,” p value < 0.05.

2.4. Protein-Protein Interaction Analysis and Gene Module
Analysis. To understand the interactions between DEGs,
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Figure 2: The volcano plot of DEGs. Volcano plot of 139 differentially expressed genes (DEGs). Blue indicates downregulated genes, and red
indicates upregulated genes. The top 10 differentially expressed genes have been marked in the figure.

Table 1: The differentially expressed genes (DEGs). 169 DEGs were identified from GSE19804, with 39 upregulated and 130 downregulated
genes expressed in nonsmoking female lung cancer patients compared to adjacent normal controls. Each group was sorted by fold change,
from the largest to smallest (∣log2 FC ∣ ≥2, adjust p value < 0.01).

DEGs Gene name

Upregulated

SPP1, COL11A1, COL10A1, HS6ST2, SPINK1, TOX3, CTHRC1, MMP12, MMP1, GREM1, COL1A1, CST1, TOP2A,
CEACAM5, PROM2, GJB2, AFAP1-AS1, ANLN, GCNT3, CXCL14, CDCA7, TMPRSS4, CRABP2, PSAT1, MMP11,
XDH, CP, COMP, GLB1L3, CXCL13, SULF1, LGSN, ABCC3, THBS2, KIF26B, GOLM1, KIAA0101, SIX1,
ST6GALNAC1

Downregulated

MMRN1, KCNK3, RXFP1, RAMP3, SOCS2, FOXF1, FIBIN, KANK3, HBEGF, PCOLCE2, MFAP4, GNLY, IL33,
AKAP12, ADAMTS1, S100A8, ACADL, RGCC, PLAC9, MS4A15, SGCG, HCAR3, ABI3BP, SCEL, AGTR1, LRRK2,
ARHGAP6, LRRN3, CLDN5, TGFBR3, SFTPD, PIP5K1B, STXBP6, CFD, LDB2, ADAMTSL3, SCARA5, CALCRL,
KCNT2, SNTN, ZBTB16, CXCL2, KIAA1462, ACKR1, OGN, MME, CDH5, GIMAP8, SCN7A, TAL1, ARHGEF26,
LIN7A, ADH1B, DACH1, GNG11, CD300LG, KL, AFF3, PEBP4, GPIHBP1, C2orf40, KLF4, LYVE1, CHRDL1, MYZAP,
ANKRD29, COL6A6, CDO1, LINC00968, CCBE1, CAV2, ZBED2, FHL1, AQP4, ROBO4, CXCR2, KAL1, PPBP, FILIP1,
BCHE, SPOCK2, HBB, CA4, MAMDC2, SPTBN1, FGFBP2, INMT, FMO2, ADIRF, CCDC85A, TEK, FAM150B, TCF21,
FAM107A, S100A12, CAV1, FOSB, STX11, MCEMP1, SERTM1, PDK4, SOX7, EDNRB, UPK3B, CPB2, ABCA8, IL6,
IGSF10, IL1RL1, SDPR, BTNL9, EMCN, NCKAP5, MT1M, TNNC1, CLDN18, GKN2, SFTPC, CD36, SCGB1A1,
SOSTDC1, FCN3, RTKN2, CLIC5, AGER, TMEM100, SLC6A4, FABP4, WIF1, GPM6A
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PPI queries were conducted. PPI analysis was carried out
using STRING [20, 28] (https://string-db.org/, version 11.0)
database, which is an online tool to search known protein
interactions. We uploaded DEGs to the system and set the
minimum required interaction score > 0:150 as restriction.
The active interaction sources included text mining, experi-
ments, databases, coexpression, neighborhood, gene fusion,
and cooccurrence. The results from the PPI analysis were visu-

alized by applying the Cytoscape [21] software (version 3.7.2).
Subsequently, an app named MCODE [22] (https://apps
.cytoscape.org/apps/mcode, version 1.6.1) was utilized to find
the core module in the networks. The MCODE parameters
were set to the default value, except K‐core = 6.

2.5. Overall Survival Analysis Validation and Gene Ontology.
To verify whether hub gene expression has survival

Table 2: Gene Ontology of DEGs associated with nonsmoking woman lung cancer.

Category Term Count p value Gene name

GOTERM_BP_DIRECT
GO:0030574~collagen catabolic
process

7 2:08E − 05 COL6A6, COL1A1, COL11A1, MMP12, MMP1,
COL10A1, MMP11

GOTERM_BP_DIRECT
GO:0001937~negative regulation of
endothelial cell proliferation

5 1:16E − 04 XDH, CAV2, CAV1, RGCC, SULF1

GOTERM_BP_DIRECT
GO:0030198~extracellular matrix
organization

9 3:49E − 04 RXFP1, SPOCK2, FOXF1, COMP, COL1A1,
COL11A1, ABI3BP, COL10A1, SPP1

GOTERM_BP_DIRECT
GO:0050729~positive regulation of
inflammatory response

6 4:61E − 04 AGTR1, S100A8, IL1RL1, FABP4, IL33, S100A12

GOTERM_BP_DIRECT
GO:0031623~receptor
internalization

5 5:47E − 04 RAMP3, CAV1, CD36, CXCR2, CALCRL

GOTERM_BP_DIRECT GO:0001822~kidney development 6 9:76E − 04 TCF21, AGTR1, SIX1, SULF1, MME, ADAMTS1

GOTERM_CC_DIRECT GO:0005576~extracellular region 41 1:02E − 09

EMCN, S100A8, CXCL2, IL33, MMRN1, MMP1,
IGSF10, OGN, COL6A6, FCN3, BCHE, COMP,
TEK, SFTPD, SFTPC, FAM150B, CFD, FIBIN,
COL11A1, HBB, THBS2, SPP1, COL10A1, IL6,
KL, AGER, MMP12, PLAC9, S100A12, MMP11,
PCOLCE2, CHRDL1, CXCL14, PPBP, CXCL13,
TGFBR3, HBEGF, WIF1, COL1A1, CP, MFAP4

GOTERM_CC_DIRECT
GO:0005578~proteinaceous
extracellular matrix

17 1:87E − 09
CTHRC1, MAMDC2, ADAMTSL3, SPOCK2,
IL1RL1, MMP1, MMP12, MMP11, OGN,
COL6A6, COMP, CCBE1, SFTPD, TGFBR3,
ADAMTS1, COL11A1, COL10A1

GOTERM_CC_DIRECT GO:0005615~extracellular space 36 4:65E − 09

XDH, CTHRC1, S100A8, CXCL2, SPINK1, IL33,
GREM1, SCGB1A1, ABI3BP, OGN, COMP,
SOSTDC1, CCBE1, SFTPD, SFTPC, CFD,
FGFBP2, GOLM1, SPP1, IL6, KL, GNLY, CST1,
C2ORF40, GKN2, CD36, CXCL14, PPBP,
CXCL13, SULF1, TGFBR3, HBEGF, COL1A1, CP,
LRRK2, CPB2

GOTERM_CC_DIRECT GO:0005581~collagen trimer 10 1:15E − 07 CTHRC1, CD36, COL6A6, FCN3, CCBE1,
SFTPD, COL1A1, COL11A1, MMP1, COL10A1

GOTERM_CC_DIRECT
GO:0016323~basolateral plasma
membrane

9 1:93E − 04 CAV1, PROM2, TEK, CD300LG, AQP4, CA4,
CEACAM5, GPIHBP1, LIN7A

GOTERM_CC_DIRECT GO:0045121~membrane raft 9 4:79E − 04 EDNRB, CAV2, CAV1, PROM2, CD36, SDPR,
SLC6A4, SULF1, TEK

GOTERM_MF_DIRECT GO:0008201~heparin binding 10 7:06E − 06 OGN, CXCL13, COMP, TGFBR3, HBEGF,
ADAMTS1, THBS2, AGER, ABI3BP, PCOLCE2

GOTERM_MF_DIRECT GO:0008009~chemokine activity 4 0.007634616 PPBP, CXCL14, CXCL13, CXCL2

GOTERM_MF_DIRECT GO:0005518~collagen binding 4 0.013282483 COMP, CCBE1, ABI3BP, PCOLCE2

GOTERM_MF_DIRECT
GO:0004222~metalloendopeptidase
activity

5 0.014206339 MME, ADAMTS1, MMP12, MMP1, MMP11

GOTERM_MF_DIRECT
GO:0017134~fibroblast growth
factor binding

3 0.015208209 CXCL13, KL, TGFBR3

GOTERM_MF_DIRECT GO:0005509~calcium ion binding 13 0.015389499
S100A8, TNNC1, SPOCK2, COMP, SULF1,
CCBE1, MMRN1, THBS2, MMP1, CDH5,
MMP12, S100A12, MMP11
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Figure 3: The Gene Ontology and KEGG pathway of DEGs. (a) The top 6 functional enrichment analysis of DEGs in biological process
(BP), cellular component (CC), and molecular function (MF). (b) The top 6 functional enrichment analysis arranged according to adj. p
value.
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significance in nonsmoking female lung cancer patients,
overall survival analysis was performed. The genes in the
previous module were verified for overall survival analysis
with the Kaplan-Meier Plotter [23] (https://kmplot.com/
analysis/). This online tool integrated the gene expression
and clinical data from GEO, EGA, and TCGA, including
lung cancer (n = 3452), which can evaluate the impact of
54k genes (mRNA, miRNA, and protein) on cancer survival.
The Kaplan-Meier survival chart was conducted to compare
the two patient cohorts, and the 95% confidence interval and
logrank value hazard ratio were calculated. We selected the
types of diseases as “lung cancer,” setting limits as follows:
“gender: female,” “smoking history: only those never

smoked,” “split patients by the following: lower tertile” and
“logrank value < 0:05.” Survival was evaluated using the
Kaplan-Meier survival curves. Ultimately, the genes verified
by survival analysis were subjected to GO analysis using
Metascape [29] (https://metascape.org/gp/index.html).

3. Results

3.1. Identification of DEGs. By analyzing the gene expression
microarrays GSE19804, with criteria as ∣log2 FC ∣ ≥2 and
adjust p value < 0.01, a total of 169 DEGs were selected,
including 39 upregulated genes and 130 downregulated
genes (Figure 2 and Table 1). The top 10 upregulated genes

Hsa04062: Chemokine signaling pathway

Hsa03320: PPAR signaling pathway

Hsa04151: PI3K−Akt signaling pathway

Hsa04510: Focaladhesion

Hsa04974: Protein digestion and absorption

Hsa04512: ECM−receptor interaction

Hsa05144: Malaria
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Figure 4: The KEGG pathway of DEGs.

Table 3: Significantly enriched KEGG pathway of differentially expressed genes (DEGs).

Term Count p value Gene name

hsa05144:malaria 6 1:27E − 04 IL6, CD36, COMP, ACKR1, THBS2, HBB

hsa04512:ECM-receptor interaction 7 2:36E − 04 CD36, COL6A6, COMP, COL1A1, COL11A1, THBS2, SPP1

hsa04974:protein digestion and
absorption

6 0.001924368 COL6A6, MME, COL1A1, CPB2, COL11A1, COL10A1

hsa04510:focal adhesion 8 0.004729076 CAV2, CAV1, COL6A6, COMP, COL1A1, COL11A1, THBS2, SPP1

hsa04151:PI3K-Akt signaling pathway 9 0.023099212
IL6, COL6A6, COMP, TEK, GNG11, COL1A1, COL11A1, THBS2,
SPP1

hsa03320:PPAR signaling pathway 4 0.030418433 CD36, FABP4, ACADL, MMP1

hsa04062:chemokine signaling pathway 6 0.04032297 PPBP, CXCL14, CXCL13, CXCL2, CXCR2, GNG11
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Figure 5: The protein-to-protein interaction network. (a) The overview of the PPI network, with 167 nodes/genes and 1357 edges, including
129 downregulated (marked blue) and 38 upregulated (marked red) genes. The color shade of the nodes was set according to log FC p value
of DEGs, and the size was set according to the edges. (b) Module 1 consisted of 16 nodes/genes.
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were SPP1, COL11A1, COL10A1, HS6ST2, SPINK1, TOX3,
CTHRC1, MMP12, MMP1, and GREM1. The top 10 down-
regulated genes were MMRN1, KCNK3, RXFP1, RAMP3,
SOCS2, FOXF1, FIBIN, KANK3, HBEGF, and PCOLCE2.

3.2. Functional and Signal Pathway Enrichment Analysis. By
performing GO and KEGG pathway analysis of DEGs
through the DAVID website, we classified them into three
terms: biological process (BP), cellular component (CC),
and molecular function (MF). It can be seen from Table 2
and Figure 3. The top 3 significant distributions of BP
enrichment were “collagen catabolism,” “negative regulation
of endothelial cell proliferation,” and “extracellular matrix tis-
sue”; CC were “extracellular area,” “protein extracellular
matrix,” and “extracellular space”; and MF were “heparin
binding,” “chemokine activity,” and “collagen binding,”

respectively. Through the analysis of the KEGG pathway on
the DAVID website, the DEGs were enriched in the following
7 pathways (Figure 4 and Table 3). The top 3 pathways with
the largest differences were “malaria,” “ECM-receptor interac-
tion,” and “protein digestion and absorption.”

3.3. Protein-Protein Interaction Analysis and Gene Module
Analysis. We uploaded 169 DEGs to the STRING website
and deleted the disconnected nodes to form a network of
167 nodes/genes and 1357 edges, including 129 downregu-
lated and 38 upregulated genes. Then, the network was
imported into the Cytoscape software for visualization
(Figure 5(a)). Moreover, based on MCODE, with K‐core =
6 as criteria, the most significant gene module (Module 1)
was selected, which contained 16 node/genes and 58 edges
(Figure 5(b)). In Module 1, 9 genes were upregulated
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Figure 6: The overall survival of the 5 genes in female LC of nonsmokers. Downregulated genes ((a) FOSB, (b) IL33) and upregulated genes
((c) GREM1, (d) MMP11, and (e) SPP1).
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(COL10A1, COL11A1, COL1A1, CXCL13, CXCL14,
GREM1, MMP11, SPP1, and THBS2) and 7 genes were
downregulated (FOSB, IL33, LYVE1, PPBP, S100A12, and
S100A8). The 16 genes above would be selected for the next
step verification.

3.4. Overall Survival Analysis Validation and Gene
Ontology. In order to evaluate the clinical significance of
these genes in nonsmoking female lung cancer patients,
we imported the 16 candidate genes into the Kaplan-
Meier Plotter for overall survival analysis verification. Using
the selected parameters, the analysis runs on 168 patients.
As shown in Figure 6, there were 5 genes that meet the
screening requirements. The upregulated genes of GREM1
(HR = 3:82) (Figure 6(c)), SPP1 (HR = 3:6) (Figure 6(d)),
and MMP11 (HR = 4:93) (Figure 6(e)) had lower survival rate
in the high expression group compared with the low expres-
sion group, while the downregulated genes of FOSB (HR =
0:45) (Figure 6(a)) and IL33 (HR = 0:35) (Figure 6(b)) were
the opposite. Gene Ontology of 5 hub genes was performed
through Metascape (Table 4).

4. Discussion

Gene microarray technology is one of the most important
methods for exploring gene expression and is particularly
relevant in the study of complex refractory diseases [30]. It
is well known that smoking is the most important indepen-
dent risk factor for LC, but a proportion of lung cancer
patients have never smoked, which is more frequent among
females. As previously described, nonsmoking lung cancer
could be classified as a unique type according to the unique
genome and molecular mechanism [31]. Although many
genes, such as CYP1A1 [32], ERCC2 [33], and L10 [34],
have been confirmed to relate to nonsmoking lung cancer,
the mechanism related to nonsmoking female lung cancer
patients is not clear. The purposes of our study were to
explore novel potential genes through comparing 60 LC
women tissue without tobacco consumption with the adja-

cent normal tissue. By using R software, we identified 39
upregulated and 130 downregulated DEGs from GSE19804
downloaded from the GEO database. Following GO and
KEGG pathway analysis, PPI network of DEGs was per-
formed and the most significant gene module (Module 1)
was selected, from which 16 genes were chosen to validate
overall survival in the Kaplan-Meier Plotter. Finally, a total
of 5 genes, GREM1, MMP11, SPP1, FOSB, and IL33, were
screened out as potential biological markers.

We implemented GO and KEGG pathway analysis using
the DAVID online tool to identify BP, CC, and MF and
pathways involved in DEGs. With regard to BP, DEGs are
mainly enriched in collagen catabolic process, extracellular
matrix organization, and positive regulation of inflamma-
tory response. In fact, collagen metabolism and extracellular
matrix organization are widely involved in the growth,
metastasis [35], and immunosuppression [36] of lung can-
cer. The genes identified of this study have been shown to
be associated the promotion of collagen metabolism in
tumors, with mmp11 leading to LC progression through reg-
ulation of collagen catabolism and fibrous tissue. DEGs in
CC are majorly enriched in extracellular region, proteina-
ceous extracellular matrix, and collagen trimer. In conso-
nance with this, DEGs are predominantly associated with
collagen binding and chemokine and metalloendopeptidase
activity in MF. Collagen provides a scaffold for extracellular
matrix (ECM) assembly and promotes cancer cell migration
and invasion [37]. It has also been reported that intratu-
moral collagen is a major source of immunosuppression
and resistance to PD-1/PD-L1 axis blockade [37]. The genes
identified in this study have been shown to be involved in
the promotion of collagen metabolism in LC, with MMP11
leading to LC progression through regulation of collagen
catabolism and fibrous tissue [38].

Next, interrelationship analysis of the pathway was per-
formed using the KEGG process in DAVID. DEGs were
mainly associated with ECM-receptor interaction including
COL11A1, COL1A1, THBS2, and SPP1. The ECM can be
classified into interstitial matrix (IM) and basement

Table 4: Gene Ontology of 5 hub genes through Metascape.

Gene Gene full name Biological process (GO) GO term

FOSB Proto-oncogene
Response to corticosterone
Response to isoquinoline alkaloid
Response to morphine

GO:0051412
GO:0014072
GO:0043278

IL33 Interleukin 33
Regulation of bone trabecula formation
Negative regulation of bone trabecula formation
Negative regulation of osteoclast proliferation

GO:1900154
GO:1900155
GO:0090291

GREM1
Gremlin 1
DAN family BMP antagonist

Regulation of cellular defense response
Positive regulation of cellular defense response
Negative regulation of macrophage proliferation

GO:0010185
GO:0010186
GO:0120042

MMP11 Matrix metallopeptidase 11
Basement membrane organization
Collagen catabolic process
Negative regulation of fat cell differentiation

GO:0071711
GO:0030574
GO:0045599

SPP1 Secreted phosphoprotein 1
Collateral sprouting of intact axon in response to injury
Regulation of collateral sprouting of intact axon in response to injury
Negative regulation of collateral sprouting of intact axon in response to injury

GO:0048673
GO:0048683
GO:0048685

9BioMed Research International



membrane (BM), in which renewal and degradation are
intrinsically linked to the invasive phenotype of malignant
cells [39]. Furthermore, COL11A1, encoding collagen type
XI α1, was overexpressed in recurrent and metastatic
NSCLC and promotes proliferation, invasion, and migration
of NSCLC via the Smad signaling pathway [40]. Addition-
ally, SPP1 (osteopontin) was enriched in both the ECM-
receptor interaction and PI3K-Akt signaling pathway. SPP1
is an important component of ECM, regulating matrix inter-
actions and cell adhesion [41]. SPP1 promotes tumorigenesis
and metastasis through accumulation of vascular endothelial
growth factor (VEGF) [42] and facilitates immune escape
from tumors through upregulation of PD-L1 tumor-
associated macrophages [43]. Also, fibroblasts differentiated
from bone marrow CD4+ monocytes enhance the cancer
hepatocyte-like properties of LC cells through the secretion
of SPP1 and activation of the PIK3K/AKT pathway [44].
We also found that PIK3K/AKT was a significantly enriched
pathway. Activation of the PI3K/AKT pathway may lead to
upregulation of tumors via VEGF, resulting in tumors with
angiogenic properties [45]. In consensus, both SPP1 and
COL11A1 were found as upregulated DEGs in this work,
indicating that the ECM-receptor interaction and PIK3-
K/AKT signaling pathway might play a key role in non-
smoking female patients of LC.

Although the GSE19804 datasets have been mined sev-
eral times, our work focused on gene expression differences
in lung cancer in nonsmoking women and therefore has cer-
tain uniqueness in terms of data mining perspectives,
methods, and results compared to existing studies. Firstly,
the perspective of analysis is different, as the main way of
using these datasets was to study the gene expression differ-
ences between non-small-cell lung cancer (NSCLC) and nor-
mal tissues, without using smoking as a qualifying study
condition [46–49]. Secondly, many studies target the signif-
icance of single gene expression in NSCLC, especially onco-
genes, such as cyclin B2 (CCNB2) [50], pituitary tumor
transforming gene-1 (PTTG1) [51], and tumor suppressor
gene as hedgehog-interacting protein (HHIP) [52]. Of
course, there are also studies on nonsmoking lung cancer
in women. In screening for DEGs, we used the limma pack-
age in R software, but Yang et al. [9] used the GEO2R
(https://www.ncbi.nlm.nih.gov/geo/geo2r/), which is an
online tool of the GEO database. So we screened for different
DEGs and pathways. In addition, some studies are screening
for miRNA [53] and lncRNA [54].

5. Conclusion

This study investigated the potential candidate genes and
signaling pathways of DEGs in lung cancer with nonsmok-
ing women by analyzing the GSE19804 microarrays. Genes
were selected by DEG, GO, KEGG, and PPI analysis. Finally,
the upregulated (GREM1, MMP11, and SPP1) and down-
regulated (FOSB, IL33) genes were screened. This study
improves our understanding of the pathogenesis and under-
lying molecular mechanisms of lung cancer in nonsmoking
women. These selected candidate genes and pathways could
give us a clue for a new therapeutic target. However, deter-

mining the function of these molecules requires further
molecular biology experimental validation.
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